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SECTION I

1F Number Theory
Show that ∑

p6x

1

p
> log log x− 1

2
.

Deduce that there are infinitely many primes.

2G Topics in Analysis
State Chebyshev’s equal ripple criterion.

Let

h(t) =

n∏

ℓ=1

(
t− cos

(2ℓ− 1)π

2n

)
.

Show that if q(t) =
∑n

j=0 ajt
j where a0, . . . , an are real constants with |an| > 1, then

sup
t∈[−1,1]

|h(t)| 6 sup
t∈[−1,1]

|q(t)|.

3F Geometry and Groups
Let g, h be non-identity Möbius transformations. Prove that g and h commute if

and only if one of the following holds:

1. Fix(g) = Fix(h);

2. g, h are involutions each of which exchanges the other’s fixed points.

Give an example to show that the second case can occur.

4I Coding and Cryptography

Let c : A → {0, 1}∗ be a decodable binary code defined on a finite alphabet A. Let

l(a) be the length of the code word c(a). Prove that

∑

a∈A
2−l(a) 6 1 .

Show that, for the decodable code c : A → {0, 1}∗ described above, there is a prefix-

free code p : A → {0, 1}∗ with each code word p(a) having length l(a). [You may use,

without proof, any standard results from the course.]

Part II, Paper 2
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5K Statistical Modelling
Define the concept of an exponential dispersion family. Show that the family of

scaled binomial distributions 1
nBin(n, p), with p ∈ (0, 1) and n ∈ N, is of exponential

dispersion family form.

Deduce the mean of the scaled binomial distribution from the exponential dispersion
family form.

What is the canonical link function in this case?

6B Mathematical Biology
Consider an experiment where two or three individuals are added to a population

with probability λ2 and λ3 respectively per unit time. The death rate in the population
is a constant β per individual per unit time.

Write down the master equation for the probability pn(t) that there are n individuals
in the population at time t. From this, derive an equation for ∂φ

∂t , where φ is the generating
function

φ(s, t) =

∞∑

n=0

snpn(t).

Find the solution for φ in steady state, and show that the mean and variance of the
population size are given by

〈n〉 = 3
λ3

β
+ 2

λ2

β
, var(n) = 6

λ3

β
+ 3

λ2

β
.

Hence show that, for a free choice of λ2 and λ3 subject to a given target mean, the
experimenter can minimise the variance by only adding two individuals at a time.

7D Dynamical Systems
Consider the system

ẋ = −x+ y + y2,

ẏ = µ− xy .

Show that when µ = 0 the fixed point at the origin has a stationary bifurcation.

Find the centre subspace of the extended system linearised about (x, y, µ) = (0, 0, 0).

Find an approximation to the centre manifold giving y as a function of x and µ,
including terms up to quadratic order.

Hence deduce an expression for ẋ on the centre manifold, and identify the type of
bifurcation at µ = 0.

Part II, Paper 2 [TURN OVER
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8B Further Complex Methods
Suppose z = 0 is a regular singular point of a linear second-order homogeneous

ordinary differential equation in the complex plane. Define the monodromy matrix M
around z = 0.

Demonstrate that if

M =

(
1 1
0 1

)

then the differential equation admits a solution of the form a(z) + b(z) log z, where a(z)
and b(z) are single-valued functions.

9A Classical Dynamics

The components of the angular velocity ω of a rigid body and of the position vector
r are given in a body frame.

(a) The kinetic energy of the rigid body is defined as

T =
1

2

∫
d3r ρ(r)ṙ · ṙ ,

Given that the centre of mass is at rest, show that T can be written in the form

T =
1

2
Iabωaωb ,

where the explicit form of the tensor Iab should be determined.

(b) Explain what is meant by the principal moments of inertia.

(c) Consider a rigid body with principal moments of inertia I1 , I2 and I3, which are all
unequal. Derive Euler’s equations of torque-free motion

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 .

(d) The body rotates about the principal axis with moment of inertia I1. Derive the
condition for stable rotation.

