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SECTION I

1B Differential Equations
The following equation arises in the theory of elastic beams:

t4
d2u

dt2
+ λ2u = 0, λ > 0, t > 0,

where u(t) is a real valued function.

By using the change of variables

t =
1

τ
, u(t) =

v(τ)

τ
,

find the general solution of the above equation.

2B Differential Equations
Consider the ordinary differential equation

P (x, y) +Q(x, y)
dy

dx
= 0. (∗)

State an equation to be satisfied by P and Q that ensures that equation (∗) is exact. In
this case, express the general solution of equation (∗) in terms of a function F (x, y) which
should be defined in terms of P and Q.

Consider the equation
dy

dx
= − 4x+ 3y

3x+ 3y2
,

satisfying the boundary condition y(1) = 2. Find an explicit relation between y and x.

3F Probability
Consider a particle situated at the origin (0, 0) of R2. At successive times a direction

is chosen independently by picking an angle uniformly at random in the interval [0, 2π],
and the particle then moves an Euclidean unit length in this direction. Find the expected
squared Euclidean distance of the particle from the origin after n such movements.
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4F Probability
Consider independent discrete random variablesX1, . . . ,Xn and assume E[Xi] exists

for all i = 1, . . . , n.

Show that

E

[
n∏

i=1

Xi

]
=

n∏

i=1

E[Xi].

If the X1, . . . ,Xn are also positive, show that

n∏

i=1

∞∑

m=0

P (Xi > m) =

∞∑

m=0

P

(
n∏

i=1

Xi > m

)
.
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SECTION II

5B Differential Equations
Use the transformation

y(t) =
1

cx(t)

dx(t)

dt
,

where c is a constant, to map the Ricatti equation

dy

dt
+ cy2 + a(t)y + b(t) = 0, t > 0,

to a linear equation.

Using the above result, as well as the change of variables τ = ln t, solve the boundary
value problem

dy

dt
+ y2 +

y

t
− λ2

t2
= 0, t > 0,

y(1) = 2λ,

where λ is a positive constant. What is the value of t > 0 for which the solution is singular?
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6B Differential Equations
The so-called “shallow water theory” is characterised by the equations

∂ζ

∂t
+

∂

∂x

[
(h+ ζ)u

]
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= 0,

where g denotes the gravitational constant, the constant h denotes the undisturbed depth
of the water, u(x, t) denotes the speed in the x-direction, and ζ(x, t) denotes the elevation
of the water.

(i) Assuming that |u| and |ζ| and their gradients are small in some appropriate
dimensional considerations, show that ζ satisfies the wave equation

∂2ζ

∂t2
= c2

∂2ζ

∂x2
, (∗)

where the constant c should be determined in terms of h and g.

(ii) Using the change of variables

ξ = x+ ct, η = x− ct,

show that the general solution of (∗) satisfying the initial conditions

ζ(x, 0) = u0(x),
∂ζ

∂t
(x, 0) = v0(x),

is given by
ζ(x, t) = f(x+ ct) + g(x− ct),

where

df(x)

dx
=

1

2

[
du0(x)

dx
+

1

c
v0(x)

]
,

dg(x)

dx
=

1

2

[
du0(x)

dx
− 1

c
v0(x)

]
.

Simplify the above to find ζ in terms of u0 and v0.

(iii) Find ζ(x, t) in the particular case that

u0(x) = H(x+ 1)−H(x− 1), v0(x) = 0, −∞ < x < ∞,

where H(·) denotes the Heaviside step function.

Describe in words this solution.
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7B Differential Equations
(a) Let y1(x) be a solution of the equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

Assuming that the second linearly independent solution takes the form y2(x) =
v(x)y1(x), derive an ordinary differential equation for v(x).

(b) Consider the equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ 2y = 0, −1 < x < 1.

By inspection or otherwise, find an explicit solution of this equation. Use the result
in (a) to find the solution y(x) satisfying the conditions

y(0) =
dy

dx
(0) = 1.

8B Differential Equations
Consider the damped pendulum equation

d2θ

dt2
+ c

dθ

dt
+ sin θ = 0, (∗)

where c is a positive constant. The energy E, which is the sum of the kinetic energy and
the potential energy, is defined by

E(t) =
1

2

(
dθ

dt

)2

+ 1− cos θ.

(i) Verify that E(t) is a decreasing function.

(ii) Assuming that θ is sufficiently small, so that terms of order θ3 can be neglected, find
an approximation for the general solution of (∗) in terms of two arbitrary constants.
Discuss the dependence of this approximate solution on c.

(iii) By rewriting (∗) as a system of equations for x(t) = θ and y(t) = θ̇, find all stationary
points of (∗) and discuss their nature for all c, except c = 2.

(iv) Draw the phase plane curves for the particular case c = 1.
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9F Probability
State the axioms of probability.

State and prove Boole’s inequality.

Suppose you toss a sequence of coins, the i-th of which comes up heads with
probability pi, where

∑∞
i=1 pi < ∞. Calculate the probability of the event that infinitely

many heads occur.

Suppose you repeatedly and independently roll a pair of fair dice and each time
record the sum of the dice. What is the probability that an outcome of 5 appears before
an outcome of 7? Justify your answer.

10F Probability
Define what it means for a random variable X to have a Poisson distribution, and

find its moment generating function.

SupposeX,Y are independent Poisson random variables with parameters λ, µ. Find
the distribution of X + Y .

If X1, . . . ,Xn are independent Poisson random variables with parameter λ = 1, find
the distribution of

∑n
i=1Xi. Hence or otherwise, find the limit of the real sequence

an = e−n
n∑

j=0

nj

j!
, n ∈ N.

[Standard results may be used without proof provided they are clearly stated.]

11F Probability
For any function g : R → R and random variables X,Y, the “tower property” of

conditional expectations is
E[g(X)] = E

[
E[g(X)|Y ]

]
.

Provide a proof of this property when both X,Y are discrete.

Let U1, U2, . . . be a sequence of independent uniform U(0, 1)-random variables. For
x ∈ [0, 1] find the expected number of Ui’s needed such that their sum exceeds x, that is,
find E[N(x)] where

N(x) = min

{
n :

n∑

i=1

Ui > x

}
.

[Hint: Write E[N(x)] = E
[
E[N(x)|U1]

]
.]
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12F Probability
Give the definition of an exponential random variable X with parameter λ. Show

that X is memoryless.

Now let X,Y be independent exponential random variables, each with parameter
λ. Find the probability density function of the random variable Z = min(X,Y ) and the
probability P (X > Y ).

Suppose the random variables G1, G2 are independent and each has probability
density function given by

f(y) = C−1e−yy−1/2, y > 0, where C =

∫ ∞

0
e−yy−1/2dy.

Find the probability density function of G1 +G2. [You may use standard results without
proof provided they are clearly stated.]

END OF PAPER
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