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SECTION I

1H Number Theory

Define the Legendre symbol
(
a
p

)
. State and prove Euler’s criterion, assuming if you

wish the existence of primitive roots mod p.

By considering the prime factors of n2+4 for n an odd integer, prove that there are
infinitely many primes p with p ≡ 5 (mod 8).

2I Topics in Analysis

Let Ω be a non-empty bounded open subset of R2 with closure Ω̄ and boundary ∂Ω.
Let φ : Ω̄ → R be continuous with φ twice differentiable on Ω.

(i) Why does φ have a maximum on Ω̄?

(ii) If ǫ > 0 and ∇2φ > ǫ on Ω, show that φ has a maximum on ∂Ω.

(iii) If ∇2φ > 0 on Ω, show that φ has a maximum on ∂Ω.

(iv) If ∇2φ = 0 on Ω and φ = 0 on ∂Ω, show that φ = 0 on Ω̄.

3G Coding and Cryptography

Let A be a finite alphabet. Explain what is meant by saying that a binary code

c : A → {0, 1}∗ has minimum distance δ. If c is such a binary code with minimum distance

δ, show that c is δ − 1 error-detecting and ⌊12 (δ − 1)⌋ error-correcting.

Show that it is possible to construct a code that has minimum distance δ for any

integer δ > 0.

4J Statistical Modelling

The outputs Y1, . . . , Yn of a particular process are positive and are believed to be
related to p-vectors of covariates x1, . . . , xn according to the following model

log(Yi) = µ+ xTi β + εi.

In this model εi are i.i.d. N(0, σ2) random variables where σ > 0 is known. It is not
possible to measure the output directly, but we can detect whether the output is greater
than or less than or equal to a certain known value c > 0. If

Zi =

{
1 if Yi > c

0 if Yi 6 c,

show that a probit regression model can be used for the data (Zi, xi), i = 1, . . . , n.

How can we recover µ and β from the parameters of the probit regression model?

Part II, Paper 1
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5E Mathematical Biology

The population density n(a, t) of individuals of age a at time t satisfies

∂n

∂t
+

∂n

∂a
= −µ(a)n(a, t), n(0, t) =

∫ ∞

0
b(a)n(a, t) da

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age
a. Show that this may be solved with a similarity solution of the form n(a, t) = eγtr(a) if
the growth rate γ satisfies φ(γ) = 1 where

φ(γ) =

∫ ∞

0
b(a) e−γa−

∫ a
0 µ(s) ds da.

Suppose now that the birth rate is given by b(a) = Bape−λa with B,λ > 0 and p is
a positive integer, and the death rate is constant in age (i.e. µ(a) = µ). Find the average
number of offspring per individual.

Find the similarity solution, and find the threshold B∗ for the birth parameter B
so that B > B∗ corresponds to a growing population.

6B Further Complex Methods

Evaluate the real integral ∫ ∞

0

x1/2 lnx

1 + x2
dx

where x1/2 is taken to be the positive square root.

What is the value of ∫ ∞

0

x1/2

1 + x2
dx ?
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7D Classical Dynamics

(a) The action for a one-dimensional dynamical system with a generalized coordinate q
and Lagrangian L is given by

S =

∫ t2

t1

L(q, q̇, t) dt .

State the principle of least action and derive the Euler–Lagrange equation.

(b) A planar spring-pendulum consists of a light rod of length l and a bead of mass m,
which is able to slide along the rod without friction and is attached to the ends of
the rod by two identical springs of force constant k as shown in the figure. The rod
is pivoted at one end and is free to swing in a vertical plane under the influence of
gravity.
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k

m

k

(i) Identify suitable generalized coordinates and write down the Lagrangian of the
system.

(ii) Derive the equations of motion.

Part II, Paper 1



5

8C Cosmology

Consider three galaxies O, A and B with position vectors rO, rA and rB in a
homogeneous universe. Assuming they move with non-relativistic velocities vO = 0, vA

and vB , show that spatial homogeneity implies that the velocity field v(r) satisfies

v(rB − rA) = v(rB − rO)− v(rA − rO) ,

and hence that v is linearly related to r by

vi =

3∑

j=1

Hijrj ,

where the components of the matrix Hij are independent of r.