Part II, Paper 2
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10E Cosmology
A self-gravitating fluid with density ρ, pressure P (ρ) and velocity v in a gravitational

potential Φ obeys the equations

∂ρ

∂t
+∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v +

∇P

ρ
+∇Φ = 0 ,

∇2Φ = 4πGρ .

Assume that there exists a static constant solution of these equations with v = 0, ρ = ρ0
and Φ = Φ0, for which ∇Φ0 can be neglected. This solution is perturbed. Show that, to
first order in the perturbed quantities, the density perturbations satisfy

∂2ρ1
∂t2

= c2s∇2ρ1 + 4πGρ0ρ1 ,

where ρ = ρ0 + ρ1(x, t) and c2s = dP/dρ. Show that there are solutions to this equation of
the form

ρ1(x, t) = A exp[−ik · x+ iωt] ,

where A, ω and k are constants and

ω2 = c2s k · k− 4πGρ0 .

Interpret these solutions physically in the limits of small and large |k|, explaining what
happens to density perturbations on large and small scales, and determine the critical
wavenumber that divides the two distinct behaviours of the perturbation.
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SECTION II

11G Topics in Analysis
Let γ : [0, 1] → C be a continuous map never taking the value 0 and satisfying

γ(0) = γ(1). Define the degree (or winding number) w(γ; 0) of γ about 0. Prove the
following:

(i) w(1/γ; 0) = w(γ−; 0), where γ−(t) = γ(1− t).

(ii) If σ : [0, 1] → C is continuous, σ(0) = σ(1) and |σ(t)| < |γ(t)| for each 0 6 t 6 1,
then w(γ + σ; 0) = w(γ; 0).

(iii) If γm : [0, 1] → C, m = 1, 2, . . ., are continuous maps with γm(0) = γm(1), which
converge to γ uniformly on [0, 1] as m → ∞, then w(γm; 0) = w(γ; 0) for sufficiently
large m.

Let α : [0, 1] → C \ {0} be a continuous map such that α(0) = α(1) and |α(t) − e2πit| 6 1
for each t ∈ [0, 1]. Deduce from the results of (ii) and (iii) that w(α; 0) = 1.

[You may not use homotopy invariance of the winding number without proof.]

12I Coding and Cryptography

What is the information capacity of a memoryless, time-independent channel?

Compute the information capacity of a binary symmetric channel with probability p of

error. Show the steps in your computation.

Binary digits are transmitted through a noisy channel, which is memoryless and

time-independent. With probability α (0 < α < 1) the digit is corrupted and noise is

received, otherwise the digit is transmitted unchanged. So, if we denote the input by 0

and 1 and the output as 0, ∗ and 1 with ∗ denoting the noise, the transition matrix is




1− α 0

α α

0 1− α


 .

Compute the information capacity of this channel.

Explain how to code a message for transmission through the channel described

above, and how to decode it, so that the probability of error for each bit is arbitrarily

small.

Part II, Paper 2
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13B Mathematical Biology
An activator–inhibitor system is described by the equations

∂u

∂t
=

au

v
− u2 + d1

∂2u

∂x2
,

∂v

∂t
= v2 − v

u2
+ d2

∂2v

∂x2
,

where a, d1, d2 > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0. Determine when the equilibrium is a stable
focus, and sketch the phase diagram for this case (restricting attention to u > 0 and
v > 0).

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) of the solution found above. Briefly explain why the system will
be stable to spatial perturbations with very small or very large k. Find conditions for the
system to be unstable to a spatial perturbation (for some range of k which need not be
given). Sketch the region satisfying these conditions in the (a, d1/d2) plane.

Find kc, the critical wavenumber at the onset of instability, in terms of a and d1.

14B Further Complex Methods
Use the Euler product formula

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)

to show that:

(i) Γ(z + 1) = zΓ(z) ;

(ii)
1

Γ(z)
= zeγz

∞∏

k=1

(
1 +

z

k

)
e−z/k, where γ = lim

n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
.

