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SECTION I

1E Linear Algebra
Define the dual space V ∗ of a vector space V . Given a basis {x1, . . . , xn} of V define

its dual and show it is a basis of V ∗.

Let V be a 3-dimensional vector space over R and let {ζ1, ζ2, ζ3} be the basis of V ∗

dual to the basis {x1, x2, x3} for V . Determine, in terms of the ζi, the bases dual to each
of the following:

(a) {x1 + x2, x2 + x3, x3},
(b) {x1 + x2, x2 + x3, x3 + x1}.

2F Groups, Rings and Modules
Let R be a commutative ring. Define what it means for an ideal I ⊆ R to be prime.

Show that I ⊆ R is prime if and only if R/I is an integral domain.

Give an example of an integral domain R and an ideal I ⊂ R, I 6= R, such that R/I
is not an integral domain.

3G Analysis II
Define what is meant for two norms on a vector space to be Lipschitz equivalent.

Let C1
c ([−1, 1]) denote the vector space of continuous functions f : [−1, 1] → R with

continuous first derivatives and such that f(x) = 0 for x in some neighbourhood of the
end-points −1 and 1. Which of the following four functions C1

c ([−1, 1]) → R define norms
on C1

c ([−1, 1]) (give a brief explanation)?

p(f) = sup |f |, q(f) = sup(|f |+ |f ′|),

r(f) = sup |f ′|, s(f) =

∣∣∣∣
∫ 1

−1
f(x)dx

∣∣∣∣.

Among those that define norms, which pairs are Lipschitz equivalent? Justify your answer.

4G Complex Analysis
Let f be a continuous function defined on a connected open set D ⊂ C. Prove

carefully that the following statements are equivalent.

(i) There exists a holomorphic function F on D such that F ′(z) = f(z).

(ii)
∫
γ f(z)dz = 0 holds for every closed curve γ in D.
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5C Methods
(a) The convolution f∗g of two functions f, g : R → C is related to their Fourier transforms
f̃ , g̃ by

1

2π

∫ ∞

−∞
f̃(k)g̃(k)eikx dk =

∫ ∞

−∞
f(u)g(x− u) du .

Derive Parseval’s theorem for Fourier transforms from this relation.

(b) Let a > 0 and

f(x) =

{
cos x for x ∈ [−a, a]

0 elsewhere.

(i) Calculate the Fourier transform f̃(k) of f(x).

(ii) Determine how the behaviour of f̃(k) in the limit |k| → ∞ depends on the value of a.
Briefly interpret the result.

6D Quantum Mechanics
The radial wavefunction R(r) for an electron in a hydrogen atom satisfies the

equation

− ~2

2mr2
d

dr

(
r2

d

dr
R(r)

)
+

~2

2mr2
ℓ(ℓ+ 1)R(r)− e2

4πǫ0r
R(r) = ER(r) (∗)

Briefly explain the origin of each term in this equation.

The wavefunctions for the ground state and the first radially excited state, both
with ℓ = 0, can be written as

R1(r) = N1e
−αr

R2(r) = N2

(
1− 1

2rα
)
e−

1
2αr

where N1 and N2 are normalisation constants. Verify that R1(r) is a solution of (∗),
determining α and finding the corresponding energy eigenvalue E1. Assuming that R2(r)
is a solution of (∗), compare coefficients of the dominant terms when r is large to determine
the corresponding energy eigenvalue E2. [You do not need to find N1 or N2, nor show
that R2 is a solution of (∗).]

A hydrogen atom makes a transition from the first radially excited state to the
ground state, emitting a photon. What is the angular frequency of the emitted photon?
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7A Electromagnetism
From Maxwell’s equations, derive the Biot–Savart law

B(r) =
µ0

4π

∫

V

J(r′)× (r− r′)
|r− r′|3 d3r′,

giving the magnetic field B(r) produced by a steady current density J(r) that vanishes
outside a bounded region V .

