
MATHEMATICAL TRIPOS Part IB 2016

List of Courses

Analysis II

Complex Analysis

Complex Analysis or Complex Methods

Complex Methods

Electromagnetism

Fluid Dynamics

Geometry

Groups, Rings and Modules

Linear Algebra

Markov Chains

Methods

Metric and Topological Spaces

Numerical Analysis

Optimization

Quantum Mechanics

Statistics

Variational Principles

Part IB, 2016 List of Questions [TURN OVER



2

Paper 3, Section I

2G Analysis II
(a) Let X be a subset of R. What does it mean to say that a sequence of functions

fn : X → R (n ∈ N) is uniformly convergent?

(b) Which of the following sequences of functions are uniformly convergent? Justify
your answers.

(i) fn : (0, 1) → R, fn(x) =
1− xn

1− x
.

(ii) fn : (0, 1) → R, fn(x) =

n
∑

k=1

1

k2
xk.

(iii) fn : R → R, fn(x) = x/n.

(iv) fn : [0,∞) → R, fn(x) = xe−nx.

Paper 4, Section I

3G Analysis II
(a) What does it mean to say that a mapping f : X → X from a metric space to

itself is a contraction?

(b) State carefully the contraction mapping theorem.

(c) Let (a1, a2, a3) ∈ R3. By considering the metric space (R3, d) with

d(x, y) =

3
∑

i=1

|xi − yi| ,

or otherwise, show that there exists a unique solution (x1, x2, x3) ∈ R3 of the system of
equations

x1 = a1 +
1

6
(sinx2 + sinx3) ,

x2 = a2 +
1

6
(sinx1 + sinx3) ,

x3 = a3 +
1

6
(sinx1 + sinx2) .
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Paper 2, Section I

3G Analysis II
(a) What does it mean to say that the function f : Rn → Rm is differentiable at the

point x = (x1, x2, . . . , xn) ∈ Rn? Show from your definition that if f is differentiable at x,
then f is continuous at x.

(b) Suppose that there are functions gj : R → Rm (1 6 j 6 n) such that for every
x = (x1, . . . , xn) ∈ Rn,

f(x) =

n
∑

j=1

gj(xj).

Show that f is differentiable at x if and only if each gj is differentiable at xj.

(c) Let f : R2 → R be given by

f(x, y) = |x|3/2 + |y|1/2 .

Determine at which points (x, y) ∈ R2 the function f is differentiable.
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Paper 1, Section II

11G Analysis II
Let (X, d) be a metric space.

(a) What does it mean to say that (xn)n is a Cauchy sequence in X? Show that if
(xn)n is a Cauchy sequence, then it converges if it contains a convergent subsequence.

(b) Let (xn)n be a Cauchy sequence in X.

(i) Show that for every m > 1, the sequence (d(xm, xn))n converges to some
dm ∈ R.

(ii) Show that dm → 0 as m→ ∞.

(iii) Let (yn)n be a subsequence of (xn)n. If ℓ, m are such that yℓ = xm, show
that d(yℓ, yn) → dm as n→ ∞.

(iv) Show also that for every m and n,

dm − dn 6 d(xm, xn) 6 dm + dn.

(v) Deduce that (xn)n has a subsequence (yn)n such that for every m and n,

d(ym+1, ym) 6
1

3
d(ym, ym−1)

and

d(ym+1, yn+1) 6
1

2
d(ym, yn).

(c) Suppose that every closed subset Y of X has the property that every contraction
mapping Y → Y has a fixed point. Prove thatX is complete.

Part IB, 2016 List of Questions
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Paper 4, Section II

12G Analysis II
(a) Let V be a real vector space. What does it mean to say that two norms on V are

Lipschitz equivalent? Prove that every norm on Rn is Lipschitz equivalent to the Euclidean
norm. Hence or otherwise, show that any linear map from Rn to Rm is continuous.

(b) Let f : U → V be a linear map between normed real vector spaces. We say that
f is bounded if there exists a constant C such that for all u ∈ U , ‖f(u)‖ 6 C ‖u‖. Show
that f is bounded if and only if f is continuous.

(c) Let ℓ2 denote the space of sequences (xn)n>1 of real numbers such that
∑

n>1 x
2
n

is convergent, with the norm ‖(xn)n‖ =
(
∑

n>1 x
2
n

)1/2
. Let em ∈ ℓ2 be the sequence

em = (xn)n with xm = 1 and xn = 0 if n 6= m. Let w be the sequence (2−n)n. Show that
the subset {w} ∪ {em | m > 1} is linearly independent. Let V ⊂ ℓ2 be the subspace it
spans, and consider the linear map f : V → R defined by

f(w) = 1, f(em) = 0 for all m > 1.

Is f continuous? Justify your answer.

Paper 3, Section II

12G Analysis II
Let X be a metric space.

(a) What does it mean to say that a function f : X → R is uniformly continuous?
What does it mean to say that f is Lipschitz? Show that if f is Lipschitz then it is
uniformly continuous. Show also that if (xn)n is a Cauchy sequence in X, and f is
uniformly continuous, then the sequence (f(xn))n is convergent.

(b) Let f : X → R be continuous, and X be sequentially compact. Show that f is
uniformly continuous. Is f necessarily Lipschitz? Justify your answer.

(c) Let Y be a dense subset of X, and let g : Y → R be a continuous function. Show
that there exists at most one continuous function f : X → R such that for all y ∈ Y ,
f(y) = g(y). Prove that if g is uniformly continuous, then such a function f exists, and is
uniformly continuous.

[A subset Y ⊂ X is dense if for any nonempty open subset U ⊂ X, the intersection
U ∩ Y is nonempty.]

Part IB, 2016 List of Questions [TURN OVER



6

Paper 2, Section II

12G Analysis II
(a) What is a norm on a real vector space?

(b) Let L(Rm,Rn) be the space of linear maps from Rm to Rn. Show that

‖A‖ = sup
06=x∈Rm

‖Ax‖
‖x‖ , A ∈ L(Rm,Rn),

defines a norm on L(Rm,Rn), and that if B ∈ L(Rℓ,Rm) then ‖AB‖ 6 ‖A‖ ‖B‖.
(c) Let Mn be the space of n × n real matrices, identified with L(Rn,Rn) in the

usual way. Let U ⊂Mn be the subset

U = {X ∈Mn | I −X is invertible} .

Show that U is an open subset of Mn which contains the set V = {X ∈Mn | ‖X‖ < 1}.
(d) Let f : U → Mn be the map f(X) = (I −X)−1. Show carefully that the series

∑∞
k=0X

k converges on V to f(X). Hence or otherwise, show that f is twice differentiable
at 0, and compute its first and second derivatives there.
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Paper 4, Section I

4G Complex Analysis
State carefully Rouché’s theorem. Use it to show that the function z4 + 3+ eiz has

exactly one zero z = z0 in the quadrant

{z ∈ C | 0 < arg(z) < π/2} ,

and that |z0| 6
√
2.

Paper 3, Section II

13G Complex Analysis
(a) Prove Cauchy’s theorem for a triangle.

(b) Write down an expression for the winding number I(γ, a) of a closed, piecewise
continuously differentiable curve γ about a point a ∈ C which does not lie on γ.