Deduce that
d

dz
log (Γ(z)) = −γ − 1

z
+ z

∞∑

k=1

1

k(z + k)
.
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15A Classical Dynamics

A planar pendulum consists of a mass m at the end of a light rod of length l. The
pivot of the pendulum is attached to a bead of mass M , which slides along a horizontal
rod without friction. The bead is connected to the ends of the horizontal rod by two
identical springs of force constant k. The pivot constrains the pendulum to swing in the
vertical plane through the horizontal rod. The horizontal rod is mounted on a bracket, so
the system could rotate about the vertical axis which goes through its centre as shown in
the figure.

l

k k

m

M

(a) Initially, the system is not allowed to rotate about the vertical axis.

(i) Identify suitable generalized coordinates and write down the Lagrangian of the
system.

(ii) Write down expression(s) for any conserved quantities. Justify your answer.

(iii) Derive the equations of motion.

(iv) For M = m/2 and gm/kl = 3, find the frequencies of small oscillations around
the stable equilibrium and the corresponding normal modes. Describe the
respective motions of the system.

(b) Assume now that the system is free to rotate about the vertical axis without friction.
Write down the Lagrangian of the system. Identify and calculate the additional
conserved quantity.

Part II, Paper 2
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16I Logic and Set Theory
Write down the recursive definitions of ordinal addition, multiplication and expo-

nentiation. Show that, for any nonzero ordinal α, there exist unique ordinals β, γ and n
such that α = ωβ.n+ γ, γ < ωβ and 0 < n < ω.

Hence or otherwise show that α (that is, the set of ordinals less than α) is closed
under addition if and only if α = ωβ for some β. Show also that an infinite ordinal α is
closed under multiplication if and only if α = ω(ωγ) for some γ.

[You may assume the standard laws of ordinal arithmetic, and the fact that α 6 ωα

for all α.]

17I Graph Theory

Let k and n be integers with 1 6 k < n. Show that every connected graph of

order n, in which d(u) + d(v) > k for every pair u, v of non-adjacent vertices, contains a

path of length k.

Let k and n be integers with 1 6 k 6 n. Show that a graph of order n that contains

no path of length k has at most (k − 1)n/2 edges, and that this value is achieved only if

k divides n and G is the union of n/k disjoint copies of Kk. [Hint: Proceed by induction

on n and consider a vertex of minimum degree.]

18H Galois Theory
Describe the Galois correspondence for a finite Galois extension L/K.

Let L be the splitting field of X4 − 2 over Q. Compute the Galois group G of L/Q.
For each subgroup of G, determine the corresponding subfield of L.

Let L/K be a finite Galois extension whose Galois group is isomorphic to Sn. Show
that L is the splitting field of a separable polynomial of degree n.

19H Representation Theory
In this question work over C. Let H be a subgroup of G. State Mackey’s restriction

formula, defining all the terms you use. Deduce Mackey’s irreducibility criterion.

Let G = 〈g, r : gm = r2 = 1, rgr−1 = g−1〉 (the dihedral group of order 2m)
and let H = 〈g〉 (the cyclic subgroup of G of order m). Write down the m inequivalent
irreducible characters χk (1 6 k 6 m) of H. Determine the values of k for which the
induced character IndGHχk is irreducible.

Part II, Paper 2 [TURN OVER
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20F Number Fields
(i) Show that each prime ideal in a number fieldK divides a unique rational prime p.

Define the ramification index and residue class degree of such an ideal. State and prove a
formula relating these numbers, for all prime ideals dividing a given rational prime p, to
the degree of K over Q.

(ii) Show that if ζn is a primitive nth root of unity then
∏n−1

j=1 (1− ζjn) = n. Deduce
that if n = pq, where p and q are distinct primes, then 1− ζn is a unit in Z[ζn].

(iii) Show that if K = Q(ζp) where p is prime, then any prime ideal of K dividing
p has ramification index at least p− 1. Deduce that [K : Q] = p− 1.

