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SECTION I

1D Groups

Let G = Q be the rational numbers, with addition as the group operation. Let x, y

be non-zero elements of G, and let N 6 G be the subgroup they generate. Show that N

is isomorphic to Z.

Find non-zero elements x, y ∈ R which generate a subgroup that is not isomorphic

to Z.

2D Groups

Let G be a group, and suppose the centre of G is trivial. If p divides |G|, show that

G has a non-trivial conjugacy class whose order is prime to p.

3A Vector Calculus
(a) For x ∈ Rn and r = |x|, show that

∂r

∂xi
=

xi
r
.

(b) Use index notation and your result in (a), or otherwise, to compute

(i) ∇ ·
(
f(r)x

)
, and

(ii) ∇×
(
f(r)x

)
for n = 3.

(c) Show that for each n ∈ N there is, up to an arbitrary constant, just one vector
field F(x) of the form f(r)x such that ∇ · F(x) = 0 everywhere on Rn\{0}, and
determine F.
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4A Vector Calculus
Let F(x) be a vector field defined everywhere on the domain G ⊂ R3.

(a) Suppose that F(x) has a potential φ(x) such that F(x) = ∇φ(x) for x ∈ G. Show
that ∫

γ
F · dx = φ(b)− φ(a)

for any smooth path γ from a to b in G. Show further that necessarily ∇× F = 0
on G.

(b) State a condition for G which ensures that ∇ × F = 0 implies
∫
γ F · dx is path-

independent.

(c) Compute the line integral
∮
γ F · dx for the vector field

F(x) =




−y
x2+y2

x
x2+y2

0


 ,

where γ denotes the anti-clockwise path around the unit circle in the (x, y)-plane.
Compute ∇× F and comment on your result in the light of (b).
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SECTION II

5D Groups
Let Sn be the group of permutations of {1, . . . , n}, and suppose n is even, n > 4.

Let g = (1 2) ∈ Sn, and h = (1 2)(3 4) . . . (n−1 n) ∈ Sn.

(i) Compute the centraliser of g, and the orders of the centraliser of g and of the
centraliser of h.

(ii) Now let n = 6. Let G be the group of all symmetries of the cube, and X the set
of faces of the cube. Show that the action of G on X makes G isomorphic to the
centraliser of h in S6. [Hint: Show that −1 ∈ G permutes the faces of the cube
according to h.]

Show that G is also isomorphic to the centraliser of g in S6.

6D Groups
Let p be a prime number. Let G be a group such that every non-identity element

of G has order p.

(i) Show that if |G| is finite, then |G| = pn for some n. [You must prove any theorems
that you use.]

(ii) Show that if H 6 G, and x 6∈ H, then 〈x〉 ∩H = {1}.
Hence show that if G is abelian, and |G| is finite, then G ≃ Cp × · · · × Cp.

(iii) Let G be the set of all 3× 3 matrices of the form



1 a x
0 1 b
0 0 1


 ,

where a, b, x ∈ Fp and Fp is the field of integers modulo p. Show that every non-
identity element of G has order p if and only if p > 2. [You may assume that G is
a subgroup of the group of all 3× 3 invertible matrices.]
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7D Groups
Let p be a prime number, and G = GL2(Fp), the group of 2× 2 invertible matrices

with entries in the field Fp of integers modulo p.

The group G acts on X = Fp ∪ {∞} by Möbius transformations,

(
a b
c d

)
· z =

az + b

cz + d
.

(i) Show that given any distinct x, y, z ∈ X there exists g ∈ G such that g · 0 = x,
g · 1 = y and g · ∞ = z. How many such g are there?

(ii) G acts on X ×X ×X by g · (x, y, z) = (g · x, g · y, g · z). Describe the orbits, and for
each orbit, determine its stabiliser, and the orders of the orbit and stabiliser.

8D Groups
(a) Let G be a group, and N a subgroup of G. Define what it means for N to be normal

in G, and show that if N is normal then G/N naturally has the structure of a group.