(c) Let U ⊂ C be a domain, and f : U → C a holomorphic function with no zeroes in
U . Suppose that for infinitely many positive integers k the function f has a holomorphic
k-th root. Show that there exists a holomorphic function F : U → C such that f = expF .
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Paper 1, Section I

2A Complex Analysis or Complex Methods
Classify the singularities of the following functions at both z = 0 and at the point

at infinity on the extended complex plane:

f1(z) =
ez

z sin2 z
,

f2(z) =
1

z2(1− cos z)
,

f3(z) = z2 sin(1/z).

Paper 2, Section II

13A Complex Analysis or Complex Methods
Let a = N + 1/2 for a positive integer N . Let CN be the anticlockwise contour

defined by the square with its four vertices at a± ia and −a± ia. Let

IN =

∮

CN

dz

z2 sin(πz)
.

Show that 1/ sin(πz) is uniformly bounded on the contours CN as N → ∞, and hence
that IN → 0 as N → ∞.

Using this result, establish that

∞
∑

n=1

(−1)n−1

n2
=
π2

12
.
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Paper 1, Section II

13A Complex Analysis or Complex Methods
Let w = u+ iv and let z = x+ iy, for u, v, x, y real.

(a) Let A be the map defined by w =
√
z, using the principal branch. Show that

A maps the region to the left of the parabola y2 = 4(1 − x) on the z−plane, with the
negative real axis x ∈ (−∞, 0] removed, into the vertical strip of the w−plane between
the lines u = 0 and u = 1.

(b) Let B be the map defined by w = tan2(z/2). Show that B maps the vertical
strip of the z−plane between the lines x = 0 and x = π/2 into the region inside the unit
circle on the w−plane, with the part u ∈ (−1, 0] of the negative real axis removed.

(c) Using the results of parts (a) and (b), show that the map C, defined by
w = tan2(π

√
z/4), maps the region to the left of the parabola y2 = 4(1 − x) on the

z−plane, including the negative real axis, onto the unit disc on the w−plane.
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Paper 3, Section I

4A Complex Methods
The function f(x) has Fourier transform

f̃(k) =

∫ ∞

−∞
f(x)e−ikxdx =

−2ki

p2 + k2
,

where p > 0 is a real constant. Using contour integration, calculate f(x) for x < 0.
[Jordan’s lemma and the residue theorem may be used without proof.]
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Paper 4, Section II

14A Complex Methods
(a) Show that the Laplace transform of the Heaviside step function H(t− a) is

∫ ∞

0
H(t− a)e−ptdt =

e−ap

p
,

for a > 0.

(b) Derive an expression for the Laplace transform of the second derivative of a
function f(t) in terms of the Laplace transform of f(t) and the properties of f(t) at t = 0.

(c) A bar of length L has its end at x = L fixed. The bar is initially at rest and
straight. The end at x = 0 is given a small fixed transverse displacement of magnitude a
at t = 0+. You may assume that the transverse displacement y(x, t) of the bar satisfies
the wave equation with some wave speed c, and so the tranverse displacement y(x, t) is
the solution to the problem:

∂2y

∂t2
= c2

∂2y

∂x2
for 0 < x < L and t > 0,

y(x, 0) =
∂y

∂t
(x, 0) = 0 for 0 < x < L,

y(0, t) = a; y(L, t) = 0 for t > 0.

(i) Show that the Laplace transform Y (x, p) of y(x, t), defined as

Y (x, p) =

∫ ∞

0
y(x, t)e−ptdt,

is given by

Y (x, p) =
a sinh

[p
c (L− x)

]

p sinh
[

pL
c

] .

(ii) By use of the binomial theorem or otherwise, express y(x, t) as an infinite
series.

(iii) Plot the transverse displacement of the midpoint of the bar y(L/2, t) against
time.
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Paper 2, Section I

6D Electromagnetism
(a) Derive the integral form of Ampère’s law from the differential form of Maxwell’s

equations with a time-independent magnetic field, ρ = 0 and E = 0.

(b) Consider two perfectly-conducting concentric thin cylindrical shells of infinite
length with axes along the z-axis and radii a and b (a < b). Current I flows in the positive
z-direction in each shell. Use Ampère’s law to calculate the magnetic field in the three
regions: (i) r < a, (ii) a < r < b and (iii) r > b, where r =

√

x2 + y2.

(c) If current I now flows in the positive z-direction in the inner shell and in the
negative z-direction in the outer shell, calculate the magnetic field in the same three
regions.

Paper 4, Section I

7D Electromagnetism
(a) Starting from Maxwell’s equations, show that in a vacuum,

1

c2
∂2E

∂t2
−∇2E = 0 and ∇ ·E = 0 where c =

√

1

ǫ0µ0
.

(b) Suppose that E = E0√
2
(1, 1, 0) cos(kz−ωt) where E0, k and ω are real constants.

(i) What are the wavevector and the polarisation? How is ω related to k?

(ii) Find the magnetic field B.

(iii) Compute and interpret the time-averaged value of the Poynting vector,
S = 1

µ0
E×B.
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Paper 1, Section II

16D Electromagnetism
(a) From the differential form of Maxwell’s equations with J = 0, B = 0 and a

time-independent electric field, derive the integral form of Gauss’s law.

(b) Derive an expression for the electric field E around an infinitely long line charge
lying along the z-axis with charge per unit length µ. Find the electrostatic potential φ up
to an arbitrary constant.

(c) Now consider the line charge with an ideal earthed conductor filling the region
x > d. State the boundary conditions satisfied by φ and E on the surface of the conductor.

(d) Show that the same boundary conditions at x = d are satisfied if the conductor
is replaced by a second line charge at x = 2d, y = 0 with charge per unit length −µ.

(e) Hence or otherwise, returning to the setup in (c), calculate the force per unit
length acting on the line charge.

(f) What is the charge per unit area σ(y, z) on the surface of the conductor?

Part IB, 2016 List of Questions [TURN OVER
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Paper 3, Section II

17D Electromagnetism
(a) State Faraday’s law of induction for a moving circuit in a time-dependent

magnetic field and define all the terms that appear.

(b) Consider a rectangular circuit DEFG in the z = 0 plane as shown in the diagram
below. There are two rails parallel to the x-axis for x > 0 starting at D at (x, y) = (0, 0)
and G at (0, L). A battery provides an electromotive force E0 between D and G driving
current in a positive sense around DEFG. The circuit is completed with a bar resistor of
resistance R, length L and mass m that slides without friction on the rails; it connects E
at (s(t), 0) and F at (s(t), L). The rest of the circuit has no resistance. The circuit is in a
constant uniform magnetic field B0 parallel to the z-axis.
[In parts (i)-(iv) you can neglect any magnetic field due to current flow.]

(i) Calculate the current in the bar and indicate its direction on a diagram of
the circuit.

(ii) Find the force acting on the bar.

(iii) If the initial velocity and position of the bar are respectively ṡ(0) = v0 > 0
and s(0) = s0 > 0, calculate ṡ(t) and s(t) for t > 0.

(iv) If E0 = 0, find the total energy dissipated in the circuit after t = 0 and
verify that total energy is conserved.

(v) Describe qualitatively the effect of the magnetic field caused by the induced
current flowing in the circuit when E0 = 0.

Part IB, 2016 List of Questions
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Paper 2, Section II

18D Electromagnetism
(a) State the covariant form of Maxwell’s equations and define all the quantities

that appear in these expressions.

(b) Show that E ·B is a Lorentz scalar (invariant under Lorentz transformations)
and find another Lorentz scalar involving E and B.

