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Paper 4, Section II

23H Algebraic Geometry

Let X be a smooth projective curve of genus g > 0 over an algebraically closed field

of characteristic 6= 2, and suppose there is a degree 2 morphism π : X → P1. How many

ramification points of π are there?

Suppose Q and R are distinct ramification points of π. Show that Q 6∼ R, but

2Q ∼ 2R.

Now suppose g = 2. Show that every divisor of degree 2 on X is linearly equivalent

to P + P ′ for some P,P ′ ∈ X, and deduce that every divisor of degree 0 is linearly

equivalent to P1 − P2 for some P1, P2 ∈ X.

Show that the subgroup {[D] ∈ Cl0(X) | 2[D] = 0} of the divisor class group of X

has order 16.

Paper 3, Section II

23H Algebraic Geometry

Let f ∈ k[x] be a polynomial with distinct roots, deg f = d > 2, char k = 0, and let

C ⊆ P2 be the projective closure of the affine curve

yd−1 = f(x).

Show that C is smooth, with a single point at ∞.

Pick an appropriate ω ∈ Ω1
k(C)/k and compute the valuation vq(ω) for all q ∈ C.

Hence determine degKC .

Paper 2, Section II

24H Algebraic Geometry

(i) Let k be an algebraically closed field, n > 1, and S a subset of kn.

Let I(S) = {f ∈ k[x1, . . . , xn] | f(p) = 0 when p ∈ S}. Show that I(S) is an ideal,

and that k[x1, . . . , xn]/I(S) does not have any non-zero nilpotent elements.

Let X ⊆ An, Y ⊆ Am be affine varieties, and Φ : k[Y ] → k[X] be a k-algebra

homomorphism. Show that Φ determines a map of sets from X to Y .

(ii) Let X be an irreducible affine variety. Define the dimension of X, dimX (in

terms of the tangent spaces of X) and the transcendence dimension of X, tr.dimX.

State the Noether normalization theorem. Using this, or otherwise, prove that the

transcendence dimension of X equals the dimension of X.
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Paper 1, Section II

24H Algebraic Geometry

Let k be an algebraically closed field and n > 1. We say that f ∈ k[x1, . . . , xn] is

singular at p ∈ An if either p is a singularity of the hypersurface {f = 0} or f has an

irreducible factor h of multiplicity strictly greater than one with h(p) = 0. Given d > 1,

let X = {f ∈ k[x1, . . . , xn] |deg f 6 d} and let

Y = {(f, p) ∈ X ×An | f is singular at p}.

(i) Show that X ≃ AN for some N (you need not determine N) and that Y is a

Zariski closed subvariety of X ×An.

(ii) Show that the fibres of the projection map Y → An are linear subspaces of

dimension N − (n+ 1). Conclude that dimY < dimX.

(iii) Hence show that {f ∈ X | deg f = d, Z(f) smooth} is dense in X.

[You may use standard results from lectures if they are accurately quoted.]
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Paper 3, Section II

20F Algebraic Topology
Let K be a simplicial complex in RN , which we may also consider as lying in

RN+1 using the first N coordinates. Write c = (0, 0, . . . , 0, 1) ∈ RN+1. Show that if
〈v0, v1, . . . , vn〉 is a simplex of K then 〈v0, v1, . . . , vn, c〉 is a simplex in RN+1.

Let L 6 K be a subcomplex and let K be the collection

K ∪ {〈v0, v1, . . . , vn, c〉 | 〈v0, v1, . . . , vn〉 ∈ L} ∪ {〈c〉}

of simplices in RN+1. Show that K is a simplicial complex.

If |K| is a Möbius band, and |L| is its boundary, show that

Hi(K) ∼=





Z if i = 0

Z/2 if i = 1

0 if i > 2.

Paper 4, Section II

21F Algebraic Topology
State the Lefschetz fixed point theorem.

Let X be an orientable surface of genus g (which you may suppose has a triangula-
tion), and let f : X → X be a continuous map such that

1. f3 = IdX ,

2. f has no fixed points.

By considering the eigenvalues of the linear map f∗ : H1(X;Q) → H1(X;Q), and their mul-
tiplicities, show that g must be congruent to 1 modulo 3.
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Paper 2, Section II

21F Algebraic Topology

Let A =

(
a b
c d

)
be a matrix with integer entries. Considering S1 as the quotient

space R/Z, show that the function

ϕA : S1 × S1 −→ S1 × S1

([x], [y]) 7−→ ([ax+ by], [cx+ dy])

is well-defined and continuous. If in addition det(A) = ±1, show that ϕA is a homeomor-
phism.

State the Seifert–van Kampen theorem. Let XA be the space obtained by gluing
together two copies of S1×D2 along their boundaries using the homeomorphism ϕA. Show
that the fundamental group of XA is cyclic and determine its order.