21F Algebraic Topology

Let A =

(
a b
c d

)
be a matrix with integer entries. Considering S1 as the quotient

space R/Z, show that the function

ϕA : S1 × S1 −→ S1 × S1

([x], [y]) 7−→ ([ax+ by], [cx+ dy])

is well-defined and continuous. If in addition det(A) = ±1, show that ϕA is a homeomor-
phism.

State the Seifert–van Kampen theorem. Let XA be the space obtained by gluing
together two copies of S1×D2 along their boundaries using the homeomorphism ϕA. Show
that the fundamental group of XA is cyclic and determine its order.

Part II, Paper 2
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22G Linear Analysis
(a) Let X and Y be Banach spaces, and let T : X → Y be a surjective linear map.

Assume that there is a constant c > 0 such that ‖Tx‖ > c‖x‖ for all x ∈ X. Show that
T is continuous. [You may use any standard result from general Banach space theory
provided you clearly state it.] Give an example to show that the assumption that X and
Y are complete is necessary.

(b) Let C be a closed subset of a Banach space X such that

(i) x1 + x2 ∈ C for each x1, x2 ∈ C;

(ii) λx ∈ C for each x ∈ C and λ > 0;

(iii) for each x ∈ X, there exist x1, x2 ∈ C such that x = x1 − x2.

Prove that, for some M > 0, the unit ball of X is contained in the closure of the set

{x1 − x2 : xi ∈ C, ‖xi‖ 6 M (i = 1, 2)} .

[You may use without proof any version of the Baire Category Theorem.] Deduce that,
for some K > 0, every x ∈ X can be written as x = x1 − x2 with xi ∈ C and
‖xi‖ 6 K‖x‖ (i = 1, 2).

23H Riemann Surfaces
State and prove the Valency Theorem and define the degree of a non-constant

holomorphic map between compact Riemann surfaces.

Let X be a compact Riemann surface of genus g and π : X → C∞ a holomorphic
map of degree two. Find the cardinality of the set R of ramification points of π. Find
also the cardinality of the set of branch points of π. [You may use standard results from
lectures provided they are clearly stated.]

Define σ : X → X as follows: if p ∈ R, then σ(p) = p; otherwise, σ(p) = q where q is
the unique point such that π(q) = π(p) and p 6= q. Show that σ is a conformal equivalence
with πσ = π and σσ = id.

Part II, Paper 2 [TURN OVER
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24H Algebraic Geometry

(i) Let k be an algebraically closed field, n > 1, and S a subset of kn.

Let I(S) = {f ∈ k[x1, . . . , xn] | f(p) = 0 when p ∈ S}. Show that I(S) is an ideal,

and that k[x1, . . . , xn]/I(S) does not have any non-zero nilpotent elements.

Let X ⊆ An, Y ⊆ Am be affine varieties, and Φ : k[Y ] → k[X] be a k-algebra

homomorphism. Show that Φ determines a map of sets from X to Y .

(ii) Let X be an irreducible affine variety. Define the dimension of X, dimX (in

terms of the tangent spaces of X) and the transcendence dimension of X, tr.dimX.

State the Noether normalization theorem. Using this, or otherwise, prove that the

transcendence dimension of X equals the dimension of X.

25G Differential Geometry

Define the terms Gaussian curvature K and mean curvature H for a smooth

embedded oriented surface S ⊂ R3. [You may assume the fact that the derivative of

the Gauss map is self-adjoint.] If K = H2 at all points of S, show that both H and K are

locally constant. [Hint: Use the symmetry of second partial derivatives of the field of unit

normal vectors.]

If K = H2 = 0 at all points of S, show that the unit normal vector N to S is

locally constant and that S is locally contained in a plane. If K = H2 is a strictly positive

constant on S and φ : U → S is a local parametrization (where U is connected) on S with

unit normal vector N(u, v) for (u, v) ∈ U , show that φ(u, v) + N(u, v)/H is constant on

U . Deduce that S is locally contained in a sphere of radius 1/|H|.
If S is connected with K = H2 at all points of S, deduce that S is contained in

either a plane or a sphere.

26K Probability and Measure
State and prove the monotone convergence theorem.