(c) In some inertial frame S the electric and magnetic fields are respectively
E = (0, Ey , Ez) andB = (0, By, Bz). Find the electric and magnetic fields, E′ = (0, E′

y , E
′
z)

and B′ = (0, B′
y, B

′
z), in another inertial frame S′ that is related to S by the Lorentz

transformation,

Λµ
ν =









γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1









,

where v is the velocity of S′ in S and γ = (1− v2/c2)−1/2.

(d) Suppose that E = E0(0, 1, 0) and B = E0

c (0, cos θ, sin θ) where 0 6 θ 6 π/2,
and E0 is a real constant. An observer is moving in S with velocity v parallel to the
x-axis. What must v be for the electric and magnetic fields to appear to the observer to
be parallel? Comment on the case θ = π/2.
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Paper 1, Section I

5C Fluid Dynamics
Consider the flow field in cartesian coordinates (x, y, z) given by

u =

(

− Ay

x2 + y2
,

Ax

x2 + y2
, U(z)

)

,

where A is a constant. Let D denote the whole of R3 excluding the z axis.

(a) Determine the conditions on A and U(z) for the flow to be both incompressible
and irrotational in D.

(b) Calculate the circulation along any closed curve enclosing the z axis.

Paper 2, Section I

7C Fluid Dynamics
A steady, two-dimensional unidirectional flow of a fluid with dynamic viscosity µ

is set up between two plates at y = 0 and y = h. The plate at y = 0 is stationary
while the plate at y = h moves with constant speed Uex. The fluid is also subject to a
constant pressure gradient −Gex. You may assume that the fluid velocity u has the form
u = u(y)ex.

(a) State the equation satisfied by u(y) and its boundary conditions.

(b) Calculate u(y).

(c) Show that the value of U may be chosen to lead to zero viscous shear stress acting
on the bottom plate and calculate the resulting flow rate.

Part IB, 2016 List of Questions



17

Paper 1, Section II

17C Fluid Dynamics
(a) For a velocity field u, show that u ·∇u = ∇

(

1
2u

2
)

−u×ω, where ω is the flow
vorticity.

(b) For a scalar field H(r), show that if u ·∇H = 0, then H is constant along the
flow streamlines.

(c) State the Euler equations satisfied by an inviscid fluid of constant density subject
to conservative body forces.

(i) If the flow is irrotational, show that an exact first integral of the Euler
equations may be obtained.

(ii) If the flow is not irrotational, show that although an exact first integral
of the Euler equations may not be obtained, a similar quantity is constant
along the flow streamlines provided the flow is steady.

(iii) If the flow is now in a frame rotating with steady angular velocity Ωez,
establish that a similar quantity is constant along the flow streamlines with
an extra term due to the centrifugal force when the flow is steady.

Paper 4, Section II

18C Fluid Dynamics
(a) Show that for an incompressible fluid, ∇ × ω = −∇2u, where ω is the flow

vorticity.

(b) State the equation of motion for an inviscid flow of constant density in a rotating
frame subject to gravity. Show that, on Earth, the local vertical component of the
centrifugal force is small compared to gravity. Present a scaling argument to justify the
linearisation of the Euler equations for sufficiently large rotation rates, and hence deduce
the linearised version of the Euler equations in a rapidly rotating frame.

(c) Denoting the rotation rate of the frame as Ω = Ωez, show that the linearised
Euler equations may be manipulated to obtain an equation for the velocity field u in the
form

∂2∇2u

∂t2
+ 4Ω2 ∂

2u

∂z2
= 0.

(d) Assume that there exist solutions of the form u = U0 exp [i(k · x− ωt)]. Show
that ω = ±2Ω cos θ where the angle θ is to be determined.
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Paper 3, Section II

18C Fluid Dynamics
A layer of thickness h1 of a fluid of density ρ1 is located above a layer of thickness

h2 of a fluid of density ρ2 > ρ1. The two-fluid system is bounded by two impenetrable
surfaces at y = h1 and y = −h2 and is assumed to be two-dimensional (i.e. independent
of z). The fluid is subsequently perturbed, and the interface between the two fluids is
denoted y = η(x, t).

(a) Assuming irrotational motion in each fluid, state the equations and boundary
conditions satisfied by the flow potentials, ϕ1 and ϕ2.

(b) The interface is perturbed by small-amplitude waves of the form η = η0e
i(kx−ωt),

with η0k ≪ 1. State the equations and boundary conditions satisfied by the linearised
system.

(c) Calculate the dispersion relation of the waves relating the frequency ω to the
wavenumber k.
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Paper 1, Section I

3F Geometry
(a) Describe the Poincaré disc model D for the hyperbolic plane by giving the

appropriate Riemannian metric.

(b) Let a ∈ D be some point. Write down an isometry f : D → D with f(a) = 0.

(c) Using the Poincaré disc model, calculate the distance from 0 to reiθ with
0 6 r < 1.

(d) Using the Poincaré disc model, calculate the area of a disc centred at a point
a ∈ D and of hyperbolic radius ρ > 0.

Paper 3, Section I

5F Geometry
(a) State Euler’s formula for a triangulation of a sphere.

(b) A sphere is decomposed into hexagons and pentagons with precisely three edges
at each vertex. Determine the number of pentagons.
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Paper 3, Section II

14F Geometry
(a) Define the cross-ratio [z1, z2, z3, z4] of four distinct points z1, z2, z3, z4 ∈ C∪{∞}.

Show that the cross-ratio is invariant under Möbius transformations. Express [z2, z1, z3, z4]
in terms of [z1, z2, z3, z4].

(b) Show that [z1, z2, z3, z4] is real if and only if z1, z2, z3, z4 lie on a line or circle in
C ∪ {∞}.

(c) Let z1, z2, z3, z4 lie on a circle in C, given in anti-clockwise order as depicted.

z1

z4

z3

z2

Show that [z1, z2, z3, z4] is a negative real number, and that [z2, z1, z3, z4] is a positive real
number greater than 1. Show that |[z1, z2, z3, z4]|+1 = |[z2, z1, z3, z4]|. Use this to deduce
Ptolemy’s relation on lengths of edges and diagonals of the inscribed 4-gon:

|z1 − z3||z2 − z4| = |z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1|.
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Paper 2, Section II

14F Geometry
(a) Let ABC be a hyperbolic triangle, with the angle at A at least π/2. Show that

the side BC has maximal length amongst the three sides of ABC.
[You may use the hyperbolic cosine formula without proof. This states that if a, b and c
are the lengths of BC, AC, and AB respectively, and α, β and γ are the angles of the
triangle at A,B and C respectively, then

cosh a = cosh b cosh c− sinh b sinh c cosα.]

(b) Given points z1, z2 in the hyperbolic plane, let w be any point on the hyperbolic
line segment joining z1 to z2, and let w′ be any point not on the hyperbolic line passing
through z1, z2, w. Show that

ρ(w′, w) 6 max{ρ(w′, z1), ρ(w
′, z2)},

where ρ denotes hyperbolic distance.

(c) The diameter of a hyperbolic triangle ∆ is defined to be

sup{ρ(P,Q) |P,Q ∈ ∆}.

Show that the diameter of ∆ is equal to the length of its longest side.