Paper 1, Section II

21F Algebraic Topology
Define what it means for a map p : X̃ → X to be a covering space. State the

homotopy lifting lemma.

Let p : (X̃, x̃0) → (X,x0) be a based covering space and let f : (Y, y0) → (X,x0) be
a based map from a path-connected and locally path-connected space. Show that there is
a based lift f̃ : (Y, y0) → (X̃, x̃0) of f if and only if f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).
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Paper 4, Section II

33A Applications of Quantum Mechanics
Let Λ be a Bravais lattice in three dimensions. Define the reciprocal lattice Λ∗.

State and prove Bloch’s theorem for a particle moving in a potential V (x) obeying

V (x+ ℓ) = V (x) ∀ ℓ ∈ Λ, x ∈ R3 .

Explain what is meant by a Brillouin zone for this potential and how it is related to the
reciprocal lattice.

A simple cubic lattice Λ1 is given by the set of points

Λ1 =
{
ℓ ∈ R3 : ℓ = n1î+ n2ĵ+ n3k̂ , n1, n2, n3 ∈ Z

}
,

where î, ĵ and k̂ are unit vectors parallel to the Cartesian coordinate axes in R3. A body-
centred cubic (BCC) lattice ΛBCC is obtained by adding to Λ1 the points at the centre of
each cube, i.e. all points of the form

ℓ+
1

2

(
î+ ĵ+ k̂

)
, ℓ ∈ Λ1 .

Show that ΛBCC is Bravais with primitive vectors

a1 =
1

2

(
ĵ+ k̂− î

)
,

a2 =
1

2

(
k̂+ î− ĵ

)
,

a3 =
1

2

(
î+ ĵ− k̂

)
.

Find the reciprocal lattice Λ∗
BCC . Hence find a consistent choice for the first Brillouin

zone of a potential V (x) obeying

V (x+ ℓ) = V (x) ∀ ℓ ∈ ΛBCC , x ∈ R3 .

[Hint: The matrix M =
1

2




−1 1 1
1 −1 1
1 1 −1


 has inverse M−1 =




0 1 1
1 0 1
1 1 0


 . ]
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Paper 3, Section II

34A Applications of Quantum Mechanics
In the nearly-free electron model a particle of mass m moves in one dimension in a

periodic potential of the form V (x) = λU(x), where λ ≪ 1 is a dimensionless coupling
and U(x) has a Fourier series

U(x) =

+∞∑

l=−∞
Ul exp

(
2πi

a
lx

)
,

with coefficients obeying U−l = U∗
l for all l.

Ignoring any degeneracies in the spectrum, the exact energy E(k) of a Bloch state
with wavenumber k can be expanded in powers of λ as

E(k) = E0(k) + λ〈k|U |k〉 + λ2
∑

k′ 6=k

〈k|U |k′〉〈k′|U |k〉
E0(k)− E0(k′)

+ O(λ3) , (1)

where |k〉 is a normalised eigenstate of the free Hamiltonian Ĥ0 = p̂2/2m with momentum
p = ~k and energy E0(k) = ~2k2/2m.

Working on a finite interval of length L = Na, where N is a positive integer, we
impose periodic boundary conditions on the wavefunction:

ψ(x+Na) = ψ(x) .

What are the allowed values of the wavenumbers k and k′ which appear in (1)? For these
values evaluate the matrix element 〈k|U |k′〉.

For what values of k and k′ does (1) cease to be a good approximation? Explain
your answer. Quoting any results you need from degenerate perturbation theory, calculate
to O(λ) the location and width of the gaps between allowed energy bands for the periodic
potential V (x), in terms of the Fourier coefficients Ul.

Hence work out the allowed energy bands for the following potentials:

(i) V (x) = 2λ cos

(
2πx

a

)
,

(ii) V (x) = λa

+∞∑

n=−∞
δ (x− na) .
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Paper 2, Section II

34A Applications of Quantum Mechanics
(a) A classical particle of mass m scatters on a central potential V (r) with energy

E, impact parameter b, and scattering angle θ. Define the corresponding differential
cross-section.

For particle trajectories in the Coulomb potential,

VC(r) =
e2

4πǫ0r
,

the impact parameter is given by

b =
e2

8πǫ0E
cot

(
θ

2

)
.

Find the differential cross-section as a function of E and θ.

(b) A quantum particle of mass m and energy E = ~2k2/2m scatters in a localised
potential V (r). With reference to the asymptotic form of the wavefunction at large
|r|, define the scattering amplitude f(k,k′) as a function of the incident and outgoing
wavevectors k and k′ (where |k| = |k′| = k). Define the differential cross-section for this
process and express it in terms of f(k,k′).

