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SECTION I

1H Number Theory

Define the Euler totient function φ and the Möbius function µ. Suppose f and g are
functions defined on the natural numbers satisfying f(n) =

∑
d|n g(d). State and prove a

formula for g in terms of f . Find a relationship between µ and φ.

Define the Riemann zeta function ζ(s). Find a Dirichlet series for ζ(s − 1)/ζ(s)
valid for Re(s) > 2.

2I Topics in Analysis

Let x1, x2, . . . , xn be the roots of the Legendre polynomial of degree n. Let A1,
A2, . . . , An be chosen so that

∫ 1

−1
p(t) dt =

n∑

j=1

Ajp(xj)

for all polynomials p of degree n − 1 or less. Assuming any results about Legendre
polynomials that you need, prove the following results:

(i)

∫ 1

−1
p(t) dt =

n∑

j=1

Ajp(xj) for all polynomials p of degree 2n− 1 or less;

(ii) Aj > 0 for all 1 6 j 6 n;

(iii)
n∑

j=1

Aj = 2.

Now consider Qn(f) =
∑n

j=1Ajf(xj). Show that

Qn(f) →
∫ 1

−1
f(t) dt

as n → ∞ for all continuous functions f .

3G Coding and Cryptography

A random variable A takes values in the alphabetA = {a, b, c, d, e} with probabilities

0.4, 0.2, 0.2, 0.1 and 0.1. Calculate the entropy of A.

Define what it means for a code for a general finite alphabet to be optimal. Find

such a code for the distribution above and show that there are optimal codes for this

distribution with differing lengths of codeword.

[You may use any results from the course without proof. Note that log2 5 ≃ 2.32.]
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4J Statistical Modelling

Let Y1, . . . , Yn be independent Poisson random variables with means µ1, . . . , µn,
where log(µi) = βxi for some known constants xi ∈ R and an unknown parameter β. Find
the log-likelihood for β.

By first computing the first and second derivatives of the log-likelihood for β,
describe the algorithm you would use to find the maximum likelihood estimator β̂. [Hint:
Recall that if Z ∼ Pois(µ) then

P(Z = k) =
µke−µ

k!

for k ∈ {0, 1, 2, . . .}.]

5E Mathematical Biology

An activator-inhibitor system is described by the equations

∂u

∂t
= 2u + u2 − u v +

∂2u

∂x2
,

∂v

∂t
= a

(
u2 − v

)
+ d

∂2v

∂x2
,

where a, d > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0.

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) to the equilibrium solution found above. Show that the system
has a Turing instability when

d >
(
7
2 + 2

√
3
)
a .
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6B Further Complex Methods

Give a brief description of what is meant by analytic continuation.

The dilogarithm function is defined by

Li2(z) =

∞∑

n=1

zn

n2
, |z| < 1 .

Let

f(z) = −
∫

C

1

u
ln(1− u) du

where C is a contour that runs from the origin to the point z. Show that f(z) provides an

analytic continuation of Li2(z) and describe its domain of definition in the complex plane,

given a suitable branch cut.

7D Classical Dynamics

The Lagrangian for a heavy symmetric top of mass M , pinned at a point that is a
distance l from the centre of mass, is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ .

(a) Find all conserved quantities. In particular, show that ω3, the spin of the top, is
constant.

(b) Show that θ obeys the equation of motion

I1θ̈ = −dVeff
dθ

,

where the explicit form of Veff should be determined.

(c) Determine the condition for uniform precession with no nutation, that is θ̇ = 0 and
φ̇ = const. For what values of ω3 does such uniform precession occur?

Part II, Paper 2
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8C Cosmology

The mass density perturbation equation for non-relativistic matter (P ≪ ρc2) with
wave number k in the late universe (t > teq) is

δ̈ + 2
ȧ

a
δ̇ −

(
4πGρ − c2s k

2

a2

)
δ = 0 . (∗)

Suppose that a non-relativistic fluid with the equation of state P ∝ ρ4/3 dominates the
universe when a(t) = t2/3, and the curvature and the cosmological constant can be
neglected. Show that the sound speed can be written in the form c2s(t) ≡ dP/dρ =
c̄2s t

−2/3 where c̄s is a constant.

Find power-law solutions to (∗) of the form δ ∝ tβ and hence show that the general
solution is

δ = Ak t
n+ + Bk t

n−

where

n± = −1

6
±

[(5
6

)2
− c̄2s k

2

]1/2
.