Let (E1, E1, µ1) and (E2, E2, µ2) be finite measure spaces. Define the product
σ-algebra E = E1 ⊗ E2 on E1 × E2.

Define the product measure µ = µ1⊗µ2 on E , and show carefully that µ is countably
additive.

[You may use without proof any standard facts concerning measurability provided
these are clearly stated.]

Part II, Paper 2
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27J Applied Probability
(i) Explain what the Moran model and the infinite alleles model are. State Ewens’

sampling formula for the distribution of the allelic frequency spectrum (a1, . . . , an) in
terms of θ where θ = Nu with u denoting the mutation rate per individual and N the
population size.

Let Kn be the number of allelic types in a sample of size n. Give, without
justification, an expression for E(Kn) in terms of θ.

(ii) Let Kn and θ be as above. Show that for 1 6 k 6 n we have that

P (Kn = k) = C
θk

θ(θ + 1) · · · (θ + n− 1)

for some constant C that does not depend on θ.

Show that, given {Kn = k}, the distribution of the allelic frequency spectrum
(a1, . . . , an) does not depend on θ.

Show that the value of θ which maximises P(Kn = k) is the one for which k = E(Kn).

28J Principles of Statistics
In a general decision problem, define the concepts of a Bayes rule and of admissi-

bility. Show that a unique Bayes rule is admissible.

Consider i.i.d. observations X1, . . . ,Xn from a Poisson(θ), θ ∈ Θ = (0,∞), model.
Can the maximum likelihood estimator θ̂MLE of θ be a Bayes rule for estimating θ in
quadratic risk for any prior distribution on θ that has a continuous probability density on
(0,∞)? Justify your answer.

Now model the Xi as i.i.d. copies of X|θ ∼ Poisson(θ), where θ is drawn from a
prior that is a Gamma distribution with parameters α > 0 and λ > 0 (given below).
Show that the posterior distribution of θ|X1, . . . ,Xn is a Gamma distribution and find its
parameters. Find the Bayes rule θ̂BAYES for estimating θ in quadratic risk for this prior.
[The Gamma probability density function with parameters α > 0, λ > 0 is given by

f(θ) =
λαθα−1e−λθ

Γ(α)
, θ > 0,

where Γ(α) is the usual Gamma function.]

Finally assume that the Xi have actually been generated from a fixed Poisson(θ0)
distribution, where θ0 > 0. Show that

√
n(θ̂BAYES−θ̂MLE ) converges to zero in probability

and deduce the asymptotic distribution of
√
n(θ̂BAYES − θ0) under the joint law PN

θ0
of the

random variables X1,X2, . . . . [You may use standard results from lectures without proof
provided they are clearly stated.]
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29J Optimization and Control
Describe the elements of a discrete-time stochastic dynamic programming equation

for the problem of maximizing the expected sum of non-negative rewards over an infinite
horizon. Give an example to show that there may not exist an optimal policy. Prove that
if a policy has a value function that satisfies the dynamic programming equation then the
policy is optimal.

A squirrel collects nuts for the coming winter. There are plenty of nuts lying around,
but each time the squirrel leaves its lair it risks being caught by a predator. Assume that
the outcomes of the squirrel’s journeys are independent, that it is caught with probability
p, and that it returns safely with a random weight of nuts, exponentially distributed with
parameter λ. By solving the dynamic programming equation for the value function F (x),
find a policy maximizing the expected weight of nuts collected for the winter. Here the
state variable x takes values in R+ (the weight of nuts so far collected) or −1 (a no-return
state when the squirrel is caught).

30K Stochastic Financial Models
An agent has expected-utility preferences over his possible wealth at time 1; that

is, the wealth Z is preferred to wealth Z ′ if and only if E U(Z) > E U(Z ′), where the
function U : R → R is strictly concave and twice continuously differentiable. The agent
can trade in a market, with the time-1 value of his portfolio lying in an affine space A
of random variables. Assuming cash can be held between time 0 and time 1, define the
agent’s time-0 utility indifference price π(Y ) for a contingent claim with time-1 value Y .
Assuming any regularity conditions you may require, prove that the map Y 7→ π(Y ) is
concave.