Now consider a potential of the form V (r) = λU(r), where λ≪ 1 is a dimensionless
coupling and U does not depend on λ. You may assume that the Schrödinger equation for
the wavefunction ψ(k; r) of a scattering state with incident wavevector k may be written
as the integral equation

ψ(k; r) = exp (ik · r) +
2mλ

~2

∫
d3r′ G(+)

0

(
k; r− r′

)
U(r′)ψ(k; r′) ,

where

G(+)
0 (k; r) = − 1

4π

exp (ik|r|)
|r| .

Show that the corresponding scattering amplitude is given by

f(k,k′) = − mλ

2π~2

∫
d3r′ exp

(
−ik′ · r′) U(r′)ψ(k; r′) .

By expanding the wavefunction in powers of λ and keeping only the leading term, calculate
the leading-order contribution to the differential cross-section, and evaluate it for the case
of the Yukawa potential

V (r) = λ
exp(−µr)

r
.

By taking a suitable limit, obtain the differential cross-section for quantum scattering in
the Coulomb potential VC(r) defined in Part (a) above, correct to leading order in an
expansion in powers of the constant α̃ = e2/4πǫ0. Express your answer as a function of
the particle energy E and scattering angle θ, and compare it to the corresponding classical
cross-section calculated in Part (a).
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Paper 1, Section II

34A Applications of Quantum Mechanics
A particle of mass m scatters on a localised potential well V (x) in one dimension.

With reference to the asymptotic behaviour of the wavefunction as x → ±∞, define the
reflection and transmission amplitudes, r and t, for a right-moving incident particle of
wave number k. Define also the corresponding amplitudes, r′ and t′, for a left-moving
incident particle of wave number k. Derive expressions for r′ and t′ in terms of r and t.

(a) Define the S-matrix, giving its elements in terms of r and t. Using the relation

|r|2 + |t|2 = 1

(which you need not derive), show that the S-matrix is unitary. How does the S-matrix
simplify if the potential well satisfies V (−x) = V (x)?

(b) Consider the potential well

V (x) = −3~2

m

1

cosh2(x)
.

The corresponding Schrödinger equation has an exact solution

ψk(x) = exp (ikx)
[
3 tanh2(x)− 3ik tanh(x)− (1 + k2)

]
,

with energy E = ~2k2/2m, for every real value of k. [You do not need to verify this.] Find
the S-matrix for scattering on this potential. What special feature does the scattering
have in this case?

(c) Explain the connection between singularities of the S-matrix and bound states of
the potential well. By analytic continuation of the solution ψk(x) to appropriate complex
values of k, find the wavefunctions and energies of the bound states of the well. [You do
not need to normalise the wavefunctions.]
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Paper 3, Section II

26J Applied Probability
(i) Define a Poisson process (Nt, t > 0) with intensity λ. Specify without

justification the distribution of Nt. Let T1, T2, . . . denote the jump times of (Nt, t > 0).
Derive the joint distribution of (T1, . . . , Tn) given {Nt = n}.

(ii) Let (Nt, t > 0) be a Poisson process with intensity λ > 0 and let X1,X2, . . .
be a sequence of i.i.d. random variables, independent of (Nt, t > 0), all having the same
distribution as a random variable X. Show that if g(s, x) is a real-valued function of real
variables s, x, and Tj are the jump times of (Nt, t > 0) then

E
[
exp

{
θ

Nt∑

j=1

g(Tj ,Xj)

}]
= exp

{
λ

∫ t

0
(E(eθg(s,X))− 1)ds

}
,

for all θ ∈ R. [Hint: Condition on {Nt = n} and T1, . . . , Tn, using (i).]

(iii) A university library is open from 9am to 5pm. Students arrive at times of a
Poisson process with intensity λ. Each student spends a random amount of time in the
library, independently of the other students. These times are identically distributed for all
students and have the same distribution as a random variable X. Show that the number of
students in the library at 5pm is a Poisson random variable with a mean that you should
specify.

Paper 4, Section II

26J Applied Probability
(i) Define the M/M/1 queue with arrival rate λ and service rate µ. Find conditions

on the parameters λ and µ for the queue to be transient, null recurrent, and positive
recurrent, briefly justifying your answers. In the last case give with justification the
invariant distribution explicitly. Answer the same questions for an M/M/∞ queue.

(ii) At a taxi station, customers arrive at a rate of 3 per minute, and taxis at a
rate of 2 per minute. Suppose that a taxi will wait no matter how many other taxis are
present. However, if a person arriving does not find a taxi waiting he or she leaves to find
alternative transportation.

Find the long-run proportion of arriving customers who get taxis, and find the
average number of taxis waiting in the long run.

An agent helps to assign customers to taxis, and so long as there are taxis waiting
he is unable to have his coffee. Once a taxi arrives, how long will it take on average before
he can have another sip of his coffee?
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Paper 1, Section II

27J Applied Probability
(i) Explain what a Q-matrix is. Let Q be a Q-matrix. Define the notion of a Markov

chain (Xt, t > 0) in continuous time with Q-matrix given by Q, and give a construction
of (Xt, t > 0). [You are not required to justify this construction.]