Suppose the matrix Hij has the form

Hij =
D

t



5 −1 −2
1 5 −1
2 1 5


 ,

with D > 0 constant. Describe the kinematics of the cosmological expansion.
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SECTION II

9G Coding and Cryptography

Define the Hamming code. Show that it is a perfect, linear, 1-error correcting code.

I wish to send a message through a noisy channel to a friend. The message consists

of a large number N = 1, 000 of letters from a 16-letter alphabet A. When my friend has

decoded the message, she can tell whether there have been any errors. If there have, she

asks me to send the message again and this is repeated until she has received the message

without error. For each individual binary digit that is transmitted, there is independently

a small probability p = 0.001 of an error.

(a) Suppose that I encode my message by writing each letter as a 4-bit binary string.

The whole message is then 4N bits long. What is the probability P that the entire

message is transmitted without error? How many times should I expect to transmit

the message until my friend receives it without error?

(b) As an alternative, I use the Hamming code to encode each letter of A as a 7-bit

binary string. What is the probability that my friend can decode a single 7-bit

string correctly? Deduce that the probability Q that the entire message is correctly

decoded is given approximately by

Q ≃ (1− 21p2)N ≃ exp(−21Np2) .

Which coding method is better?

10J Statistical Modelling

An experiment is conducted where scientists count the numbers of each of three
different strains of fleas that are reproducing in a controlled environment. Varying
concentrations of a particular toxin that impairs reproduction are administered to the
fleas. The results of the experiment are stored in a data frame fleas in R, whose first few
rows are given below.

> fleas[1:3, ]

number conc strain

1 81 0.250 0

2 93 0.250 2

3 102 0.875 1

The full dataset has 80 rows. The first column provides the number of fleas, the second
provides the concentration of the toxin and the third specifies the strain of the flea as
factors 0, 1 or 2. Strain 0 is the common flea and strains 1 and 2 have been genetically
modified in a way thought to increase their ability to reproduce in the presence of the
toxin.

This question continues on the next page

Part II, Paper 1



7

10J Statistical Modelling (continued)

Explain and interpret the R commands and (abbreviated) output below. In
particular, you should describe the model being fitted, briefly explain how the standard
errors are calculated, and comment on the hypothesis tests being described in the summary.

> fit1 <- glm(number ~ conc*strain, data=fleas, family=poisson)

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.47171 0.03849 116.176 < 2e-16 ***

conc -0.28700 0.06727 -4.266 1.99e-05 ***

strain1 0.09381 0.05483 1.711 0.087076 .

strain2 0.12157 0.05591 2.175 0.029666 *

conc:strain1 0.34215 0.09178 3.728 0.000193 ***

conc:strain2 0.02385 0.09789 0.244 0.807510

Explain and motivate the following R code in the light of the output above. Briefly explain
the differences between the models fitted below, and the model corresponding to fit1.

> strain_grp <- fleas$strain

> levels(strain_grp)

[1] "0" "1" "2"

> levels(strain_grp) <- c(0, 1, 0)

> fit2 <- glm(number ~ conc + strain + conc:strain_grp,

+ data=fleas, family=poisson)

> fit3 <- glm(number ~ conc*strain_grp, data=fleas, family=poisson)

Denote by M1,M2,M3 the three models being fitted in sequence above. Explain the
hypothesis tests comparing the models to each other that can be performed using the
output from the following R code.

> c(fit1$dev, fit2$dev, fit3$dev)

[1] 56.87 56.93 76.98

> qchisq(0.95, df = 1)

[1] 3.84

Use these numbers to comment on the most appropriate model for the data.
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11B Further Complex Methods

Consider the differential equation

xy′′ + (a− x)y′ − by = 0 (∗)

where a and b are constants with Re (b) > 0 and Re (a − b) > 0. Laplace’s method for
finding solutions involves writing

y(x) =

∫

C
extf(t) dt

for some suitable contour C and some suitable function f(t). Determine f(t) for
the equation (∗) and use a clearly labelled diagram to specify contours C giving two
independent solutions when x is real in each of the cases x > 0 and x < 0.