Comment briefly on the limit limλ→0 π(λY )/λ.

Consider a market with two claims with time-1 values X and Y . Their joint
distribution is (

X
Y

)
∼ N

((
µX

µY

)
,

(
VXX VXY

VY X VY Y

))
.

At time 0, arbitrary quantities of the claim X can be bought at price p, but Y is not
marketed. Derive an explicit expression for π(Y ) in the case where

U(x) = − exp(−γx),

where γ > 0 is a given constant.

Part II, Paper 2
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31D Partial Differential Equations
In this question, functions are all real-valued, and

Hs
per = {u =

∑

m∈Z
û(m)eimx ∈ L2 : ‖u‖2Hs =

∑

m∈Z
(1 +m2)s|û(m)|2 < ∞}

are the Sobolev spaces of functions 2π-periodic in x, for s = 0, 1, 2, . . . .

State Parseval’s theorem. For s = 0, 1 prove that the norm ‖u‖Hs is equivalent to
the norm ‖ ‖s defined by

‖u‖2s =
s∑

r=0

∫ +π

−π
(∂r

xu)
2 dx .

Consider the Cauchy problem

ut − uxx = f , u(x, 0) = u0(x) , t > 0 , (1)

where f = f(x, t) is a smooth function which is 2π-periodic in x, and the initial value u0
is also smooth and 2π-periodic. Prove that if u is a smooth solution which is 2π-periodic
in x, then it satisfies

∫ T

0
(u2t + u2xx ) dt 6 C

(
‖u0‖2H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dx dt

)

for some number C > 0 which does not depend on u or f .

State the Lax–Milgram lemma. Prove, using the Lax–Milgram lemma, that if

f(x, t) = eλtg(x)

with g ∈ H0
per and λ > 0, then there exists a weak solution to (1) of the form

u(x, t) = eλtφ(x) with φ ∈ H1
per. Does the same hold for all λ ∈ R? Briefly explain

your answer.
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32D Integrable Systems
Let u = u(x) be a smooth function that decays rapidly as |x| → ∞ and let

L = −∂2
x + u(x) denote the associated Schrödinger operator. Explain very briefly each of

the terms appearing in the scattering data

S =
{
{χn, cn}Nn=1, R(k)

}
,

associated with the operator L. What does it mean to say u(x) is reflectionless?

Given S, define the function

F (x) =
N∑

n=1

c2ne
−χnx +

1

2π

∫ ∞

−∞
eikxR(k) dk .

If K = K(x, y) is the unique solution to the GLM equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y) dz = 0 ,

what is the relationship between u(x) and K(x, x)?

Now suppose that u = u(x, t) is time dependent and that it solves the KdV equation
ut + uxxx − 6uux = 0. Show that L = −∂2

x + u(x, t) obeys the Lax equation

Lt = [L,A], where A = 4∂3
x − 3(u∂x + ∂xu) .

Show that the discrete eigenvalues of L are time independent.

In what follows you may assume the time-dependent scattering data take the form

S(t) =

{{
χn, cne

4χ3
nt
}N

n=1
, R(k, 0)e8ik

3t

}
.

Show that if u(x, 0) is reflectionless, then the solution to the KdV equation takes the form

u(x, t) = −2
∂2

∂x2
log [detA(x, t)] ,

where A is an N ×N matrix which you should determine.

Assume further that R(k, 0) = k2f(k), where f is smooth and decays rapidly at
infinity. Show that, for any fixed x,

∫ ∞

−∞
eikxR(k, 0) e8ik

3t dk = O(t−1) as t → ∞ .

Comment briefly on the significance of this result.