[You may assume that you can choose a gauge such that the divergence of the
magnetic vector potential is zero.]

8D Numerical Analysis
Given n + 1 distinct points {x0, x1, . . . , xn}, let pn ∈ Pn be the real polynomial of

degree n that interpolates a continuous function f at these points. State the Lagrange
interpolation formula.

Prove that pn can be written in the Newton form

pn(x) = f(x0) +
n∑

k=1

f [x0, . . . , xk]
k−1∏

i=0

(x− xi) ,

where f [x0, . . . , xk] is the divided difference, which you should define. [An explicit
expression for the divided difference is not required.]

Explain why it can be more efficient to use the Newton form rather than the
Lagrange formula.

9H Markov Chains
Let X0,X1,X2, . . . be independent identically distributed random variables with

P(Xi = 1) = 1 − P(Xi = 0) = p, 0 < p < 1. Let Zn = Xn−1 + cXn, n = 1, 2, . . ., where c
is a constant. For each of the following cases, determine whether or not (Zn : n > 1) is a
Markov chain:

(a) c = 0;

(b) c = 1;

(c) c = 2.

In each case, if (Zn : n > 1) is a Markov chain, explain why, and give its state space and
transition matrix; if it is not a Markov chain, give an example to demonstrate that it is
not.
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SECTION II

10E Linear Algebra
Suppose U and W are subspaces of a vector space V . Explain what is meant by

U ∩W and U +W and show that both of these are subspaces of V .

Show that if U and W are subspaces of a finite dimensional space V then

dimU + dimW = dim(U ∩W ) + dim(U +W ).

Determine the dimension of the subspace W of R5 spanned by the vectors




1
3
3
−1
1




,




4
1
3
2
1




,




3
2
1
2
3




,




2
2
5
−1
−1




.

Write down a 5× 5 matrix which defines a linear map R5 → R5 with (1, 1, 1, 1, 1)T

in the kernel and with image W .

What is the dimension of the space spanned by all linear maps R5 → R5

(i) with (1, 1, 1, 1, 1)T in the kernel and with image contained in W ,
(ii) with (1, 1, 1, 1, 1)T in the kernel or with image contained in W ?

11F Groups, Rings and Modules
Find a ∈ Z7 such that Z7[x]/(x

3 + a) is a field F . Show that for your choice of a,
every element of Z7 has a cube root in the field F .

Show that if F is a finite field, then the multiplicative group F× = F \{0} is cyclic.

Show that F = Z2[x]/(x
3+x+1) is a field. How many elements does F have? Find

a generator for F×.
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12G Analysis II
Consider the space ℓ∞ of bounded real sequences x = (xi)

∞
i=1 with the norm

‖x‖∞ = supi |xi|. Show that for every bounded sequence x(n) in ℓ∞ there is a subsequence

x(nj) which converges in every coordinate, i.e. the sequence (x
(nj)
i )∞j=1 of real numbers

converges for each i. Does every bounded sequence in ℓ∞ have a convergent subsequence?
Justify your answer.

Let ℓ1 ⊂ ℓ∞ be the subspace of real sequences x = (xi)
∞
i=1 such that

∑∞
i=1 |xi|

converges. Is ℓ1 complete in the norm ‖ · ‖∞ (restricted from ℓ∞ to ℓ1)? Justify your
answer.

Suppose that (xi) is a real sequence such that, for every (yi) ∈ ℓ∞, the series∑∞
i=1 xiyi converges. Show that (xi) ∈ ℓ1.

Suppose now that (xi) is a real sequence such that, for every (yi) ∈ ℓ1, the series∑∞
i=1 xiyi converges. Show that (xi) ∈ ℓ∞.

13E Metric and Topological Spaces
Explain what it means for a metric space (M,d) to be (i) compact, (ii) sequentially

compact. Prove that a compact metric space is sequentially compact, stating clearly any
results that you use.