Interpret your solutions in the two regimes k ≪ kJ and k ≫ kJ where kJ =
5

6c̄s
.
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SECTION II

9I Topics in Analysis

State and prove Sperner’s lemma concerning the colouring of triangles.

Deduce a theorem, to be stated clearly, on retractions to the boundary of a disc.

State Brouwer’s fixed point theorem for a disc and sketch a proof of it.

Let g : R2 → R2 be a continuous function such that for some K > 0 we have
‖g(x) − x‖ 6 K for all x ∈ R2. Show that g is surjective.

10G Coding and Cryptography

Briefly describe the RSA public key cipher.

Just before it went into liquidation, the Internet Bank decided that it wanted to

communicate with each of its customers using an RSA cipher. So, it chose a large modulus

N , which is the product of two large prime numbers, and chose encrypting exponents ej
and decrypting exponents dj for each customer j. The bank published N and ej and sent

the decrypting exponent dj secretly to customer j. Show explicitly that the cipher can be

broken by each customer.

The bank sent out the same message to each customer. I am not a customer of the

bank but have two friends who are and I notice that their published encrypting exponents

are coprime. Explain how I can find the original message. Can I break the cipher?

Part II, Paper 2



7

11B Further Complex Methods

The Riemann zeta function is defined by the sum

ζ(s) =
∞∑

n=1

n−s ,

which converges for Re s > 1. Show that

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt , Re s > 1 . (∗)

The analytic continuation of ζ(s) is given by the Hankel contour integral

ζ(s) =
Γ(1− s)

2πi

∫ 0+

−∞

ts−1

e−t − 1
dt .

Verify that this agrees with the integral (∗) above when Re s > 1 and s is not an integer.
[You may assume Γ(s)Γ(1− s) = π/ sin πs .] What happens when s = 2, 3, 4, . . . ?

Evaluate ζ(0). Show that (e−t − 1)−1 + 1
2 is an odd function of t and hence, or

otherwise, show that ζ(−2n) = 0 for any positive integer n.

12C Classical Dynamics

(a) Consider a Lagrangian dynamical system with one degree of freedom. Write down
the expression for the Hamiltonian of the system in terms of the generalized velocity
q̇, momentum p, and the Lagrangian L(q, q̇, t). By considering the differential of the
Hamiltonian, or otherwise, derive Hamilton’s equations.

Show that if q is ignorable (cyclic) with respect to the Lagrangian, i.e. ∂L/∂q = 0,
then it is also ignorable with respect to the Hamiltonian.

(b) A particle of charge q and mass m moves in the presence of electric and magnetic
fields such that the scalar and vector potentials are φ = yE and A = (0, xB, 0), where
(x, y, z) are Cartesian coordinates and E, B are constants. The Lagrangian of the
particle is

L =
1

2
mṙ2 − qφ+ qṙ ·A .

Starting with the Lagrangian, derive an explicit expression for the Hamiltonian and
use Hamilton’s equations to determine the motion of the particle.
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13I Logic and Set Theory

(a) Give the inductive and synthetic definitions of ordinal addition, and prove that
they are equivalent. Give the inductive definitions of ordinal multiplication and ordinal
exponentiation.

(b) Answer, with brief justification, the following:

(i) For ordinals α, β and γ with α < β, must we have α+ γ < β + γ? Must we
have γ + α < γ + β?

(ii) For ordinals α and β with α < β, must we have αω < βω?

(iii) Is there an ordinal α > 1 such that αω = α?

(iv) Show that ωω1 = ω1. Is ω1 the least ordinal α such that ωα = α?

[You may use standard facts about ordinal arithmetic.]

14I Graph Theory

(a) Define the Ramsey numbers R(s, t) and R(s) for integers s, t > 2. Show that
R(s, t) exists for all s, t > 2 and that if s, t > 3 then R(s, t) 6 R(s− 1, t) +R(s, t− 1).

(b) Show that, as s → ∞, we have R(s) = O(4s) and R(s) = Ω(2s/2).

(c) Show that, as t → ∞, we have R(3, t) = O(t2) and R(3, t) = Ω

((
t

log t

)3/2
)
.