Now let a = 3 and b = 1. Find explicit expressions for two independent solutions
to (∗). Find, in addition, a solution y(x) with y(0) = 1.

12C Cosmology

A closed universe contains black-body radiation, has a positive cosmological con-
stant Λ, and is governed by the equation

ȧ2

a2
=

Γ

a4
− 1

a2
+

Λ

3
,

where a(t) is the scale factor and Γ is a positive constant. Using the substitution y = a2

and the boundary condition y(0) = 0, deduce the boundary condition for ẏ(0) and show
that

ÿ =
4Λ

3
y − 2

and hence that

a2(t) =
3

2Λ

[
1− cosh

(√
4Λ

3
t

)
+ λ sinh

(√
4Λ

3
t

)]
.

Express the constant λ in terms of Λ and Γ.

Sketch the graphs of a(t) for the cases λ > 1 and 0 < λ < 1.

Part II, Paper 1
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13I Logic and Set Theory

State and prove the Completeness Theorem for Propositional Logic.

[You do not need to give definitions of the various terms involved. You may assume

the Deduction Theorem, provided that you state it precisely.]

State the Compactness Theorem and the Decidability Theorem, and deduce them

from the Completeness Theorem.

Let S consist of the propositions pn+1 ⇒ pn for n = 1, 2, 3, . . .. Does S prove p1?

Justify your answer. [Here p1, p2, p3, . . . are primitive propositions.]

14I Graph Theory

(a) What does it mean to say that a graph G is strongly regular with parameters
(k, a, b)?

(b) Let G be an incomplete, strongly regular graph with parameters (k, a, b) and of
order n. Suppose b > 1. Show that the numbers

1

2

(
n− 1± (n− 1)(b − a)− 2k√

(a− b)2 + 4(k − b)

)

are integers.

(c) Suppose now that G is an incomplete, strongly regular graph with parameters
(k, 0, 3). Show that |G| ∈ {6, 162}.

Part II, Paper 1 [TURN OVER
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15F Representation Theory

(a) Let G be a finite group and let ρ : G → GL2(C) be a representation of G. Suppose
that there are elements g, h in G such that the matrices ρ(g) and ρ(h) do not commute.
Use Maschke’s theorem to prove that ρ is irreducible.

(b) Let n be a positive integer. You are given that the dicyclic group

G4n = 〈a, b : a2n = 1, an = b2, b−1ab = a−1〉

has order 4n.

(i) Show that if ǫ is any (2n)th root of unity in C, then there is a representation
of G4n over C which sends

a 7→
(

ǫ 0
0 ǫ−1

)
, b 7→

(
0 1
ǫn 0

)
.

(ii) Find all the irreducible representations of G4n.

(iii) Find the character table of G4n.

[Hint: You may find it helpful to consider the cases n odd and n even separately.]

16H Number Fields

(a) Let K be a number field, and f a monic polynomial whose coefficients are in

OK . Let M be a field containing K and α ∈ M . Show that if f(α) = 0, then α is an

algebraic integer.

Hence conclude that if h ∈ K[x] is monic, with hn ∈ OK [x], then h ∈ OK [x].

(b) Compute an integral basis for OQ(α) when the minimum polynomial of α is

x3 − x− 4.

Part II, Paper 1
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17F Galois Theory

(i) Let K ⊆ L be a field extension and f ∈ K[t] be irreducible of positive degree.
Prove the theorem which states that there is a 1-1 correspondence

Rootf (L)←→ HomK

(
K[t]

〈f〉 , L
)
.

(ii) Let K be a field and f ∈ K[t]. What is a splitting field for f? What does it
mean to say f is separable? Show that every f ∈ K[t] is separable if K is a finite field.

(iii) The primitive element theorem states that if K ⊆ L is a finite separable field
extension, then L = K(α) for some α ∈ L. Give the proof of this theorem assuming K is
infinite.

