31D Partial Differential Equations
In this question, functions are all real-valued, and
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are the Sobolev spaces of functions 27-periodic in z, for s =0,1,2,....

State Parseval’s theorem. For s = 0,1 prove that the norm ||u||gs is equivalent to
the norm || ||s defined by
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Consider the Cauchy problem
Up — Ugy = [, u(z,0) = up(z), t>0, (1)

where f = f(x,t) is a smooth function which is 27-periodic in z, and the initial value wug
is also smooth and 2m-periodic. Prove that if u is a smooth solution which is 27-periodic
in x, then it satisfies
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for some number C' > 0 which does not depend on u or f.

State the Lax—Milgram lemma. Prove, using the Lax—Milgram lemma, that if

f(z,t) = Mg(x)

with ¢ € Hp.,. and XA > 0, then there exists a weak solution to (1) of the form
u(z,t) = eMp(z) with ¢ € HJ.,. Does the same hold for all A € R? Briefly explain

your answer.
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