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SECTION I

1E Numbers and Sets
(a) Find all integers x and y such that

6x+ 2y ≡ 3 (mod 53) and 17x+ 4y ≡ 7 (mod 53).

(b) Show that if an integer n > 4 is composite then (n− 1)! ≡ 0 (mod n).

2E Numbers and Sets
State the Chinese remainder theorem and Fermat’s theorem. Prove that

p4 ≡ 1 (mod 240)

for any prime p > 5.

3C Dynamics and Relativity
Find the moment of inertia of a uniform sphere of mass M and radius a about an

axis through its centre.

The kinetic energy T of any rigid body with total massM, centre of massR, moment
of inertia I about an axis of rotation through R, and angular velocity ω about that same
axis, is given by T = 1

2MṘ2 + 1
2Iω

2. What physical interpretation can be given to the
two parts of this expression?

A spherical marble of uniform density and mass M rolls without slipping at speed V
along a flat surface. Explaining any relationship that you use between its speed and angular
velocity, show that the kinetic energy of the marble is 7

10MV 2.

4C Dynamics and Relativity
Write down the 4-momentum of a particle with energy E and 3-momentum p. State

the relationship between the energy E and wavelength λ of a photon.

An electron of mass m is at rest at the origin of the laboratory frame: write down
its 4-momentum. The electron is scattered by a photon of wavelength λ1 travelling along
the x-axis: write down the initial 4-momentum of the photon. Afterwards, the photon has
wavelength λ2 and has been deflected through an angle θ. Show that

λ2 − λ1 =
2h

mc
sin2(12θ)

where c is the speed of light and h is Planck’s constant.
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SECTION II

5E Numbers and Sets
(i) Let ∼ be an equivalence relation on a set X. What is an equivalence class of ∼?

What is a partition of X? Prove that the equivalence classes of ∼ form a partition
of X.

(ii) Let ∼ be the relation on the natural numbers N = {1, 2, 3, . . .} defined by

m ∼ n ⇐⇒ ∃ a, b ∈ N such that m divides na and n divides mb.

Show that ∼ is an equivalence relation, and show that it has infinitely many
equivalence classes, all but one of which are infinite.

6E Numbers and Sets
Let p be a prime. A base p expansion of an integer k is an expression

k = k0 + p · k1 + p2 · k2 + · · · + pℓ · kℓ

for some natural number ℓ, with 0 6 ki < p for i = 0, 1, . . . , ℓ.

(i) Show that the sequence of coefficients k0, k1, k2, . . . , kℓ appearing in a base p
expansion of k is unique, up to extending the sequence by zeroes.

(ii) Show that (
p

j

)
≡ 0 (mod p), 0 < j < p,

and hence, by considering the polynomial (1 + x)p or otherwise, deduce that

(
pi

j

)
≡ 0 (mod p), 0 < j < pi.

(iii) If n0 + p · n1 + p2 · n2 + · · ·+ pℓ · nℓ is a base p expansion of n, then, by considering
the polynomial (1 + x)n or otherwise, show that

(
n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nℓ

kℓ

)
(mod p).
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7E Numbers and Sets
State the inclusion–exclusion principle.

Let n ∈ N. A permutation σ of the set {1, 2, 3, . . . , n} is said to contain a
transposition if there exist i, j with 1 6 i < j 6 n such that σ(i) = j and σ(j) = i. Derive
a formula for the number, f(n), of permutations which do not contain a transposition,
and show that

lim
n→∞

f(n)

n!
= e−

1
2 .

8E Numbers and Sets
What does it mean for a set to be countable? Prove that

(a) if B is countable and f : A → B is injective, then A is countable;

(b) if A is countable and f : A → B is surjective, then B is countable.

Prove that N× N is countable, and deduce that

(i) if X and Y are countable, then so is X × Y ;

(ii) Q is countable.