Let (M,d) be a compact metric space and suppose f : M → M satisfies
d(f(x), f(y)) = d(x, y) for all x, y ∈ M . Prove that f is surjective, stating clearly any
results that you use. [Hint: Consider the sequence (fn(x)) for x ∈ M .]

Give an example to show that the result does not hold if M is not compact.

14B Complex Methods
(i) State and prove the convolution theorem for Laplace transforms of two real-

valued functions.

(ii) Let the function f(t), t > 0, be equal to 1 for 0 6 t 6 a and zero otherwise,
where a is a positive parameter. Calculate the Laplace transform of f . Hence deduce the
Laplace transform of the convolution g = f ∗ f . Invert this Laplace transform to obtain
an explicit expression for g(t).

[Hint: You may use the notation (t− a)+ = H(t− a) · (t− a).]
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15F Geometry
Let α(s) =

(
f(s), g(s)

)
be a curve in R2 parameterized by arc length, and consider

the surface of revolution S in R3 defined by the parameterization

σ(u, v) =
(
f(u) cos v, f(u) sin v, g(u)

)
.

In what follows, you may use that a curve σ ◦γ in S, with γ(t) =
(
u(t), v(t)

)
, is a geodesic

if and only if

ü = f(u)
df

du
v̇2,

d

dt

(
f(u)2v̇

)
= 0.

(i) Write down the first fundamental form for S, and use this to write down a
formula which is equivalent to σ ◦ γ being a unit speed curve.

(ii) Show that for a given u0, the circle on S determined by u = u0 is a geodesic if
and only if df

du(u0) = 0.

(iii) Let γ(t) =
(
u(t), v(t)

)
be a curve in R2 such that σ ◦ γ parameterizes a unit

speed curve that is a geodesic in S. For a given time t0, let θ(t0) denote the angle between
the curve σ ◦ γ and the circle on S determined by u = u(t0). Derive Clairault’s relation
that

f
(
u(t)

)
cos

(
θ(t)

)

is independent of t.

16A Variational Principles
Derive the Euler–Lagrange equation for the integral

∫ x1

x0

f(x, u, u′) dx

where u(x0) is allowed to float, ∂f/∂u′|x0 = 0 and u(x1) takes a given value.

Given that y(0) is finite, y(1) = 1 and y′(1) = 1, find the stationary value of

J =

∫ 1

0

(
x4(y′′)2 + 4x2(y′)2

)
dx.
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17C Methods
Describe the method of characteristics to construct solutions for 1st-order, homogeneous,
linear partial differential equations

α(x, y)
∂u

∂x
+ β(x, y)

∂u

∂y
= 0 ,

with initial data prescribed on a curve x0(σ), y0(σ): u(x0(σ), y0(σ)) = h(σ).

Consider the partial differential equation (here the two independent variables are time t
and spatial direction x)

∂u

∂t
+ u

∂u

∂x
= 0 ,

with initial data u(t = 0, x) = e−x2
.

(i) Calculate the characteristic curves of this equation and show that u remains constant
along these curves. Qualitatively sketch the characteristics in the (x, t) diagram, i.e. the
x axis is the horizontal and the t axis is the vertical axis.

(ii) Let x̃0 denote the x value of a characteristic at time t = 0 and thus label the
characteristic curves. Let x̃ denote the x value at time t of a characteristic with given
x̃0. Show that ∂x̃/∂x̃0 becomes a non-monotonic function of x̃0 (at fixed t) at times
t >

√
e/2, i.e. x̃(x̃0) has a local minimum or maximum. Qualitatively sketch snapshots of

the solution u(t, x) for a few fixed values of t ∈ [0,
√

e/2] and briefly interpret the onset
of the non-monotonic behaviour of x̃(x̃0) at t =

√
e/2.
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18B Fluid Dynamics
Consider a steady inviscid, incompressible fluid of constant density ρ in the absence

of external body forces. A cylindrical jet of area A and speed U impinges fully on a
stationary sphere of radius R with A < πR2. The flow is assumed to remain axisymmetric
and be deflected into a conical sheet of vertex angle α > 0.