Paper 4, Section II

15F Geometry
Let α(s) = (f(s), g(s)) be a simple curve in R2 parameterised by arc length

with f(s) > 0 for all s, and consider the surface of revolution S in R3 defined by the
parameterisation

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

(a) Calculate the first and second fundamental forms for S. Show that the Gaussian
curvature of S is given by

K = −f
′′(u)

f(u)
.

(b) Now take f(s) = cos s+ 2, g(s) = sin s, 0 6 s < 2π. What is the integral of the
Gaussian curvature over the surface of revolution S determined by f and g?
[You may use the Gauss-Bonnet theorem without proof.]

(c) Now suppose S has constant curvature K ≡ 1, and suppose there are two points
P1, P2 ∈ R3 such that S ∪ {P1, P2} is a smooth closed embedded surface. Show that S is
a unit sphere, minus two antipodal points.

[Do not attempt to integrate an expression of the form
√

1−C2 sin2 u when C 6= 1. Study
the behaviour of the surface at the largest and smallest possible values of u.]
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Paper 3, Section I

1E Groups, Rings and Modules
Let G be a group of order n. Define what is meant by a permutation representation

of G. Using such representations, show G is isomorphic to a subgroup of the symmetric
group Sn. Assuming G is non-abelian simple, show G is isomorphic to a subgroup of An.
Give an example of a permutation representation of S3 whose kernel is A3.

Paper 4, Section I

2E Groups, Rings and Modules
Give the statement and the proof of Eisenstein’s criterion. Use this criterion to

show xp−1 + xp−2 + · · ·+ 1 is irreducible in Q[x] where p is a prime.

Paper 2, Section I

2E Groups, Rings and Modules
Let R be an integral domain.

Define what is meant by the field of fractions F of R. [You do not need to prove
the existence of F .]

Suppose that φ : R → K is an injective ring homomorphism from R to a field K.
Show that φ extends to an injective ring homomorphism Φ : F → K.

Give an example of R and a ring homomorphism ψ : R → S from R to a ring S
such that ψ does not extend to a ring homomorphism F → S.

Paper 1, Section II

10E Groups, Rings and Modules
(a) Let I be an ideal of a commutative ring R and assume I ⊆ ⋃n

i=1 Pi where the
Pi are prime ideals. Show that I ⊆ Pi for some i.

(b) Show that (x2 + 1) is a maximal ideal of R[x]. Show that the quotient ring
R[x]/(x2 + 1) is isomorphic to C.

(c) For a, b ∈ R, let Ia,b be the ideal (x − a, y − b) in R[x, y]. Show that Ia,b is a
maximal ideal. Find a maximal ideal J of R[x, y] such that J 6= Ia,b for any a, b ∈ R.
Justify your answers.
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Paper 3, Section II

11E Groups, Rings and Modules
(a) Define what is meant by an algebraic integer α. Show that the ideal

I = {h ∈ Z[x] | h(α) = 0}

in Z[x] is generated by a monic irreducible polynomial f . Show that Z[α], considered as
a Z-module, is freely generated by n elements where n = deg f .

(b) Assume α ∈ C satisfies α5 +2α+2 = 0. Is it true that the ideal (5) in Z[α] is a
prime ideal? Is there a ring homomorphism Z[α] → Z[

√
−1]? Justify your answers.

(c) Show that the only unit elements of Z[
√
−5] are 1 and −1. Show that Z[

√
−5]

is not a UFD.

Paper 4, Section II

11E Groups, Rings and Modules
Let R be a Noetherian ring and let M be a finitely generated R-module.

(a) Show that every submodule of M is finitely generated.

(b) Show that each maximal element of the set

A = {Ann(m) | 0 6= m ∈M}

is a prime ideal. [Here, maximal means maximal with respect to inclusion, and
Ann(m) = {r ∈ R | rm = 0}.]

(c) Show that there is a chain of submodules

0 =M0 ⊆M1 ⊆ · · · ⊆Ml =M,

such that for each 0 < i 6 l the quotient Mi/Mi−1 is isomorphic to R/Pi for some prime
ideal Pi.

Paper 2, Section II

11E Groups, Rings and Modules
(a) State Sylow’s theorems and give the proof of the second theorem which concerns

conjugate subgroups.

(b) Show that there is no simple group of order 351.

(c) Let k be the finite field Z/(31) and let GL2(k) be the multiplicative group of
invertible 2× 2 matrices over k. Show that every Sylow 3-subgroup of GL2(k) is abelian.
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Paper 4, Section I

1F Linear Algebra
For which real numbers x do the vectors

(x, 1, 1, 1), (1, x, 1, 1), (1, 1, x, 1), (1, 1, 1, x),

not form a basis of R4? For each such value of x, what is the dimension of the subspace
of R4 that they span? For each such value of x, provide a basis for the spanned subspace,
and extend this basis to a basis of R4.

Paper 2, Section I

1F Linear Algebra
Find a linear change of coordinates such that the quadratic form

2x2 + 8xy − 6xz + y2 − 4yz + 2z2

takes the form
αx2 + βy2 + γz2,

for real numbers α, β and γ.

Paper 1, Section I

1F Linear Algebra
(a) Consider the linear transformation α : R3 → R3 given by the matrix





5 −6 −6
−1 4 2
3 −6 −4



 .

Find a basis of R3 in which α is represented by a diagonal matrix.

(b) Give a list of 6 × 6 matrices such that any linear transformation β : R6 → R6

with characteristic polynomial
(x− 2)4(x+ 7)2

and minimal polynomial
(x− 2)2(x+ 7)

is similar to one of the matrices on your list. No two distinct matrices on your list should
be similar. [No proof is required.]

Part IB, 2016 List of Questions



25

Paper 1, Section II

9F Linear Algebra
Let Mn,n denote the vector space over F = R or C of n×n matrices with entries in

F . Let Tr :Mn,n → F denote the trace functional, i.e., if A = (aij)16i,j6n ∈Mn,n, then

Tr(A) =
n
∑

i=1

aii.

(a) Show that Tr is a linear functional.

(b) Show that Tr(AB) = Tr(BA) for A,B ∈Mn,n.

(c) Show that Tr is unique in the following sense: If f : Mn,n → F is a linear
functional such that f(AB) = f(BA) for each A,B ∈Mn,n, then f is a scalar multiple of
the trace functional. If, in addition, f(I) = n, then f = Tr.

(d) LetW ⊆Mn,n be the subspace spanned by matrices C of the form C = AB−BA
for A,B ∈Mn,n. Show that W is the kernel of Tr.

Paper 4, Section II

10F Linear Algebra
(a) Let α : V → W be a linear transformation between finite dimensional vector

spaces over a field F = R or C.

Define the dual map of α. Let δ be the dual map of α. Given a subspace U ⊆ V ,
define the annihilator U◦ of U . Show that (kerα)◦ and the image of δ coincide. Conclude
that the dimension of the image of α is equal to the dimension of the image of δ. Show
that dimker(α) − dimker(δ) = dimV − dimW .

(b) Now suppose in addition that V,W are inner product spaces. Define the adjoint
α∗ of α. Let β : U → V , γ : V →W be linear transformations between finite dimensional
inner product spaces. Suppose that the image of β is equal to the kernel of γ. Then show
that ββ∗ + γ∗γ is an isomorphism.
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Paper 3, Section II

10F Linear Algebra
Let α : V → V be a linear transformation defined on a finite dimensional inner

product space V over C. Recall that α is normal if α and its adjoint α∗ commute. Show
that α being normal is equivalent to each of the following statements:

(i) α = α1 + iα2 where α1, α2 are self-adjoint operators and α1α2 = α2α1;

(ii) there is an orthonormal basis for V consisting of eigenvectors of α;

(iii) there is a polynomial g with complex coefficients such that α∗ = g(α).