18H Algebraic Topology

State carefully a version of the Seifert–van Kampen theorem for a cover of a space
by two closed sets.

Let X be the space obtained by gluing together a Möbius band M and a torus
T = S1 × S1 along a homeomorphism of the boundary of M with S1 × {1} ⊂ T . Find
a presentation for the fundamental group of X, and hence show that it is infinite and
non-abelian.

19G Linear Analysis

(a) Let (en)
∞
n=1 be an orthonormal basis of an inner product space X. Show that for

all x ∈ X there is a unique sequence (an)
∞
n=1 of scalars such that x =

∑∞
n=1 anen.

Assume now that X is a Hilbert space and that (fn)
∞
n=1 is another orthonormal

basis of X. Prove that there is a unique bounded linear map U : X → X such that
U(en) = fn for all n ∈ N. Prove that this map U is unitary.

(b) Let 1 6 p < ∞ with p 6= 2. Show that no subspace of ℓ2 is isomorphic to ℓp. [Hint:
Apply the generalized parallelogram law to suitable vectors.]
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20F Riemann Surfaces

Let f : R → S be a non-constant holomorphic map between compact connected
Riemann surfaces and let B ⊂ S denote the set of branch points. Show that the map
f : R \ f−1(B) → S \B is a regular covering map.

Given w ∈ S \B and a closed curve γ in S \B with initial and final point w, explain
how this defines a permutation of the (finite) set f−1(w). Show that the group H obtained
from all such closed curves is a transitive subgroup of the full symmetric group of the fibre
f−1(w).

Find the group H for f : C∞ → C∞ where f(z) = z3/(1 − z2).

21F Algebraic Geometry

Let k be an algebraically closed field.

(i) Let X and Y be affine varieties defined over k. Given a map f : X → Y, define
what it means for f to be a morphism of affine varieties.

(ii) With X, Y still affine varieties over k, show that there is a one-to-one
correspondence between Hom(X,Y ), the set of morphisms between X and Y , and
Hom(A(Y ), A(X)), the set of k-algebra homomorphisms between A(Y ) and A(X).

(iii) Let f : A2 → A4 be given by f(t, u) = (u, t, t2, tu). Show that the image of f is
an affine variety X, and find a set of generators for I(X).

22G Differential Geometry

Let Ω ⊂ R2 be a domain (connected open subset) with boundary ∂Ω a continuously

differentiable simple closed curve. Denoting by A(Ω) the area of Ω and l(∂Ω) the length

of the curve ∂Ω, state and prove the isoperimetric inequality relating A(Ω) and l(∂Ω)

with optimal constant, including the characterization for equality. [You may appeal to

Wirtinger’s inequality as long as you state it precisely.]

Does the result continue to hold if the boundary ∂Ω is allowed finitely many points at

which it is not differentiable? Briefly justify your answer by giving either a counterexample

or an indication of a proof.
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23J Probability and Measure

(a) Define the following concepts: a π-system, a d-system and a σ-algebra.

(b) State the Dominated Convergence Theorem.

(c) Does the set function

µ(A) =

{
0 for A bounded,

1 for A unbounded,

furnish an example of a Borel measure?

(d) Suppose g : [0, 1] → [0, 1] is a measurable function. Let f : [0, 1] → R be
continuous with f(0) 6 f(1). Show that the limit

lim
n→∞

∫ 1

0
f( g(x)n) dx

exists and lies in the interval [f(0), f(1)].

24K Applied Probability

(a) Give the definition of a birth and death chain in terms of its generator. Show
that a measure π is invariant for a birth and death chain if and only if it solves the detailed
balance equations.

(b) There are s servers in a post office and a single queue. Customers arrive as
a Poisson process of rate λ and the service times at each server are independent and
exponentially distributed with parameter µ. Let Xt denote the number of customers in
the post office at time t. Find conditions on λ, µ and s for X to be positive recurrent, null
recurrent and transient, justifying your answers.
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25J Principles of Statistics

Consider a normally distributed random vector X ∈ Rp modelled as X ∼ N(θ, Ip)
where θ ∈ Rp, Ip is the p× p identity matrix, and where p > 3. Define the Stein estimator

θ̂STEIN of θ.