(i) Show that the speed of the fluid in the conical sheet is constant.

(ii) Use conservation of mass to show that the width d(r) of the fluid sheet at a
distance r ≫ R from point of impact is given by

d(r) =
A

2πr sinα
·

(iii) Use Euler’s equation to derive the momentum integral equation

∫∫

S
(pni + ρnjujui) dS = 0,

for a closed surface S with normal n where um is the mth component of the velocity field
in cartesian coordinates and p is the pressure.

(iv) Use the result from (iii) to calculate the net force on the sphere.

19H Statistics
Consider a linear model Y = Xβ+ ε where Y is an n× 1 vector of observations, X

is a known n × p matrix, β is a p × 1 (p < n) vector of unknown parameters and ε is an
n × 1 vector of independent normally distributed random variables each with mean zero
and unknown variance σ2. Write down the log-likelihood and show that the maximum
likelihood estimators β̂ and σ̂2 of β and σ2 respectively satisfy

XTXβ̂ = XTY,
1

σ̂4
(Y −Xβ̂)T (Y −Xβ̂) =

n

σ̂2

(T denotes the transpose). Assuming that XTX is invertible, find the solutions β̂ and σ̂2

of these equations and write down their distributions.

Prove that β̂ and σ̂2 are independent.

Consider the model Yij = µi+γxij+εij , i = 1, 2, 3 and j = 1, 2, 3. Suppose that, for
all i, xi1 = −1, xi2 = 0 and xi3 = 1, and that εij , i, j = 1, 2, 3, are independent N(0, σ2)
random variables where σ2 is unknown. Show how this model may be written as a linear
model and write down Y, X, β and ε. Find the maximum likelihood estimators of µi

(i = 1, 2, 3), γ and σ2 in terms of the Yij. Derive a 100(1−α)% confidence interval for σ2

and for µ2 − µ1.

[You may assume that, if W = (W1
T ,W2

T )T is multivariate normal with
cov(W1,W2) = 0, then W1 and W2 are independent.]
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20H Optimization
Suppose the recycling manager in a particular region is responsible for allocating all

the recyclable waste that is collected in n towns in the region to the m recycling centres
in the region. Town i produces si lorry loads of recyclable waste each day, and recycling
centre j needs to handle dj lorry loads of waste a day in order to be viable. Suppose
that

∑
i si =

∑
j dj . Suppose further that cij is the cost of transporting a lorry load

of waste from town i to recycling centre j. The manager wishes to decide the number
xij of lorry loads of recyclable waste that should go from town i to recycling centre j,
i = 1, . . . , n, j = 1, . . . ,m, in such a way that all the recyclable waste produced by each
town is transported to recycling centres each day, and each recycling centre works exactly
at the viable level each day. Use the Lagrangian sufficiency theorem, which you should
quote carefully, to derive necessary and sufficient conditions for (xij) to minimise the total
cost under the above constraints.

Suppose that there are three recycling centres A, B and C, needing 5, 20 and
20 lorry loads of waste each day, respectively, and suppose there are three towns a, b
and c producing 20, 15 and 10 lorry loads of waste each day, respectively. The costs
of transporting a lorry load of waste from town a to recycling centres A, B and C are
£90, £100 and £100, respectively. The corresponding costs for town b are £130, £140 and
£100, while for town c they are £110, £80 and £80. Recycling centre A has reported that
it currently receives 5 lorry loads of waste per day from town a, and recycling centre C has
reported that it currently receives 10 lorry loads of waste per day from each of towns b and
c. Recycling centre B has failed to report. What is the cost of the current arrangement
for transporting waste from the towns to the recycling centres? Starting with the current
arrangement as an initial solution, use the transportation algorithm (explaining each step
carefully) in order to advise the recycling manager how many lorry loads of waste should
go from each town to each of the recycling centres in order to minimise the cost. What is
the minimum cost?

END OF PAPER
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