(b) For each of (i)–(iii) below, give an example of a non-trivial finite group G and
non-trivial normal subgroup N 6 G satisfying the stated properties.

(i) G/N ×N ≃ G.

(ii) There is no group homomorphism G/N → G such that the composite
G/N → G → G/N is the identity.

(iii) There is a group homomorphism i : G/N → G such that the composite
G/N → G → G/N is the identity, but the map

G/N ×N → G, (gN, n) 7→ i(gN)n

is not a group homomorphism.

Show also that for any N 6 G satisfying (iii), this map is always a bijection.
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9A Vector Calculus
The surface C in R3 is given by z2 = x2 + y2 .

(a) Show that the vector field

F(x) =



x
y
z




is tangent to the surface C everywhere.

(b) Show that the surface integral
∫
S F · dS is a constant independent of S for any

surface S which is a subset of C, and determine this constant.

(c) The volume V in R3 is bounded by the surface C and by the cylinder x2 + y2 = 1.
Sketch V and compute the volume integral

∫

V
∇ · F dV

directly by integrating over V .

(d) Use the Divergence Theorem to verify the result you obtained in part (b) for the
integral

∫
S F · dS, where S is the portion of C lying in −1 6 z 6 1.

10A Vector Calculus
(a) State Stokes’ Theorem for a surface S with boundary ∂S.

(b) Let S be the surface in R3 given by z2 = 1+x2+y2 where
√
2 6 z 6

√
5. Sketch the

surface S and find the surface element dS with respect to the Cartesian coordinates
x and y.

(c) Compute ∇× F for the vector field

F(x) =




−y
x

xy(x+ y)




and verify Stokes’ Theorem for F on the surface S.
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11A Vector Calculus
(i) Starting with Poisson’s equation in R3,

∇2φ(x) = f(x),

derive Gauss’ flux theorem
∫

V
f(x) dV =

∫

∂V
F(x) · dS

for F(x) = ∇φ(x) and for any volume V ⊆ R3.

(ii) Let

I =

∫

S

x · dS
|x|3 .

Show that I = 4π if S is the sphere |x| = R, and that I = 0 if S bounds a volume
that does not contain the origin.

(iii) Show that the electric field defined by

E(x) =
q

4πǫ0

x− a

|x− a|3 , x 6= a,

satisfies
∫

∂V
E · dS =




0 if a 6∈ V
q

ǫ0
if a ∈ V

where ∂V is a surface bounding a closed volume V and a 6∈ ∂V , and where the
electric charge q and permittivity of free space ǫ0 are constants. This is Gauss’ law
for a point electric charge.

(iv) Assume that f(x) is spherically symmetric around the origin, i.e., it is a function
only of |x|. Assume that F(x) is also spherically symmetric. Show that F(x)
depends only on the values of f inside the sphere with radius |x| but not on the
values of f outside this sphere.
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12A Vector Calculus
(a) Show that any rank 2 tensor tij can be written uniquely as a sum of two rank 2

tensors sij and aij where sij is symmetric and aij is antisymmetric.

(b) Assume that the rank 2 tensor tij is invariant under any rotation about the z-axis,
as well as under a rotation of angle π about any axis in the (x, y)-plane through the
origin.

(i) Show that there exist α, β ∈ R such that tij can be written as

tij = αδij + βδi3δj3. (∗)

(ii) Is there some proper subgroup of the rotations specified above for which the
result (∗) still holds if the invariance of tij is restricted to this subgroup? If
so, specify the smallest such subgroup.

(c) The array of numbers dijk is such that dijksij is a vector for any symmetric matrix
sij.

(i) By writing dijk as a sum of dsijk and daijk with dsijk = dsjik and daijk = −dajik,
show that dsijk is a rank 3 tensor. [You may assume without proof the Quotient
Theorem for tensors.]

(ii) Does daijk necessarily have to be a tensor? Justify your answer.

END OF PAPER
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