[Hint: For the lower bound in (c), you may wish to begin by modifying a random
graph to show that for all n and p we have

R(3, t) > n−
(
n

3

)
p3 −

(
n

t

)
(1− p)(

t
2). ]
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15F Representation Theory

Let G be a finite group. Suppose that ρ : G → GL(V ) is a finite-dimensional
complex representation of dimension d. Let n ∈ N be arbitrary.

(i) Define the nth symmetric power SnV and the nth exterior power ΛnV and write
down their respective dimensions.

Let g ∈ G and let λ1, . . . , λd be the eigenvalues of g on V . What are the eigenvalues
of g on SnV and on ΛnV ?

(ii) Let X be an indeterminate. For any g ∈ G, define the characteristic polynomial
Q = Q(g,X) of g on V by Q(g,X) := det(g−XI). What is the relationship between
the coefficients of Q and the character χΛnV of the exterior power?

Find a relation between the character χSnV of the symmetric power and the
polynomial Q.

16H Number Fields

(i) Let d ≡ 2 or 3 mod 4. Show that (p) remains prime in OQ(
√
d) if and only if

x2 − d is irreducible mod p.

(ii) Factorise (2), (3) in OK , when K = Q(
√
−14). Compute the class group of K.

17F Galois Theory

(i) State the fundamental theorem of Galois theory, without proof. Let L be a
splitting field of t3 − 2 ∈ Q[t]. Show that Q ⊆ L is Galois and that Gal(L/Q) has a
subgroup which is not normal.

(ii) Let Φ8 be the 8th cyclotomic polynomial and denote its image in F7[t] again by
Φ8. Show that Φ8 is not irreducible in F7[t].

(iii) Let m and n be coprime natural numbers, and let µm = exp(2πi/m) and
µn = exp(2πi/n) where i =

√
−1. Show that Q(µm) ∩Q(µn) = Q.
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18H Algebraic Topology

Define what it means for p : X̃ → X to be a covering map, and what it means to
say that p is a universal cover.

Let p : X̃ → X be a universal cover, A ⊂ X be a locally path connected subspace,
and Ã ⊂ p−1(A) be a path component containing a point ã0 with p(ã0) = a0. Show that
the restriction p|

Ã
: Ã → A is a covering map, and that under the Galois correspondence

it corresponds to the subgroup

Ker
(
π1(A, a0) → π1(X, a0)

)

of π1(A, a0).

19G Linear Analysis

(a) Let T : X → Y be a linear map between normed spaces. What does it mean to say
that T is bounded? Show that T is bounded if and only if T is continuous. Define the
operator norm of T and show that the set B(X,Y ) of all bounded, linear maps from
X to Y is a normed space in the operator norm.

(b) For each of the following linear maps T , determine if T is bounded. When T is
bounded, compute its operator norm and establish whether T is compact. Justify
your answers. Here ‖f‖∞ = supt∈[0,1]|f(t)| for f ∈ C[0, 1] and ‖f‖ = ‖f‖∞ + ‖f ′‖∞
for f ∈ C1[0, 1].

(i) T :
(
C1[0, 1], ‖·‖∞

)
→

(
C1[0, 1], ‖·‖

)
, T (f) = f .

(ii) T :
(
C1[0, 1], ‖·‖

)
→ (C[0, 1], ‖·‖∞), T (f) = f .

(iii) T :
(
C1[0, 1], ‖·‖

)
→ (C[0, 1], ‖·‖∞), T (f) = f ′.

(iv) T : (C[0, 1], ‖·‖∞) → R, T (f) =

∫ 1

0
f(t)h(t) dt, where h is a given element of

C[0, 1]. [Hint: Consider first the case that h(x) 6= 0 for every x ∈ [0, 1], and
apply T to a suitable function. In the general case apply T to a suitable sequence
of functions.]
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20F Riemann Surfaces

Let G be a domain in C. Define the germ of a function element (f,D) at z ∈ D.
Let G be the set of all germs of function elements in G. Define the topology on G. Show
it is a topology, and that it is Hausdorff. Define the complex structure on G, and show
that there is a natural projection map π : G → G which is an analytic covering map on
each connected component of G.

Given a complete analytic function F on G, describe how it determines a connected
component GF of G. [You may assume that a function element (g,E) is an analytic
continuation of a function element (f,D) along a path γ : [0, 1] → G if and only if there
is a lift of γ to G starting at the germ of (f,D) at γ(0) and ending at the germ of (g,E)
at γ(1).]

