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SECTION I

1B Vectors and Matrices
(a) Let

z = 2 + 2i.

(i) Compute z4.

(ii) Find all complex numbers w such that w4 = z.

(b) Find all the solutions of the equation

e2z
2 − 1 = 0.

(c) Let z = x+ iy, z̄ = x− iy, x, y ∈ R. Show that the equation of any line, and of any
circle, may be written respectively as

Bz + B̄z̄ + C = 0 and zz̄ + B̄z +Bz̄ + C = 0,

for some complex B and real C.

2A Vectors and Matrices
(a) What is meant by an eigenvector and the corresponding eigenvalue of a matrix A?

(b) Let A be the matrix

A =



3 −2 −2
1 0 −2
3 −3 −1


 .

Find the eigenvalues and the corresponding eigenspaces of A and determine whether
or not A is diagonalisable.

3D Analysis I

Show that every sequence of real numbers contains a monotone subsequence.

4F Analysis I
Find the radius of convergence of the following power series:

(i)
∑

n>1

n!

nn
zn; (ii)

∑

n>1

nnzn!.
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SECTION II

5B Vectors and Matrices
(i) For vectors a,b, c ∈ R3, show that

a× (b× c) = (a · c)b− (a · b)c.

Show that the plane (r− a) · n = 0 and the line (r− b)×m = 0, where m · n 6= 0,
intersect at the point

r =
(a · n)m+ n× (b×m)

m · n ,

and only at that point. What happens if m · n = 0?

(ii) Explain why the distance between the planes (r− a1) · n̂ = 0 and (r− a2) · n̂ = 0 is∣∣(a1 − a2) · n̂
∣∣, where n̂ is a unit vector.

(iii) Find the shortest distance between the lines (3 + s, 3s, 4 − s) and (−2, 3 + t, 3− t)
where s, t ∈ R. [You may wish to consider two appropriately chosen planes and use
the result of part (ii).]

6A Vectors and Matrices
Let A be a real n× n symmetric matrix.

(i) Show that all eigenvalues of A are real, and that the eigenvectors of A with respect
to different eigenvalues are orthogonal. Assuming that any real symmetric matrix
can be diagonalised, show that there exists an orthonormal basis {yi} of eigenvectors
of A.

(ii) Consider the linear system
Ax = b.

Show that this system has a solution if and only if b · h = 0 for every vector h in
the kernel of A. Let x be such a solution. Given an eigenvector of A with non-zero
eigenvalue, determine the component of x in the direction of this eigenvector. Use
this result to find the general solution of the linear system, in the form

x =

n∑

i=1

αiyi.
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7C Vectors and Matrices
Let A : C2 → C2 be the linear map

A
(
z
w

)
=

(
zeiθ + w
we−iφ + z

)
,

where θ and φ are real constants. Write down the matrix A of A with respect to the
standard basis of C2 and show that detA = 2i sin 1

2(θ − φ) exp
(
1
2 i(θ − φ)

)
.

Let R : C2 → R4 be the invertible map

R
(
z
w

)
=




Re z
Im z
Rew
Imw




and define a linear map B : R4 → R4 by B = RAR−1. Find the image of each of the
standard basis vectors of R4 under both R−1 and B. Hence, or otherwise, find the matrix
B of B with respect to the standard basis of R4 and verify that detB = |detA|2.
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8C Vectors and Matrices
Let A and B be complex n× n matrices.

(i) The commutator of A and B is defined to be

[A,B] ≡ AB −BA.

Show that [A,A] = 0; [A,B] = −[B,A]; and [A,λB] = λ[A,B] for λ ∈ C. Show
further that the trace of [A,B] vanishes.

(ii) A skew-Hermitian matrix S is one which satisfies S† = −S, where † denotes the
Hermitian conjugate. Show that if A and B are skew-Hermitian then so is [A,B].

(iii) Let M be the linear map from R3 to the set of 2× 2 complex matrices given by

M



x
y
z


 = xM1 + yM2 + zM3,

where

M1 =
1

2

(
i 0
0 −i

)
, M2 =

1

2

(
0 1
−1 0

)
, M3 =

1

2

(
0 i
i 0

)
.

Prove that for any a ∈ R3, M(a) is traceless and skew-Hermitian. By considering
pairs such as [M1,M2], or otherwise, show that for a,b ∈ R3,

M(a× b) =
[
M(a),M(b)

]
.

(iv) Using the result of part (iii), or otherwise, prove that if C is a traceless skew-
Hermitian 2× 2 matrix then there exist matrices A, B such that C = [A,B]. [You
may use geometrical properties of vectors in R3 without proof.]

9D Analysis I
(a) Show that for all x ∈ R,

lim
k→∞

3k sin(x/3k) = x,

stating carefully what properties of sin you are using.

Show that the series
∑

n>1 2
n sin(x/3n) converges absolutely for all x ∈ R.

(b) Let (an)n∈N be a decreasing sequence of positive real numbers tending to zero. Show
that for θ ∈ R, θ not a multiple of 2π, the series

∑

n>1

ane
inθ

converges.

Hence, or otherwise, show that
∑

n>1
sin(nθ)

n converges for all θ ∈ R.
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10E Analysis I
(i) State the Mean Value Theorem. Use it to show that if f : (a, b) → R is a differenti-

able function whose derivative is identically zero, then f is constant.

(ii) Let f : R → R be a function and α > 0 a real number such that for all x, y ∈ R,

|f(x)− f(y)| 6 |x− y|α .

Show that f is continuous. Show moreover that if α > 1 then f is constant.

(iii) Let f : [a, b] → R be continuous, and differentiable on (a, b). Assume also that the
right derivative of f at a exists; that is, the limit

lim
x→a+

f(x)− f(a)

x− a

exists. Show that for any ǫ > 0 there exists x ∈ (a, b) satisfying

∣∣∣∣
f(x)− f(a)

x− a
− f ′(x)

∣∣∣∣ < ǫ.

[You should not assume that f ′ is continuous.]

11E Analysis I
(i) Prove Taylor’s Theorem for a function f : R → R differentiable n times, in the

following form: for every x ∈ R there exists θ with 0 < θ < 1 such that

f(x) =

n−1∑

k=0

f (k)(0)

k!
xk +

f (n)(θx)

n!
xn.

[You may assume Rolle’s Theorem and the Mean Value Theorem; other results
should be proved.]

(ii) The function f : R → R is twice differentiable, and satisfies the differential equation
f ′′− f = 0 with f(0) = A, f ′(0) = B. Show that f is infinitely differentiable. Write
down its Taylor series at the origin, and prove that it converges to f at every point.
Hence or otherwise show that for any a, h ∈ R, the series

∞∑

k=0

f (k)(a)

k!
hk

converges to f(a+ h).
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12F Analysis I
Define what it means for a function f : [0, 1] → R to be (Riemann) integrable. Prove

that f is integrable whenever it is

(a) continuous,

(b) monotonic.

Let {qk : k ∈ N} be an enumeration of all rational numbers in [0, 1). Define a
function f : [0, 1] → R by f(0) = 0,

f(x) =
∑

k∈Q(x)

2−k, x ∈ (0, 1],

where
Q(x) = {k ∈ N : qk ∈ [0, x)}.

Show that f has a point of discontinuity in every interval I ⊂ [0, 1].

Is f integrable? [Justify your answer.]

END OF PAPER
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