[You may assume
1

detA

d

dx
(detA) = tr

(
A−1dA

dx

)
for a non-singular matrix A(x).]
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33A Principles of Quantum Mechanics

(i) Let a and a† be the annihilation and creation operators, respectively, for a simple
harmonic oscillator whose Hamiltonian is

H0 = ω
(
a†a+ 1

2

)
,

with [a, a†] = 1. Explain how the set of eigenstates { |n〉 : n = 0, 1, 2, . . .} of H0 is
obtained and deduce the corresponding eigenvalues. Show that

a|0〉 = 0 ,

a|n〉 = √
n|n− 1〉 , n > 1 ,

a†|n〉 =
√
n+ 1|n+ 1〉 , n > 0 .

(ii) Consider a system whose unperturbed Hamiltonian is

H0 =
(
a†a+ 1

2

)
+ 2

(
b†b+ 1

2

)
,

where [a, a†] = 1, [b, b†] = 1 and all other commutators are zero. Find the
degeneracies of the eigenvalues of H0 with energies E0 =

3
2 ,

5
2 ,

7
2 ,

9
2 and 11

2 .

The system is perturbed so that it is now described by the Hamiltonian

H = H0 + λH ′,

where H ′ = (a†)2b+ a2b†. Using degenerate perturbation theory, calculate to O(λ)
the energies of the eigenstates associated with the level E0 =

9
2 .

Write down the eigenstates, to O(λ), associated with these perturbed energies. By
explicit evaluation show that they are in fact exact eigenstates of H with these
energies as eigenvalues.
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34A Applications of Quantum Mechanics
(a) A classical particle of mass m scatters on a central potential V (r) with energy

E, impact parameter b, and scattering angle θ. Define the corresponding differential
cross-section.

For particle trajectories in the Coulomb potential,

VC(r) =
e2

4πǫ0r
,

the impact parameter is given by

b =
e2

8πǫ0E
cot

(
θ

2

)
.

Find the differential cross-section as a function of E and θ.

(b) A quantum particle of mass m and energy E = ~2k2/2m scatters in a localised
potential V (r). With reference to the asymptotic form of the wavefunction at large
|r|, define the scattering amplitude f(k,k′) as a function of the incident and outgoing
wavevectors k and k′ (where |k| = |k′| = k). Define the differential cross-section for this
process and express it in terms of f(k,k′).

Now consider a potential of the form V (r) = λU(r), where λ≪ 1 is a dimensionless
coupling and U does not depend on λ. You may assume that the Schrödinger equation for
the wavefunction ψ(k; r) of a scattering state with incident wavevector k may be written
as the integral equation

ψ(k; r) = exp (ik · r) +
2mλ

~2

∫
d3r′ G(+)

0

(
k; r− r′

)
U(r′)ψ(k; r′) ,

where

G(+)
0 (k; r) = − 1

4π

exp (ik|r|)
|r| .

Show that the corresponding scattering amplitude is given by

f(k,k′) = − mλ

2π~2

∫
d3r′ exp

(
−ik′ · r′) U(r′)ψ(k; r′) .

By expanding the wavefunction in powers of λ and keeping only the leading term, calculate
the leading-order contribution to the differential cross-section, and evaluate it for the case
of the Yukawa potential

V (r) = λ
exp(−µr)

r
.

By taking a suitable limit, obtain the differential cross-section for quantum scattering in
the Coulomb potential VC(r) defined in Part (a) above, correct to leading order in an
expansion in powers of the constant α̃ = e2/4πǫ0. Express your answer as a function of
the particle energy E and scattering angle θ, and compare it to the corresponding classical
cross-section calculated in Part (a).
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35E Statistical Physics
Briefly describe the microcanonical, canonical and grand canonical ensembles. Why

do they agree in the thermodynamic limit?

A harmonic oscillator in one spatial dimension has Hamiltonian

H =
p2

2m
+

m

2
ω2x2.

Here p and x are the momentum and position of the oscillator, m is its mass and ω its
frequency. The harmonic oscillator is placed in contact with a heat bath at temperature
T . What is the relevant ensemble?

Treating the harmonic oscillator classically, compute the mean energy 〈E〉, the
energy fluctuation ∆E2 and the heat capacity C.

Treating the harmonic oscillator quantum mechanically, compute the mean energy
〈E〉, the energy fluctuation ∆E2 and the heat capacity C.