In each of the following cases, give an example of a domain G in C and a complete
analytic function F such that:

(i) π : GF → G is regular but not bijective;

(ii) π : GF → G is surjective but not regular.

21F Algebraic Geometry

(i) Define the radical of an ideal.

(ii) Assume the following statement: If k is an algebraically closed field and I ⊆
k[x1, . . . , xn] is an ideal, then either I = (1) or Z(I) 6= ∅. Prove the Hilbert
Nullstellensatz, namely that if I ⊆ k[x1, . . . , xn] with k algebraically closed, then

I(Z(I)) =
√
I.

(iii) Show that if A is a commutative ring and I, J ⊆ A are ideals, then

√
I ∩ J =

√
I ∩

√
J.

(iv) Is √
I + J =

√
I +

√
J ?

Give a proof or a counterexample.
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22G Differential Geometry

If U denotes a domain in R2, what is meant by saying that a smooth map φ : U → R3

is an immersion? Define what it means for such an immersion to be isothermal. Explain

what it means to say that an immersed surface is minimal.

Let φ(u, v) = (x(u, v), y(u, v), z(u, v)) be an isothermal immersion. Show that it is

minimal if and only if x, y, z are harmonic functions of u, v. [You may use the formula

for the mean curvature given in terms of the first and second fundamental forms, namely

H = (eG − 2fF + gE)/(2{EG − F 2}) . ]
Produce an example of an immersed minimal surface which is not an open subset of

a catenoid, helicoid, or a plane. Prove that your example does give an immersed minimal

surface in R3.

23J Probability and Measure

(a) Let (E, E , µ) be a measure space, and let 1 6 p < ∞. What does it mean to say
that f belongs to Lp(E, E , µ)?

(b) State Hölder’s inequality.

(c) Consider the measure space of the unit interval endowed with Lebesgue measure.
Suppose f ∈ L2(0, 1) and let 0 < α < 1/2.

(i) Show that for all x ∈ R,
∫ 1

0
|f(y)||x− y|−α dy < ∞ .

(ii) For x ∈ R, define

g(x) =

∫ 1

0
f(y)|x− y|−αdy .

Show that for x ∈ R fixed, the function g satisfies

|g(x+ h)− g(x)| 6 ‖f‖2 · (I(h))1/2,

where

I(h) =

∫ 1

0

(
|x+ h− y|−α − |x− y|−α

)2
dy.

(iii) Prove that g is a continuous function. [Hint: You may find it helpful to
split the integral defining I(h) into several parts.]
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24K Applied Probability

(i) Defne a Poisson process on R+ with rate λ. Let N and M be two independent
Poisson processes on R+ of rates λ and µ respectively. Prove that N +M is also a Poisson
process and find its rate.

(ii) Let X be a discrete time Markov chain with transition matrix K on the finite
state space S. Find the generator of the continuous time Markov chain Yt = XNt in terms
of K and λ. Show that if π is an invariant distribution for X, then it is also invariant
for Y .

Suppose that X has an absorbing state a. If τa and Ta are the absorption times for
X and Y respectively, write an equation that relates Ex[τa] and Ex[Ta], where x ∈ S.

[Hint: You may want to prove that if ξ1, ξ2, . . . are i.i.d. non-negative random
variables with E[ξ1] < ∞ and M is an independent non-negative random variable, then

E
[∑M

i=1 ξi

]
= E[M ]E[ξ1].]

25J Principles of Statistics

Consider a random variable X arising from the binomial distribution Bin(n, θ),
θ ∈ Θ = [0, 1]. Find the maximum likelihood estimator θ̂MLE and the Fisher information
I(θ) for θ ∈ Θ.

Now consider the following priors on Θ:

(i) a uniform U([0, 1]) prior on [0, 1],

(ii) a prior with density π(θ) proportional to
√

I(θ),

(iii) a Beta(
√
n/2,

√
n/2) prior.

Find the means E[θ|X] and modes mθ|X of the posterior distributions corresponding to
the prior distributions (i)–(iii). Which of these posterior decision rules coincide with θ̂MLE?
Which one is minimax for quadratic risk? Justify your answers.

[You may use the following properties of the Beta(a, b) (a > 0, b > 0) distribution.
Its density f(x; a, b), x ∈ [0, 1], is proportional to xa−1(1 − x)b−1, its mean is equal to
a/(a+ b), and its mode is equal to

max(a− 1, 0)

max(a, 1) +max(b, 1)− 2

provided either a > 1 or b > 1.