Prove that θ̂STEIN dominates the estimator θ̃ = X for the risk function induced by
quadratic loss

ℓ(a, θ) =

p∑

i=1

(ai − θi)
2, a ∈ Rp.

Show however that the worst case risks coincide, that is, show that

sup
θ∈Rp

Eθ ℓ(X, θ) = sup
θ∈Rp

Eθ ℓ(θ̂STEIN, θ).

[You may use Stein’s lemma without proof, provided it is clearly stated.]

26K Stochastic Financial Models

(i) What does it mean to say that (Xn,Fn)n>0 is a martingale?

(ii) If Y is an integrable random variable and Yn = E[Y | Fn ], prove that (Yn,Fn)
is a martingale. [Standard facts about conditional expectation may be used without proof
provided they are clearly stated.] When is it the case that the limit limn→∞ Yn exists
almost surely?

(iii) An urn contains initially one red ball and one blue ball. A ball is drawn at
random and then returned to the urn with a new ball of the other colour. This process is
repeated, adding one ball at each stage to the urn. If the number of red balls after n draws
and replacements is Xn, and the number of blue balls is Yn, show that Mn = h(Xn, Yn) is
a martingale, where

h(x, y) = (x− y)(x+ y − 1).

Does this martingale converge almost surely?

Part II, Paper 1
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27C Asymptotic Methods

(a) State the integral expression for the gamma function Γ(z), for Re(z) > 0, and
express the integral ∫ ∞

0
tγ−1 eit dt , 0 < γ < 1 ,

in terms of Γ(γ). Explain why the constraints on γ are necessary.

(b) Show that

∫ ∞

0

e−kt2

(t2 + t)
1
4

dt ∼
∞∑

m=0

am
kα+βm

, k → ∞ ,

for some constants am, α and β. Determine the constants α and β, and express am in
terms of the gamma function.

State without proof the basic result needed for the rigorous justification of the above
asymptotic formula.

[You may use the identity:

(1 + z)α =

∞∑

m=0

cmzm, cm =
Γ(α+ 1)

m! Γ(α + 1−m)
, |z| < 1 . ]
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28B Dynamical Systems

(a) What is a Lyapunov function?

Consider the dynamical system for x(t) =
(
x(t), y(t)

)
given by

ẋ = −x+ y + x(x2 + y2) ,

ẏ = −y − 2x+ y(x2 + y2) .

Prove that the origin is asymptotically stable (quoting carefully any standard results
that you use).

Show that the domain of attraction of the origin includes the region x2 + y2 < r21
where the maximum possible value of r1 is to be determined.

Show also that there is a region E = {x |x2+y2 > r22} such that x(0) ∈ E implies that
|x(t)| increases without bound. Explain your reasoning carefully. Find the smallest
possible value of r2.

(b) Now consider the dynamical system

ẋ = x− y − x(x2 + y2) ,

ẏ = y + 2x− y(x2 + y2) .

Prove that this system has a periodic solution (again, quoting carefully any standard
results that you use).

Demonstrate that this periodic solution is unique.

Part II, Paper 1
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29D Integrable Systems

Let ut = K(x, u, ux, . . .) be an evolution equation for the function u = u(x, t).
Assume u and all its derivatives decay rapidly as |x| → ∞. What does it mean to say that
the evolution equation for u can be written in Hamiltonian form?

The modified KdV (mKdV) equation for u is

ut + uxxx − 6u2ux = 0 .

Show that small amplitude solutions to this equation are dispersive.

Demonstrate that the mKdV equation can be written in Hamiltonian form and
define the associated Poisson bracket { , } on the space of functionals of u. Verify that
the Poisson bracket is linear in each argument and anti-symmetric.

Show that a functional I = I[u] is a first integral of the mKdV equation if and only
if {I,H} = 0, where H = H[u] is the Hamiltonian.