Paper 2, Section II

10F Linear Algebra
Let Mn,n denote the vector space over a field F = R or C of n × n matrices with

entries in F . Given B ∈ Mn,n, consider the two linear transformations RB, LB : Mn,n →
Mn,n defined by

LB(A) = BA, RB(A) = AB.

(a) Show that detLB = (detB)n.

[For parts (b) and (c), you may assume the analogous result detRB = (detB)n

without proof.]

(b) Now let F = C. For B ∈ Mn,n, write B
∗ for the conjugate transpose of B, i.e.,

B∗ := B
T
. For B ∈Mn,n, define the linear transformation MB :Mn,n →Mn,n by

MB(A) = BAB∗.

Show that detMB = |detB|2n.
(c) Again let F = C. Let W ⊆ Mn,n be the set of Hermitian matrices. [Note that

W is not a vector space over C but only over R.] For B ∈ Mn,n and A ∈ W , define
TB(A) = BAB∗. Show that TB is an R-linear operator on W , and show that as such,

detTB = |detB|2n.
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Paper 4, Section I

9H Markov Chains
Consider two boxes, labelled A and B. Initially, there are no balls in box A and k

balls in box B. Each minute later, one of the k balls is chosen uniformly at random and
is moved to the opposite box. Let Xn denote the number of balls in box A at time n, so
that X0 = 0.

(a) Find the transition probabilities of the Markov chain (Xn)n>0 and show that it
is reversible in equilibrium.

(b) Find E(T ), where T = inf{n > 1 : Xn = 0} is the next time that all k balls are
again in box B.

Paper 3, Section I

9H Markov Chains
Let (Xn)n>0 be a Markov chain such that X0 = i. Prove that

∞
∑

n=0

Pi(Xn = i) =
1

Pi(Xn 6= i for all n > 1)

where 1/0 = +∞. [You may use the strong Markov property without proof.]
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Paper 2, Section II

20H Markov Chains
(a) Prove that every open communicating class of a Markov chain is transient. Prove

that every finite transient communicating class is open. Give an example of a Markov chain
with an infinite transient closed communicating class.

(b) Consider a Markov chain (Xn)n>0 with state space {a, b, c, d} and transition
probabilities given by the matrix

P =









1/3 0 1/3 1/3
0 1/4 0 3/4

1/2 1/2 0 0
0 2/3 0 1/3









.

(i) Compute P(Xn = b|X0 = d) for a fixed n > 0.

(ii) Compute P(Xn = c for some n > 1|X0 = a).

(iii) Show that Pn converges as n→ ∞, and determine the limit.
[Results from lectures can be used without proof if stated carefully.]

Paper 1, Section II

20H Markov Chains
Let (Xn)n>0 be a simple symmetric random walk on the integers, starting at X0 = 0.

(a) What does it mean to say that a Markov chain is irreducible? What does it mean
to say that an irreducible Markov chain is recurrent? Show that (Xn)n>0 is irreducible
and recurrent.
[Hint: You may find it helpful to use the limit

lim
k→∞

√
k2−2k

(

2k

k

)

=
√
π.

You may also use without proof standard necessary and sufficient conditions for recur-

rence.]

(b) What does it mean to say that an irreducible Markov chain is positive recurrent?
Determine, with proof, whether (Xn)n>0 is positive recurrent.

(c) Let
T = inf{n > 1 : Xn = 0}

be the first time the chain returns to the origin. Compute E[sT ] for a fixed number
0 < s < 1.
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Paper 2, Section I

5A Methods
Use the method of characteristics to find u(x, y) in the first quadrant x > 0, y > 0,

where u(x, y) satisfies

∂u

∂x
− 2x

∂u

∂y
= cos x,

with boundary data u(x, 0) = cos x.

Paper 4, Section I

5A Methods
Consider the function f(x) defined by

f(x) = x2, for − π < x < π.

Calculate the Fourier series representation for the 2π-periodic extension of this function.
Hence establish that

π2

6
=

∞
∑

n=1

1

n2
,

and that

π2

12
=

∞
∑

n=1

(−1)n+1

n2
.

Paper 3, Section I

7A Methods
Calculate the Green’s function G(x; ξ) given by the solution to

d2G

dx2
= δ(x− ξ); G(0; ξ) =

dG

dx
(1; ξ) = 0,

where ξ ∈ (0, 1), x ∈ (0, 1) and δ(x) is the Dirac δ-function. Use this Green’s function to
calculate an explicit solution y(x) to the boundary value problem

d2y

dx2
= xe−x,

where x ∈ (0, 1), and y(0) = y′(1) = 0.
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Paper 1, Section II

14A Methods
(a) Consider the general self-adjoint problem for y(x) on [a, b]:

− d

dx

[

p(x)
d

dx
y

]

+ q(x)y = λw(x)y; y(a) = y(b) = 0,

where λ is the eigenvalue, and w(x) > 0. Prove that eigenfunctions associated with distinct
eigenvalues are orthogonal with respect to a particular inner product which you should
define carefully.

(b) Consider the problem for y(x) given by

xy′′ + 3y′ +

(

1 + λ

x

)

y = 0; y(1) = y(e) = 0.

(i) Recast this problem into self-adjoint form.

(ii) Calculate the complete set of eigenfunctions and associated eigenvalues for
this problem. [Hint: You may find it useful to make the substitution x = es.]

(iii) Verify that the eigenfunctions associated with distinct eigenvalues are indeed
orthogonal.
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Paper 3, Section II

15B Methods
(a) Show that the Fourier transform of f(x) = e−a2x2

, for a > 0, is

f̃(k) =

√
π

a
e−

k
2

4a2 ,

stating clearly any properties of the Fourier transform that you use.
[Hint: You may assume that

∫∞
0 e−t2dt =

√
π/2.]

(b) Consider now the Cauchy problem for the diffusion equation in one space
dimension, i.e. solving for θ(x, t) satisfying:

∂θ

∂t
= D

∂2θ

∂x2
with θ(x, 0) = g(x),

where D is a positive constant and g(x) is specified. Consider the following property of a
solution:
Property P: If the initial data g(x) is positive and it is non-zero only within a bounded
region (i.e. there is a constant α such that θ(x, 0) = 0 for all |x| > α), then for any
ǫ > 0 (however small) and β (however large) the solution θ(β, ǫ) can be non-zero, i.e. the
solution can become non-zero arbitrarily far away after an arbitrarily short time.

Does Property P hold for solutions of the diffusion equation? Justify your answer
(deriving any expression for the solution θ(x, t) that you use).

(c) Consider now the wave equation in one space dimension:

∂2u

∂t2
= c2

∂2u

∂x2
,

with given initial data u(x, 0) = φ(x) and ∂u
∂t (x, 0) = 0 (and c is a constant).