Let C be a collection of circles in the plane such that for each point a on the x-axis,
there is a circle in C passing through the point a which has the x-axis tangent to the circle
at a. Show that C contains a pair of circles that intersect.
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9C Dynamics and Relativity
A particle is projected vertically upwards at speed V from the surface of the Earth,

which may be treated as a perfect sphere. The variation of gravity with height should
not be ignored, but the rotation of the Earth should be. Show that the height z(t) of the
particle obeys

z̈ = − gR2

(R+ z)2
,

where R is the radius of the Earth and g is the acceleration due to gravity measured at
the Earth’s surface.

Using dimensional analysis, show that the maximum height H of the particle and
the time T taken to reach that height are given by

H = RF (λ) and T =
V

g
G(λ),

where F and G are functions of λ = V 2/gR.

Write down the equation of conservation of energy and deduce that

T =

∫ H

0

√
R+ z

V 2R− (2gR − V 2)z
dz.

Hence or otherwise show that

F (λ) =
λ

2− λ
and G(λ) =

∫ 1

0

√
2− λ+ λx

(2− λ)3(1− x)
dx.

10C Dynamics and Relativity
A particle of mass m and charge q has position vector r(t) and moves in a constant,

uniform magnetic field B so that its equation of motion is

mr̈ = qṙ×B.

Let L = mr× ṙ be the particle’s angular momentum. Show that

L ·B+ 1
2q|r×B|2

is a constant of the motion. Explain why the kinetic energy T is also constant, and show
that it may be written in the form

T = 1
2mu ·

(
(u · v)v − r2ü

)
,

where v = ṙ, r = |r| and u = r/r.

[Hint: Consider u · u̇.]
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11C Dynamics and Relativity
Consider a particle with position vector r(t) moving in a plane described by polar

coordinates (r, θ). Obtain expressions for the radial (r) and transverse (θ) components of
the velocity ṙ and acceleration r̈.

A charged particle of unit mass moves in the electric field of another charge that is
fixed at the origin. The electrostatic force on the particle is −p/r2 in the radial direction,
where p is a positive constant. The motion takes place in an unusual medium that resists
radial motion but not tangential motion, so there is an additional radial force −kṙ/r2

where k is a positive constant. Show that the particle’s motion lies in a plane. Using polar
coordinates in that plane, show also that its angular momentum h = r2θ̇ is constant.

Obtain the equation of motion

d2u

dθ2
+

k

h

du

dθ
+ u =

p

h2
,

where u = r−1, and find its general solution assuming that k/|h| < 2. Show that so long
as the motion remains bounded it eventually becomes circular with radius h2/p.

Obtain the expression

E = 1
2h

2

(
u2 +

(du
dθ

)2
)
− pu

for the particle’s total energy, that is, its kinetic energy plus its electrostatic potential
energy. Hence, or otherwise, show that the energy is a decreasing function of time.
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12C Dynamics and Relativity
Write down the Lorentz transform relating the components of a 4-vector between

two inertial frames.

A particle moves along the x-axis of an inertial frame. Its position at time t is x(t),
its velocity is u = dx/dt, and its 4-position is X = (ct, x), where c is the speed of light.
The particle’s 4-velocity is given by U = dX/dτ and its 4-acceleration is A = dU/dτ ,
where proper time τ is defined by c2dτ2 = c2dt2 − dx2. Show that

U = γ (c, u) and A = γ4u̇ (u/c, 1)

where γ = (1− u2/c2)−
1
2 and u̇ = du/dt.

The proper 3-acceleration a of the particle is defined to be the spatial component
of its 4-acceleration measured in the particle’s instantaneous rest frame. By transforming
A to the rest frame, or otherwise, show that

a = γ3u̇ =
d

dt
(γu).

Given that the particle moves with constant proper 3-acceleration starting from rest
at the origin, show that

x(t) =
c2

a

(√
1 +

a2t2

c2
− 1

)
,

and that, if at ≪ c, then x ≈ 1
2at

2.

END OF PAPER
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