You may further use the fact that a unique Bayes rule of constant risk is a unique
minimax rule for that risk.]
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26K Optimization and Control

As a function of policy π and initial state x, let

F (π, x) = Eπ

[ ∞∑

t=0

βtr(xt, ut)
∣∣∣ x0 = x

]
,

where β > 1 and r(x, u) > 0 for all x, u. Suppose that for a specific policy π, and all x,

F (π, x) = sup
u

{
r(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

}
.

Prove that F (π, x) > F (π′, x) for all π′ and x.

A gambler plays games in which he may bet 1 or 2 pounds, but no more than
his present wealth. Suppose he has xt pounds after t games. If he bets i pounds then
xt+1 = xt + i, or xt+1 = xt − i, with probabilities pi and 1 − pi respectively. Gambling
terminates at the first τ such that xτ = 0 or xτ = 100. His final reward is (9/8)τ/2xτ . Let
π be the policy of always betting 1 pound. Given p1 = 1/3, show that F (π, x) ∝ x2x/2.

Is π optimal when p2 = 1/4 ?

27K Stochastic Financial Models

(i) What is Brownian motion?

(ii) Suppose that (Bt)t>0 is Brownian motion, and the price St at time t of a risky
asset is given by

St = S0 exp{ σBt + (µ − 1
2σ

2)t }
where µ > 0 is the constant growth rate, and σ > 0 is the constant volatility of the asset.
Assuming that the riskless rate of interest is r > 0, derive an expression for the price at
time 0 of a European call option with strike K and expiry T , explaining briefly the basis
for your calculation.

(iii) With the same notation, derive the time-0 price of a European option with
expiry T which at expiry pays

{(ST −K)+}2/ST .
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28B Dynamical Systems

(a) An autonomous dynamical system ẋ = f(x) in R2 has a periodic orbit x = X(t) with
period T . The linearized evolution of a small perturbation x = X(t) + η(t) is given
by ηi(t) = Φij(t)ηj(0). Obtain the differential equation and initial condition satisfied
by the matrix Φ(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is always
unity and give a brief argument to show that the other is given by

exp

(∫ T

0
∇ · f(X(t)) dt

)
.

(b) Use the energy-balance method for nearly Hamiltonian systems to find leading-order
approximations to the two limit cycles of the equation

ẍ+ ǫ(2ẋ3 + 2x3 − 4x4ẋ− ẋ) + x = 0,

where 0 < ǫ ≪ 1.

Determine the stability of each limit cycle, giving reasoning where necessary.

[You may assume that
∫ 2π
0 cos4 θ dθ = 3π/4 and

∫ 2π
0 cos6 θ dθ = 5π/8.]
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29D Integrable Systems

(a) Explain how a vector field

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u

generates a 1-parameter group of transformations gǫ : (x, u) 7→ (x̃, ũ) in terms of the
solution to an appropriate differential equation. [You may assume the solution to the
relevant equation exists and is unique.]

(b) Suppose now that u = u(x). Define what is meant by a Lie-point symmetry of the
ordinary differential equation

∆
[
x, u, u(1), . . . , u(n)

]
= 0 , where u(k) ≡ dku

dxk
, k = 1, . . . , n .

(c) Prove that every homogeneous, linear ordinary differential equation for u = u(x)
admits a Lie-point symmetry generated by the vector field

V = u
∂

∂u
.

By introducing new coordinates

s = s(x, u), t = t(x, u)

which satisfy V (s) = 1 and V (t) = 0, show that every differential equation of the form

d2u

dx2
+ p(x)

du

dx
+ q(x)u = 0

can be reduced to a first-order differential equation for an appropriate function.
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30E Partial Differential Equations

Prove that if φ ∈ C(Rn) is absolutely integrable with
∫
φ(x) dx = 1, and

φǫ(x) = ǫ−nφ(x/ǫ) for ǫ > 0, then for every Schwartz function f ∈ S(Rn) the convolution

φǫ ∗ f(x) → f(x)

uniformly in x as ǫ ↓ 0.