Show that if u satisfies the mKdV equation then

∂

∂t

(
u2

)
+

∂

∂x

(
2uuxx − u2x − 3u4

)
= 0 .

Using this equation, show that the functional

I[u] =

∫
u2 dx

Poisson-commutes with the Hamiltonian.
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30E Partial Differential Equations

(a) State the Cauchy–Kovalevskaya theorem, and explain for which values of a ∈ R
it implies the existence of solutions to the Cauchy problem

xux + yuy + auz = u , u(x, y, 0) = f(x, y) ,

where f is real analytic. Using the method of characteristics, solve this problem for these
values of a, and comment on the behaviour of the characteristics as a approaches any
value where the non-characteristic condition fails.

(b) Consider the Cauchy problem

uy = vx , vy = −ux

with initial data u(x, 0) = f(x) and v(x, 0) = 0 which are 2π-periodic in x. Give
an example of a sequence of smooth solutions (un, vn) which are also 2π-periodic in
x whose corresponding initial data un(x, 0) = fn(x) and vn(x, 0) = 0 are such that∫ 2π

0
|fn(x)|2dx → 0 while

∫ 2π

0
|un(x, y)|2dx → ∞ for non-zero y as n → ∞.

Comment on the significance of this in relation to the concept of well-posedness.
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31A Principles of Quantum Mechanics

If A and B are operators which each commute with their commutator [A,B], show
that

F (λ) = eλA eλB e−λ(A+B) satisfies F ′(λ) = λ [A,B]F (λ) .

By solving this differential equation for F (λ), deduce that

eA eB = e
1
2 [A,B] eA+B .

The annihilation and creation operators for a harmonic oscillator of mass m and
frequency ω are defined by

a =

√
mω

2~

(
x̂+

i

mω
p̂
)
, a† =

√
mω

2~

(
x̂− i

mω
p̂
)
.

Write down an expression for the general normalised eigenstate |n〉 (n = 0, 1, 2, . . .) of the
oscillator Hamiltonian H in terms of the ground state |0〉. What is the energy eigenvalue
En of the state |n〉 ?

Suppose the oscillator is now subject to a small perturbation so that it is described
by the modified Hamiltonian H + εV (x̂) with V (x̂) = cos(µx̂). Show that

V (x̂) = 1
2 e

−γ2/2
(
eiγ a†eiγ a + e−iγ a†e−iγ a

)
,

where γ is a constant, to be determined. Hence show that to O(ε2) the shift in the ground
state energy as a result of the perturbation is

ε e−µ2~/4mω − ε2 e−µ2~/2mω 1

~ω

∞∑

p=1

1

(2p)! 2p

( µ2~
2mω

)2p
.

[Standard results of perturbation theory may be quoted without proof.]
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32A Applications of Quantum Mechanics

Define the Rayleigh–Ritz quotient R[ψ] for a normalisable state |ψ〉 of a quantum
system with Hamiltonian H. Given that the spectrum of H is discrete and that there is
a unique ground state of energy E0, show that R[ψ] > E0 and that equality holds if and
only if |ψ〉 is the ground state.

A simple harmonic oscillator (SHO) is a particle of massm moving in one dimension
subject to the potential

V (x) =
1

2
mω2x2 .

Estimate the ground state energy E0 of the SHO by using the ground state wavefunction
for a particle in an infinite potential well of width a, centred on the origin (the potential is
U(x) = 0 for |x| < a/2 and U(x) = ∞ for |x| > a/2). Take a as the variational parameter.

Perform a similar estimate for the energy E1 of the first excited state of the SHO
by using the first excited state of the infinite potential well as a trial wavefunction.

Is the estimate for E1 necessarily an upper bound? Justify your answer.