In what limit of temperature do the classical and quantum results agree? Explain
why they differ away from this limit. Describe an experiment for which this difference has
implications.

36E General Relativity
Show how the geodesic equations and hence the Christoffel symbols Γa

bc can be
obtained from a Lagrangian.

In units with c = 1, the FLRW spacetime line element is

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) .

Show that Γ1
01 = ȧ/a.

You are given that, for the above metric, G0
0 = −3ȧ2/a2 and G1

1 = −2ä/a− ȧ2/a2,
where Ga

b is the Einstein tensor, which is diagonal. Verify by direct calculation that
∇bGa

b = 0.

Solve the vacuum Einstein equations in the presence of a cosmological constant to de-
termine the form of a(t).
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37B Fluid Dynamics II
Air is blown over the surface of a large, deep reservoir of water in such a way as to

exert a tangential stress in the x-direction of magnitude Kx2 for x > 0, with K > 0. The
water is otherwise at rest and occupies the region y > 0. The surface y = 0 remains flat.

Find order-of-magnitude estimates for the boundary-layer thickness δ(x) and tan-
gential surface velocity U(x) in terms of the relevant physical parameters.

Using the boundary-layer equations, find the ordinary differential equation govern-
ing the dimensionless function f defined in the streamfunction

ψ(x, y) = U(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?

Does f → 0 as η → ∞? Why, or why not?

The total horizontal momentum flux P (X) across the vertical line x = X is
proportional to Xa for X > 0. Find the exponent a. By considering the steadiness of the
momentum balance in the region 0 < x < X, explain why the value of a is consistent with
the form of the stress exerted on the boundary.

38C Waves
The function φ(x, t) satisfies the equation

∂2φ

∂t2
− ∂2φ

∂x2
=

∂4φ

∂x2∂t2
.

Derive the dispersion relation, and sketch graphs of frequency, phase velocity and group
velocity as functions of the wavenumber. In the case of a localised initial disturbance, will
it be the shortest or the longest waves that are to be found at the front of a dispersing
wave packet? Do the wave crests move faster or slower than the wave packet?

Give the solution to the initial-value problem for which at t = 0

φ =

∫ ∞

−∞
A(k)eikx dk and

∂φ

∂t
= 0 ,

and φ(x, 0) is real. Use the method of stationary phase to obtain an approximation for
φ(V t, t) for fixed 0 < V < 1 and large t. If, in addition, φ(x, 0) = φ(−x, 0), deduce an
approximation for the sequence of times at which φ(V t, t) = 0.

You are given that φ(t, t) decreases like t−1/4 for large t. Give a brief physical
explanation why this rate of decay is slower than for 0 < V < 1. What can be said about
φ(V t, t) for large t if V > 1? [Detailed calculation is not required in these cases.]

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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39D Numerical Analysis
Consider the one-dimensional advection equation

ut = ux , −∞ < x < ∞ , t > 0 ,

subject to an initial condition u(x, 0) = ϕ(x). Consider discretization of this equation
with finite differences on an equidistant space-time {(mh,nk), m ∈ Z, n ∈ Z+} with
step size h > 0 in space and step size k > 0 in time. Define the Courant number µ and
explain briefly how such a discretization can be used to derive numerical schemes in which
solutions unm ≈ u(mh,nk), m ∈ Z and n ∈ Z+ satisfy equations of the form

s∑

i=r

aiu
n+1
m+i =

s∑

i=r

biu
n
m+i , (1)

where the coefficients ai, bi are independent of m,n.

(i) Define the order of a numerical scheme such as (1). Define what a convergent
numerical scheme is. Explain the notion of stability and state the Lax equivalence
theorem that connects convergence and stability of numerical schemes for linear
partial differential equations.

(ii) Consider the following example of (1):

un+1
m = unm +

µ

2
(unm+1 − unm−1) +

µ2

2
(unm+1 − 2unm + unm−1) . (2)

Determine conditions on µ such that the scheme (2) is stable and convergent. What
is the order of this scheme?

END OF PAPER
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