Show that the function Nǫ ∈ C∞(R3) given by

Nǫ(x) =
1

4π
√

|x|2 + ǫ2

for ǫ > 0 satisfies

lim
ǫ→0

∫

R3

−∆Nǫ(x) f(x) dx = f(0)

for f ∈ S(Rn). Hence prove that the tempered distribution determined by the function
N(x) = (4π|x|)−1 is a fundamental solution of the operator −∆.

[You may use the fact that
∫∞
0 r2/(1 + r2)5/2 dr = 1/3 .]
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31A Principles of Quantum Mechanics

Express the spin operator S for a particle of spin 1
2 in terms of the Pauli matrices

σ = (σ1, σ2, σ3) where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Show that (n · σ)2 = I for any unit vector n and deduce that

e−iθ n·S/~ = I cos(θ/2) − i(n · σ) sin(θ/2) .

The space of states V for a particle of spin 1
2 has basis states | ↑ 〉, | ↓ 〉 which are

eigenstates of S3 with eigenvalues 1
2~ and −1

2~ respectively. If the Hamiltonian for the
particle is H = 1

2α~σ1, find

e−itH/~| ↑ 〉 and e−itH/~| ↓ 〉

as linear combinations of the basis states.

The space of states for a system of two spin 1
2 particles is V ⊗V . Write down explicit

expressions for the joint eigenstates of J2 and J3, where J is the sum of the spin operators
for the particles.

Suppose that the two-particle system has Hamiltonian H = 1
2λ~(σ1 ⊗ I − I ⊗ σ1)

and that at time t = 0 the system is in the state with J3 eigenvalue ~. Calculate the
probability that at time t > 0 the system will be measured to be in the state with J2

eigenvalue zero.
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32A Applications of Quantum Mechanics

A beam of particles of mass m and energy ~2k2/2m is incident on a target at
the origin described by a spherically symmetric potential V (r). Assuming the potential
decays rapidly as r → ∞, write down the asymptotic form of the wavefunction, defining
the scattering amplitude f(θ).

Consider a free particle with energy ~2k2/2m. State, without proof, the general
axisymmetric solution of the Schrödinger equation for r > 0 in terms of spherical Bessel
and Neumann functions jℓ and nℓ, and Legendre polynomials Pℓ (ℓ = 0, 1, 2, . . .). Hence
define the partial wave phase shifts δℓ for scattering from a potential V (r) and derive the
partial wave expansion for f(θ) in terms of phase shifts.

Now suppose

V (r) =

{
~2γ2/2m r < a

0 r > a

with γ > k. Show that the S-wave phase shift δ0 obeys

tanh (κa)

κa
=

tan (ka+ δ0)

ka

where κ2 = γ2 − k2. Deduce that for an S-wave solution

f → tanh γa− γa

γ
as k → 0 .

[ You may assume : exp (ikr cos θ) =
∞∑

ℓ=0

(2ℓ+ 1) iℓ jℓ(kr)Pℓ (cos θ)

and jℓ(ρ) ∼
1

ρ
sin (ρ− ℓπ/2) , nℓ(ρ) ∼ −1

ρ
cos (ρ− ℓπ/2) as ρ → ∞ . ]
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33C Statistical Physics

(a) State the Bose–Einstein distribution formula for the mean occupation numbers ni

of discrete single-particle states i with energies Ei in a gas of bosons. Write down
expressions for the total particle number N and the total energy U when the single-
particle states can be treated as continuous, with energies E > 0 and density of states
g(E).

(b) Blackbody radiation at temperature T is equivalent to a gas of photons with

g(E) = AV E2

where V is the volume and A is a constant. What value of the chemical potential is
required when applying the Bose–Einstein distribution to photons? Show that the heat
capacity at constant volume satisfies CV ∝ Tα for some constant α, to be determined.

(c) Consider a system of bosonic particles of fixed total number N ≫ 1. The particles
are trapped in a potential which has ground state energy zero and which gives rise
to a density of states g(E) = BE2, where B is a constant. Explain, for this system,
what is meant by Bose–Einstein condensation and show that the critical temperature
satisfies Tc ∝ N1/3. If N0 is the number of particles in the ground state, show that
for T just below Tc

N0/N ≈ 1− (T/Tc)
γ

for some constant γ, to be determined.