Does Property P (with g(x) and θ(β, ǫ) now replaced by φ(x) and u(β, ǫ) respectively)
hold for solutions of the wave equation? Justify your answer again as above.
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Paper 2, Section II

16A Methods
Consider a bar of length π with free ends, subject to longitudinal vibrations. You

may assume that the longitudinal displacement y(x, t) of the bar satisfies the wave equation
with some wave speed c:

∂2y

∂t2
= c2

∂2y

∂x2
,

for x ∈ (0, π) and t > 0 with boundary conditions:

∂y

∂x
(0, t) =

∂y

∂x
(π, t) = 0,

for t > 0. The bar is initially at rest so that

∂y

∂t
(x, 0) = 0

for x ∈ (0, π), with a spatially varying initial longitudinal displacement given by

y(x, 0) = bx

for x ∈ (0, π), where b is a real constant.

(a) Using separation of variables, show that

y(x, t) =
bπ

2
− 4b

π

∞
∑

n=1

cos[(2n − 1)x] cos[(2n − 1)ct]

(2n− 1)2
.

(b) Determine a periodic function P (x) such that this solution may be expressed as

y(x, t) =
1

2
[P (x+ ct) + P (x− ct)].

Part IB, 2016 List of Questions



33

Paper 4, Section II

17B Methods
Let D be a 2-dimensional region in R2 with boundary ∂D.

In this question you may assume Green’s second identity:

∫

D
(f ∇2g − g∇2f) dA =

∫

∂D

(

f
∂g

∂n
− g

∂f

∂n

)

dl,

where ∂
∂n denotes the outward normal derivative on ∂D, and f and g are suitably regular

functions that include the free space Green’s function in two dimensions. You may also
assume that the free space Green’s function for the Laplace equation in two dimensions is
given by

G0(r, r0) =
1

2π
log |r − r0|.

(a) State the conditions required on a function G(r, r0) for it to be a Dirichlet
Green’s function for the Laplace operator on D. Suppose that ∇2ψ = 0 on D. Show that
if G is a Dirichlet Green’s function for D then

ψ(r0) =

∫

∂D
ψ(r)

∂

∂n
G(r, r0) dl for r0 ∈ D.

(b) Consider the Laplace equation ∇2φ = 0 in the quarter space

D = {(x, y) : x > 0 and y > 0},

with boundary conditions

φ(x, 0) = e−x2

, φ(0, y) = e−y2 and φ(x, y) → 0 as
√

x2 + y2 → ∞.

Using the method of images, show that the solution is given by

φ(x0, y0) = F (x0, y0) + F (y0, x0),

where

F (x0, y0) =
4x0y0
π

∫ ∞

0

t e−t2

[

(t− x0)2 + y20
] [

(t+ x0)2 + y20
] dt.
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Paper 3, Section I

3E Metric and Topological Spaces
Let X be a topological space and A ⊆ X be a subset. A limit point of A is a point

x ∈ X such that any open neighbourhood U of x intersects A. Show that A is closed if
and only if it contains all its limit points. Explain what is meant by the interior Int(A)
and the closure A of A. Show that if A is connected, then A is connected.

Paper 2, Section I

4E Metric and Topological Spaces
Consider R and Q with their usual topologies.

(a) Show that compact subsets of a Hausdorff topological space are closed. Show
that compact subsets of R are closed and bounded.

(b) Show that there exists a complete metric space (X, d) admitting a surjective
continuous map f : X → Q.

Paper 1, Section II

12E Metric and Topological Spaces
Let p be a prime number. Define what is meant by the p-adic metric dp on Q. Show

that for a, b, c ∈ Q we have

dp(a, b) 6 max{dp(a, c), dp(c, b)}.

Show that the sequence (an), where an = 1+ p+ · · ·+ pn−1, converges to some element in
Q.

For a ∈ Q define |a|p = dp(a, 0). Show that if a, b ∈ Q and if |a|p 6= |b|p, then

|a+ b|p = max{|a|p, |b|p}.

Let a ∈ Q and let B(a, δ) be the open ball with centre a and radius δ > 0, with
respect to the metric dp. Show that B(a, δ) is a closed subset of Q with respect to the
topology induced by dp.
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Paper 4, Section II

13E Metric and Topological Spaces
(a) Let X be a topological space. Define what is meant by a quotient of X and

describe the quotient topology on the quotient space. Give an example in which X is
Hausdorff but the quotient space is not Hausdorff.

(b) Let T 2 be the 2-dimensional torus considered as the quotient R2/Z2, and let
π : R2 → T 2 be the quotient map.

(i) Let B(u, r) be the open ball in R2 with centre u and radius r < 1/2. Show
that U = π(B(u, r)) is an open subset of T 2 and show that π−1(U) has
infinitely many connected components. Show each connected component is
homeomorphic to B(u, r).

(ii) Let α ∈ R be an irrational number and let L ⊂ R2 be the line given by the
equation y = αx. Show that π(L) is dense in T 2 but π(L) 6= T 2.
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Paper 1, Section I

6D Numerical Analysis
(a) What are real orthogonal polynomials defined with respect to an inner product

〈·, ·〉? What does it mean for such polynomials to be monic?

(b) Real monic orthogonal polynomials, pn(x), of degree n = 0, 1, 2, . . ., are defined
with respect to the inner product,

〈p, q〉 =
∫ 1

−1
w(x)p(x)q(x) dx,

where w(x) is a positive weight function. Show that such polynomials obey the three-term
recurrence relation,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x) ,

for appropriate αn and βn which should be given in terms of inner products.

Paper 4, Section I

8D Numerical Analysis
(a) Define the linear stability domain for a numerical method to solve y′ = f(t,y).

What is meant by an A-stable method?

(b) A two-stage Runge–Kutta scheme is given by

k1 = f(tn,yn), k2 = f(tn + h
2 ,yn + h

2k1), yn+1 = yn + hk2 ,

where h is the step size and tn = nh. Show that the order of this scheme is at least two.
For this scheme, find the intersection of the linear stability domain with the real axis.
Hence show that this method is not A-stable.
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Paper 1, Section II

18D Numerical Analysis
(a) Consider a method for numerically solving an ordinary differential equation

(ODE) for an initial value problem, y′ = f(t,y). What does it mean for a method to
converge over t ∈ [0, T ] where T ∈ R? What is the definition of the order of a method?

(b) A general multistep method for the numerical solution of an ODE is

s
∑

l=0

ρl yn+l = h

s
∑

l=0

σl f(tn+l,yn+l), n = 0, 1, . . . ,

where s is a fixed positive integer. Show that this method is at least of order p > 1 if and
only if

s
∑

l=0

ρl = 0 and
s

∑

l=0

lk ρl = k
s

∑

l=0

lk−1 σl, k = 1, . . . , p .

(c) State the Dahlquist equivalence theorem regarding the convergence of a multistep
method.

(d) Consider the multistep method,

yn+2 + θ yn+1 + ayn = h
[

σ0f(tn,yn) + σ1f(tn+1,yn+1) + σ2f(tn+2,yn+2)
]

.

Determine the values of σi and a (in terms of the real parameter θ) such that the method
is at least third order. For what values of θ does the method converge?
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Paper 3, Section II

19D Numerical Analysis
(a) Determine real quadratic functions a(x), b(x), c(x) such that the interpolation

formula,
f(x) ≈ a(x)f(0) + b(x)f(2) + c(x)f(3) ,

is exact when f(x) is any real polynomial of degree 2.

(b) Use this formula to construct approximations for f(5) and f ′(1) which are exact
when f(x) is any real polynomial of degree 2. Calculate these approximations for f(x) = x3

and comment on your answers.