[
You may use :

∫ π/2

−π/2
y2 cos2 y dy =

π

4

(π2
6
−1

)
and

∫ π

−π
y2 sin2 y dy = π

(π2
3
−1

2

)
.
]
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33C Statistical Physics

(a) Define the canonical partition function Z for a system with energy levels En, where n
labels states, given that the system is in contact with a heat reservoir at temperature
T . What is the probability p(n) that the system occupies state n ? Starting from an
expression for the entropy S = kB ∂ (T lnZ) / ∂T , deduce that

S = −kB
∑

n

p(n) ln p(n) . (∗)

(b) Consider an ensemble consisting of W copies of the system in part (a) with W very
large, so that there are Wp(n) members of the ensemble in state n. Starting from an
expression for the number of ways in which this can occur, find the entropy SW of the
ensemble and hence re-derive the expression (∗). [You may assume Stirling’s formula
lnX! ≈ X lnX −X for X large.]

(c) Consider a system of N non-interacting particles at temperature T . Each particle has
q internal states with energies

0 , E , 2E , . . . , (q−1)E .

Assuming that the internal states are the only relevant degrees of freedom, calculate
the total entropy of the system. Find the limiting values of the entropy as T → 0 and
T → ∞ and comment briefly on your answers.
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34A Electrodynamics

Briefly explain how to interpret the components of the relativistic stress–energy
tensor in terms of the density and flux of energy and momentum in some inertial frame.

(i) The stress–energy tensor of the electromagnetic field is

T µν
em =

1

µ0

(
FµαF ν

α − 1

4
ηµνFαβFαβ

)
,

where Fµν is the field strength, ηµν is the Minkowski metric, and µ0 is the permeability of
free space. Show that ∂µT

µν
em = −F ν

µJ
µ , where Jµ is the current 4-vector.

[ Maxwell’s equations are ∂µF
µν = −µ0J

ν and ∂ρFµν + ∂νFρµ + ∂µFνρ = 0 . ]

(ii) A fluid consists of point particles of rest mass m and charge q. The fluid can be
regarded as a continuum, with 4-velocity uµ(x) depending on the position x in spacetime.
For each x there is an inertial frame Sx in which the fluid particles at x are at rest. By
considering components in Sx, show that the fluid has a current 4-vector field

Jµ = q n0u
µ ,

and a stress–energy tensor
T µν
fluid = mn0u

µuν ,

where n0(x) is the proper number density of particles (the number of particles per unit
spatial volume in Sx in a small region around x). Write down the Lorentz 4-force on a
fluid particle at x. By considering the resulting 4-acceleration of the fluid, show that the
total stress–energy tensor is conserved, i.e.

∂µ
(
T µν
em + T µν

fluid

)
= 0 .
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35D General Relativity

A vector field ξa is said to be a conformal Killing vector field of the metric gab if

ξ(a;b) =
1
2ψgab (∗)

for some scalar field ψ. It is a Killing vector field if ψ = 0.

(a) Show that (∗) is equivalent to

ξcgab,c + ξc,a gbc + ξc,b gac = ψ gab .

(b) Show that if ξa is a conformal Killing vector field of the metric gab, then ξ
a is a Killing

vector field of the metric e2φgab, where φ is any function that obeys

2ξcφ,c + ψ = 0 .

(c) Use part (b) to find an example of a metric with coordinates t, x, y and z (where
t > 0) for which (t, x, y, z) are the contravariant components of a Killing vector field.
[Hint: You may wish to start by considering what happens in Minkowski space.]
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36E Fluid Dynamics II

(i) In a Newtonian fluid, the deviatoric stress tensor is linearly related to the velocity
gradient so that the total stress tensor is

σij = −pδij +Aijkl
∂uk
∂xl

·

Show that for an incompressible isotropic fluid with a symmetric stress tensor we
necessarily have

Aijkl
∂uk
∂xl

= 2µeij ,

where µ is a constant which we call the dynamic viscosity and eij is the symmetric part
of ∂ui/∂xj .

(ii) Consider Stokes flow due to the translation of a rigid sphere Sa of radius a so
that the sphere exerts a force F on the fluid. At distances much larger than the radius of
the sphere, the instantaneous velocity and pressure fields are

ui(x) =
1

8µπ

(
Fi

r
+

Fmxmxi
r3

)
, p(x) =

1

4π

Fmxm
r3

,

where x is measured with respect to an origin located at the centre of the sphere, and
r = |x|.