(d) Would you expect photons to exhibit Bose–Einstein condensation? Explain your
answer very briefly.
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34D General Relativity

(a) The Schwarzschild metric is

ds2 = −(1− rs/r)dt
2 + (1− rs/r)

−1dr2 + r2(dθ2 + sin2 θdφ2)

(in units for which the speed of light c = 1). Show that a timelike geodesic in the
equatorial plane obeys

1
2 ṙ

2 + V (r) = 1
2E

2 ,

where

2V (r) =
(
1− rs

r

)(
1 +

h2

r2

)

and E and h are constants.

(b) For a circular orbit of radius r, show that

h2 =
r2rs

2r − 3rs
.

Given that the orbit is stable, show that r > 3rs.

(c) Alice lives on a small planet that is in a stable circular orbit of radius r around a
(non-rotating) black hole of radius rs. Bob lives on a spacecraft in deep space far from
the black hole and at rest relative to it. Bob is ageing k times faster than Alice. Find
an expression for k2 in terms of r and rs and show that k <

√
2.
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35E Fluid Dynamics II

Consider an infinite rigid cylinder of radius a parallel to a horizontal rigid stationary
surface. Let ex be the direction along the surface perpendicular to the cylinder axis, ey
the direction normal to the surface (the surface is at y = 0) and ez the direction along
the axis of the cylinder. The cylinder moves with constant velocity Uex. The minimum
separation between the cylinder and the surface is denoted by h0 ≪ a.

(i) What are the conditions for the flow in the thin gap between the cylinder and the
surface to be described by the lubrication equations? State carefully the relevant length
scale in the ex direction.

(ii) Without doing any calculation, explain carefully why, in the lubrication limit,
the net fluid force F acting on the stationary surface at y = 0 has no component in the
ey direction.

(iii) Using the lubrication approximation, calculate the ex component of the velocity
field in the gap between the cylinder and the surface, and determine the pressure gradient
as a function of the gap thickness h(x).

(iv) Compute the tangential component of the force, ex · F, acting on the bottom
surface per unit length in the ez direction.

[You may quote the following integrals:

∫ ∞

−∞

du

(1 + u2)
= π,

∫ ∞

−∞

du

(1 + u2)2
=

π

2
,

∫ ∞

−∞

du

(1 + u2)3
=

3π

8
· ]

36B Waves

A uniform elastic solid with density ρ and Lamé moduli λ and µ occupies the region
between rigid plane boundaries z = 0 and z = h. Starting with the linear elastic wave
equation, show that SH waves can propagate in the x-direction within this waveguide, and
find the dispersion relation ω(k) for the various modes.

State the cut-off frequency for each mode. Find the corresponding phase velocity
c(k) and group velocity cg(k), and sketch these functions for k, ω > 0.

Define the time and cross-sectional average appropriate for a mode with frequency
ω. Show that for each mode the average kinetic energy is equal to the average elastic
energy. [You may assume that the elastic energy per unit volume is 1

2(λe
2
kk + 2µeijeij).]

An elastic displacement of the form u = (0, f(x, z), 0) is created in a region near
x = 0, and then released at t = 0. Explain briefly how the amplitude of the resulting
disturbance varies with time as t → ∞ at the moving position x = V t for each of the cases
0 < V 2 < µ/ρ and V 2 > µ/ρ. [You may quote without proof any generic results from the
method of stationary phase.]
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37E Numerical Analysis

(a) The boundary value problem −∆u + cu = f on the unit square [0, 1]2 with zero
boundary conditions and scalar constant c > 0 is discretised using finite differences as

−ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j + ch2ui,j = h2f(ih, jh),

i, j = 1, . . . ,m,

with h = 1/(m+1). Show that for the resulting system Au = b, for a suitable matrix
A and vectors u and b, both the Jacobi and Gauss–Seidel methods converge. [You may
cite and use known results on the discretised Laplace operator and on the convergence
of iterative methods.]

Define the Jacobi method with relaxation parameter ω. Find the eigenvalues λk,l of
the iteration matrix Hω for the above problem and show that, in order to ensure
convergence for all h, the condition 0 < ω 6 1 is necessary.

[Hint: The eigenvalues of the discretised Laplace operator in two dimensions are
4
(
sin2 πkh

2 + sin2 πlh
2

)
for integers k, l.]

(b) Explain the components and steps in a multigrid method for solving the Poisson
equation, discretised as Ahuh = bh. If we use the relaxed Jacobi method within the
multigrid method, is it necessary to choose ω 6= 1 to get fast convergence? Explain
why or why not.

END OF PAPER
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