(c) State the Peano kernel theorem and define the Peano kernel K(θ). Use this
theorem to find the minimum values of the constants α and β such that

∣

∣

∣f(1)− 1
3

[

f(0) + 3f(2) − f(3)
]

∣

∣

∣ 6 α max
ξ∈[0,3]

∣

∣

∣f (2)(ξ)
∣

∣

∣ ,

and
∣

∣

∣f(1)− 1
3

[

f(0) + 3f(2)− f(3)
]

∣

∣

∣ 6 β ‖f (2)‖1 ,

where f ∈ C2[0, 3]. Check that these inequalities hold for f(x) = x3.

Paper 2, Section II

19D Numerical Analysis
(a) Define a Givens rotation Ω[p,q] ∈ Rm×m and show that it is an orthogonal matrix.

(b) Define a QR factorization of a matrix A ∈ Rm×n with m > n. Explain how
Givens rotations can be used to find Q ∈ Rm×m and R ∈ Rm×n.

(c) Let

A =









3 1 1
0 4 1
0 3 2
0 0 3/4









, b =









98/25
25
25
0









.

(i) Find a QR factorization of A using Givens rotations.

(ii) Hence find the vector x∗ ∈ R3 which minimises ‖Ax−b‖, where ‖ · ‖ is the
Euclidean norm. What is ‖Ax∗ − b‖?
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Paper 1, Section I

8H Optimization
Let

A =









5 −2 −5
−2 3 2
−3 6 2
4 −8 −6









be the payoff of a two-person zero-sum game, where player I (randomly) picks a row
to maximise the expected payoff and player II picks a column to minimise the expected
payoff. Find each player’s optimal strategy and the value of the game.

Paper 2, Section I

9H Optimization
Use the simplex algorithm to find the optimal solution to the linear program:

maximise 3x+ 5y subject to 8x + 3y + 10z 6 9, x, y, z > 0
5x + 2y + 4z 6 8
2x + y + 3z 6 2.

Write down the dual problem and find its solution.
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Paper 4, Section II

20H Optimization
(a) What is the maximal flow problem in a network? Explain the Ford–Fulkerson

algorithm. Prove that this algorithm terminates if the initial flow is set to zero and all arc
capacities are rational numbers.

(b) Let A = (ai,j)i,j be an n × n matrix. We say that A is doubly stochastic if
0 6 ai,j 6 1 for i, j and

n
∑

i=1

ai,j = 1 for all j,

n
∑

j=1

ai,j = 1 for all i.

We say that A is a permutation matrix if ai,j ∈ {0, 1} for all i, j and

for all j there exists a unique i such that ai,j = 1,

for all i there exists a unique j such that ai,j = 1.

Let C be the set of all n × n doubly stochastic matrices. Show that a matrix A is an
extreme point of C if and only if A is a permutation matrix.

Paper 3, Section II

21H Optimization
(a) State and prove the Lagrangian sufficiency theorem.

(b) Let n > 1 be a given constant, and consider the problem:

minimise
n
∑

i=1

(

2y2i + x2i
)

subject to xi = 1 +
i

∑

k=1

yk for all i = 1, . . . , n.

Find, with proof, constants a, b,A,B such that the optimal solution is given by

xi = a2i + b2−i and yi = A2i +B2−i, for all i = 1, . . . , n.
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Paper 4, Section I

6B Quantum Mechanics
(a) Define the quantum orbital angular momentum operator L̂ = (L̂1, L̂2, L̂3) in

three dimensions, in terms of the position and momentum operators.

(b) Show that [L̂1, L̂2] = i~L̂3. [You may assume that the position and momentum
operators satisfy the canonical commutation relations.]

(c) Let L̂2 = L̂2
1 + L̂2

2 + L̂2
3. Show that L̂1 commutes with L̂2.

[In this part of the question you may additionally assume without proof the permuted
relations [L̂2, L̂3] = i~L̂1 and [L̂3, L̂1] = i~L̂2.]
[Hint: It may be useful to consider the expression [Â, B̂] B̂+ B̂ [Â, B̂] for suitable operators

Â and B̂.]

(d) Suppose that ψ1(x, y, z) and ψ2(x, y, z) are normalised eigenstates of L̂1 with
eigenvalues ~ and −~ respectively. Consider the wavefunction

ψ =
1

2
ψ1 cosωt +

√
3

2
ψ2 sinωt ,

with ω being a positive constant. Find the earliest time t0 > 0 such that the expectation
value of L̂1 in ψ is zero.

Paper 3, Section I

8B Quantum Mechanics
(a) Consider a quantum particle moving in one space dimension, in a time-

independent real potential V (x). For a wavefunction ψ(x, t), define the probability density

ρ(x, t) and probability current j(x, t) and show that

∂ρ

∂t
+
∂j

∂x
= 0.

(b) Suppose now that V (x) = 0 and ψ(x, t) = (eikx + Re−ikx)e−iEt/~, where
E = ~2k2/(2m), k and m are real positive constants, and R is a complex constant.
Compute the probability current for this wavefunction. Interpret the terms in ψ and
comment on how this relates to the computed expression for the probability current.
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Paper 1, Section II

15B Quantum Mechanics
(a) A particle of mass m in one space dimension is confined to move in a potential

V (x) given by

V (x) =

{

0 for 0 < x < a,
∞ for x < 0 or x > a.

The normalised initial wavefunction of the particle at time t = 0 is

ψ0(x) =
4√
5a

sin3
(πx

a

)

.

(i) Find the expectation value of the energy at time t = 0.

(ii) Find the wavefunction of the particle at time t = 1.

[Hint: It may be useful to recall the identity sin 3θ = 3 sin θ − 4 sin3 θ.]

(b) The right hand wall of the potential is lowered to a finite constant value U0 > 0
giving the new potential:

U(x) =







0 for 0 < x < a,
∞ for x < 0,
U0 for x > a.

This potential is set up in the laboratory but the value of U0 is unknown. The stationary
states of the potential are investigated and it is found that there exists exactly one bound
state. Show that the value of U0 must satisfy

π2~2

8ma2
< U0 <

9π2~2

8ma2
.
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Paper 3, Section II

16B Quantum Mechanics
The spherically symmetric bound state wavefunctions ψ(r) for the Coulomb poten-

tial V = −e2/(4πǫ0r) are normalisable solutions of the equation

d2ψ

dr2
+

2

r

dψ

dr
+

2λ

r
ψ = −2mE

~2
ψ.

Here λ = (me2)/(4πǫ0~
2) and E < 0 is the energy of the state.

(a) By writing the wavefunction as ψ(r) = f(r) exp(−Kr), for a suitable constant
K that you should determine, show that there are normalisable wavefunctions ψ(r) only
for energies of the form

E =
−me4

32π2ǫ20~
2N2

,

with N being a positive integer.

(b) The energies in (a) reproduce the predictions of the Bohr model of the hydrogen
atom. How do the wavefunctions above compare to the assumptions in the Bohr model?
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Paper 2, Section II

17B Quantum Mechanics
The one dimensional quantum harmonic oscillator has Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2,

where m and ω are real positive constants and x̂ and p̂ are the standard position and
momentum operators satisfying the commutation relation [x̂, p̂] = i~. Consider the
operators

Â = p̂− imωx̂ and B̂ = p̂+ imωx̂.

(a) Show that

B̂Â = 2m

(

Ĥ − 1

2
~ω

)

and ÂB̂ = 2m

(

Ĥ +
1

2
~ω

)

.