Consider a sphere SR of radius R ≫ a instantaneously concentric with Sa. By
explicitly computing the tractions and integrating them, show that the force G exerted
by the fluid located in r > R on SR is constant and independent of R, and evaluate it.

(iii) Explain why the Stokes equations in the absence of body forces can be written
as

∂σij
∂xj

= 0.

Show that by integrating this equation in the fluid volume located instantaneously between
Sa and SR, you can recover the result in (ii) directly.
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37B Waves

An acoustic plane wave (not necessarily harmonic) travels at speed c0 in the direction
k̂, where |k̂| = 1, through an inviscid, compressible fluid of unperturbed density ρ0. Show
that the velocity ũ is proportional to the perturbation pressure p̃, and find ũ/p̃. Define
the acoustic intensity I.

A harmonic acoustic plane wave with wavevector k = k(cos θ, sin θ, 0) and unit-
amplitude perturbation pressure is incident from x < 0 on a thin elastic membrane at
unperturbed position x = 0. The regions x < 0 and x > 0 are both occupied by gas with
density ρ0 and sound speed c0. The kinematic boundary conditions at the membrane are
those appropriate for an inviscid fluid, and the (linearized) dynamic boundary condition
is

m
∂2X

∂t2
− T

∂2X

∂y2
+

[
p̃(0, y, t)

]+
− = 0

where T and m are the tension and mass per unit area of the membrane, and x = X(y, t)
(with |kX| ≪ 1) is its perturbed position. Find the amplitudes of the reflected and
transmitted pressure perturbations, expressing your answers in terms of the dimensionless
parameter

α =
ρ0c

2
0

k cos θ(mc20 − T sin2 θ)
.

Hence show that the time-averaged energy flux in the x-direction is conserved across the
membrane.

38E Numerical Analysis

(a) The diffusion equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
in 0 6 x 6 1, t > 0,

with the initial condition u(x, 0) = φ(x) in 0 6 x 6 1 and zero boundary conditions
at x = 0 and x = 1, is solved by the finite-difference method

un+1
m = unm + µ

[
am− 1

2
unm−1 − ( am− 1

2
+ am+ 1

2
)unm + am+ 1

2
unm+1

]
,

m = 1, 2, . . . ,M,

where µ = k/h2, k = ∆t, h = 1/(M + 1), unm ≈ u(mh,nk), and aα = a(αh).

Assuming that the function a and the exact solution are sufficiently smooth, prove
that the exact solution satisfies the numerical scheme with error O(h3) for constant µ.

(b) For the problem in part (a), assume that there exist 0 < a− < a+ < ∞ such that
a− 6 a(x) 6 a+ for all 0 6 x 6 1. State (without proof) the Gershgorin theorem and
prove that the method is stable for 0 < µ 6 1/(2a+).
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END OF PAPER

Part II, Paper 1


	Rubric
	1H Number Theory
	2I Topics in Analysis
	3G Coding and Cryptography
	4J Statistical Modelling
	5E Mathematical Biology
	6B Further Complex Methods
	7D Classical Dynamics
	8C Cosmology
	9G Coding and Cryptography
	10J Statistical Modelling
	11B Further Complex Methods
	12C Cosmology
	13I Logic and Set Theory
	14I Graph Theory
	15F Representation Theory
	16H Number Fields
	17F Galois Theory
	18H Algebraic Topology
	19G Linear Analysis
	20F Riemann Surfaces
	21F Algebraic Geometry
	22G Differential Geometry
	23J Probability and Measure
	24K Applied Probability
	25J Principles of Statistics
	26K Stochastic Financial Models
	27C Asymptotic Methods
	28B Dynamical Systems
	29D Integrable Systems
	30E Partial Differential Equations
	31A Principles of Quantum Mechanics
	32A Applications of Quantum Mechanics
	33C Statistical Physics
	34A Electrodynamics
	35D General Relativity
	36E Fluid Dynamics II
	37B Waves
	38E Numerical Analysis