(b) Suppose that φ is an eigenfunction of Ĥ with eigenvalue E. Show that Âφ is
then also an eigenfunction of Ĥ and that its corresponding eigenvalue is E − ~ω.

(c) Show that for any normalisable wavefunctions χ and ψ,

∫ ∞

−∞
χ∗ (Âψ) dx =

∫ ∞

−∞
(B̂χ)∗ ψ dx.

[You may assume that the operators x̂ and p̂ are Hermitian.]

(d) With φ as in (b), obtain an expression for the norm of Âφ in terms of E and
the norm of φ. [The squared norm of any wavefunction ψ is

∫∞
−∞ |ψ|2 dx.]

(e) Show that all eigenvalues of Ĥ are non-negative.

(f) Using the above results, deduce that each eigenvalue E of Ĥ must be of the form
E = (n+ 1

2)~ω for some non-negative integer n.
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Paper 1, Section I

7H Statistics
Let X1, . . . ,Xn be independent samples from the exponential distribution with

density f(x;λ) = λe−λx for x > 0, where λ is an unknown parameter. Find the critical
region of the most powerful test of size α for the hypotheses H0 : λ = 1 versus H1 : λ = 2.
Determine whether or not this test is uniformly most powerful for testing H ′

0 : λ 6 1
versus H ′

1 : λ > 1.

Paper 2, Section I

8H Statistics
The efficacy of a new medicine was tested as follows. Fifty patients were given the

medicine, and another fifty patients were given a placebo. A week later, the number of
patients who got better, stayed the same, or got worse was recorded, as summarised in
this table:

medicine placebo
better 28 22
same 4 16
worse 18 12

Conduct a Pearson chi-squared test of size 1% of the hypothesis that the medicine
and the placebo have the same effect.
[Hint: You may find the following values relevant:

Distribution χ2
1 χ2

2 χ2
3 χ2

4 χ2
5 χ2

6

99% percentile 6.63 9.21 11.34 13.3 15.09 16.81.
]
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Paper 4, Section II

19H Statistics
Consider the linear regression model

Yi = α+ βxi + εi,

for i = 1, . . . , n, where the non-zero numbers x1, . . . , xn are known and are such that
x1 + . . . + xn = 0, the independent random variables ε1, . . . , εn have the N(0, σ2)
distribution, and the parameters α, β and σ2 are unknown.

(a) Let (α̂, β̂) be the maximum likelihood estimator of (α, β). Prove that for each
i, the random variables α̂, β̂ and Yi − α̂ − β̂xi are uncorrelated. Using standard facts
about the multivariate normal distribution, prove that α̂, β̂ and

∑n
i=1(Yi − α̂− β̂xi)

2 are
independent.

(b) Find the critical region of the generalised likelihood ratio test of size 5% for
testing H0 : α = 0 versus H1 : α 6= 0. Prove that the power function of this test is of the
form w(α, β, σ2) = g(α/σ) for some function g. [You are not required to find g explicitly.]

Paper 1, Section II

19H Statistics
(a) What does it mean to say a statistic T is sufficient for an unknown parameter

θ? State the factorisation criterion for sufficiency and prove it in the discrete case.

(b) State and prove the Rao-Blackwell theorem.

(c) Let X1, . . . ,Xn be independent samples from the uniform distribution on [−θ, θ]
for an unknown positive parameter θ. Consider the two-dimensional statistic

T = (min
i
Xi,max

i
Xi).

Prove that T is sufficient for θ. Determine, with proof, whether or not T is minimally
sufficient.
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Paper 3, Section II

20H Statistics
Let X1, . . . ,Xn be independent samples from the Poisson distribution with mean θ.

(a) Compute the maximum likelihood estimator of θ. Is this estimator biased?

(b) Under the assumption that n is very large, use the central limit theorem to
find an approximate 95% confidence interval for θ. [You may use the notation zα for the
number such that P(Z > zα) = α for a standard normal Z ∼ N(0, 1).]

(c) Now suppose the parameter θ has the Γ(k, λ) prior distribution. What is the
posterior distribution? What is the Bayes point estimator for θ for the quadratic loss
function L(θ, a) = (θ − a)2? Let Xn+1 be another independent sample from the same
distribution. Given X1, . . . ,Xn, what is the posterior probability that Xn+1 = 0?
[Hint: The density of the Γ(k, λ) distribution is f(x; k, λ) = λkxk−1e−λx/Γ(k), for x > 0.]
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Paper 1, Section I

4C Variational Principles
(a) Consider the function f(x1, x2) = 2x21 + x22 + αx1x2, where α is a real constant.

For what values of α is the function f convex?

(b) In the case α = −3, calculate the extremum of x21 on the set of points where
f(x1, x2) + 1 = 0.

Paper 3, Section I

6C Variational Principles
Two points A and B are located on the curved surface of the circular cylinder

of radius R with axis along the z−axis. We denote their locations by (R,φA, zA) and
(R,φB , zB) using cylindrical polar coordinates and assume φA 6= φB , zA 6= zB . A path
φ(z) is drawn on the cylinder to join A and B. Show that the path of minimum distance
between the points A and B is a helix, and determine its pitch. [For a helix with axis
parallel to the z axis, the pitch is the change in z after one complete helical turn.]
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Paper 2, Section II

15C Variational Principles
A flexible wire filament is described by the curve (x, y(x), z(x)) in cartesian

coordinates for 0 6 x 6 L. The filament is assumed to be almost straight and thus
we assume |y′| ≪ 1 and |z′| ≪ 1 everywhere.

(a) Show that the total length of the filament is approximately L+∆ where

∆ =
1

2

∫ L

0

[

(y′)2 + (z′)2
]

dx.

(b) Under a uniform external axial force, F > 0, the filament adopts the shape
which minimises the total energy, E = EB − F∆, where EB is the bending energy given
by

EB [y, z] =
1

2

∫ L

0

[

A(x)(y′′)2 +B(x)(z′′)2
]

dx,

and where A(x) and B(x) are x-dependent bending rigidities (both known and strictly
positive). The filament satisfies the boundary conditions

y(0) = y′(0) = z(0) = z′(0) = 0, y(L) = y′(L) = z(L) = z′(L) = 0.

Derive the Euler-Lagrange equations for y(x) and z(x).

(c) In the case where A = B = 1 and L = 1, show that below a critical force,
Fc, which should be determined, the only energy-minimising solution for the filament is
straight (y = z = 0), but that a new nonzero solution is admissible at F = Fc.
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Paper 4, Section II

16C Variational Principles
A fish swims in the ocean along a straight line with speed V (t). The fish starts

its journey from rest (zero velocity at t = 0) and, during a given time T , swims subject
to the constraint that the total distance travelled is L. The energy cost for swimming is
aV 2 + bV̇ 2 per unit time, where a, b > 0 are known and a2 + b2 6= 0.

(a) Derive the Euler-Lagrange condition on V (t) for the journey to have minimum
energetic cost.

(b) In the case a 6= 0, b 6= 0 solve for V (t) assuming that the fish starts at t = 0
with zero acceleration (in addition to zero velocity).

(c) In the case a = 0, the fish can decide between three different boundary conditions
for its journey. In addition to starting with zero velocity, it can:

(1) start at t = 0 with zero acceleration;

(2) end at t = T with zero velocity; or

(3) end at t = T with zero acceleration.

Which of (1), (2) or (3) is the best minimal-energy cost strategy?
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