(ii) A population consists of Nt individuals at time t > 0. We assume that each
individual gives birth to a new individual at constant rate λ > 0. As the population is
competing for resources, we assume that for each n > 1, if Nt = n, then any individual
in the population at time t dies in the time interval [t, t+ h) with probability δnh+ o(h),
where (δn)

∞
n=1 is a given sequence satisfying δ1 = 0, δn > 0 for n > 2. Formulate a Markov

chain model for (Nt, t > 0) and write down the Q-matrix explicitly. Then find a necessary
and sufficient condition on (δn)

∞
n=1 so that the Markov chain has an invariant distribution.

Compute the invariant distribution in the case where δn = µ(n− 1) and µ > 0.

Paper 2, Section II

27J Applied Probability
(i) Explain what the Moran model and the infinite alleles model are. State Ewens’

sampling formula for the distribution of the allelic frequency spectrum (a1, . . . , an) in
terms of θ where θ = Nu with u denoting the mutation rate per individual and N the
population size.

Let Kn be the number of allelic types in a sample of size n. Give, without
justification, an expression for E(Kn) in terms of θ.

(ii) Let Kn and θ be as above. Show that for 1 6 k 6 n we have that

P (Kn = k) = C
θk

θ(θ + 1) · · · (θ + n− 1)

for some constant C that does not depend on θ.

Show that, given {Kn = k}, the distribution of the allelic frequency spectrum
(a1, . . . , an) does not depend on θ.

Show that the value of θ which maximises P(Kn = k) is the one for which k = E(Kn).
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Paper 4, Section II

31C Asymptotic Methods
Derive the leading-order Liouville–Green (or WKBJ) solution for ǫ ≪ 1 to the

ordinary differential equation

ǫ2
d2f

dy2
+Φ(y)f = 0 ,

where Φ(y) > 0.

The function f(y; ǫ) satisfies the ordinary differential equation

ǫ2
d2f

dy2
+

(
1 +

1

y
− 2ǫ2

y2

)
f = 0 , (1)

subject to the boundary condition f ′′(0) = 2. Show that the Liouville–Green solution of
(1) for ǫ ≪ 1 takes the asymptotic forms

f ∼ α1y
1
4 exp(2i

√
y/ǫ) + α2y

1
4 exp(−2i

√
y/ǫ) for ǫ2 ≪ y ≪ 1

and f ∼ B cos
[
θ2 + (y + log

√
y)/ǫ

]
for y ≫ 1 ,

where α1, α2, B and θ2 are constants.
[
Hint : You may assume that

∫ y

0

√
1 + u−1 du =

√
y(1 + y) + sinh−1√y .

]

Explain, showing the relevant change of variables, why the leading-order asymptotic
behaviour for 0 6 y ≪ 1 can be obtained from the reduced equation

d2f

dx2
+

(
1

x
− 2

x2

)
f = 0 . (2)

The unique solution to (2) with f ′′(0) = 2 is f = x1/2J3(2x
1/2), where the Bessel function

J3(z) is known to have the asymptotic form

J3(z) ∼
(

2

πz

)1/2

cos

(
z − 7π

4

)
as z → ∞ .

Hence find the values of α1 and α2.
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Paper 3, Section II

31C Asymptotic Methods
(a) Find the Stokes ray for the function f(z) as z → 0 with 0 < arg z < π, where

f(z) = sinh(z−1).

(b) Describe how the leading-order asymptotic behaviour as x → ∞ of

I(x) =

∫ b

a
f(t)eixg(t)dt

may be found by the method of stationary phase, where f and g are real functions and
the integral is taken along the real line. You should consider the cases for which:

(i) g′(t) is non-zero in [a, b) and has a simple zero at t = b.

(ii) g′(t) is non-zero apart from having one simple zero at t = t0, where a < t0 < b.

(iii) g′(t) has more than one simple zero in (a, b) with g′(a) 6= 0 and g′(b) 6= 0.

Use the method of stationary phase to find the leading-order asymptotic form as
x → ∞ of

J(x) =

∫ 1

0
cos

(
x(t4 − t2)

)
dt.

[You may assume that

∫ ∞

−∞
eiu

2
du =

√
πeiπ/4.]
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Paper 1, Section II

31C Asymptotic Methods
(a) Consider the integral

I(k) =

∫ ∞

0
f(t)e−kt dt, k > 0.

Suppose that f(t) possesses an asymptotic expansion for t → 0+ of the form

f(t) ∼ tα
∞∑

n=0

ant
βn, α > −1, β > 0,

where an are constants. Derive an asymptotic expansion for I(k) as k → ∞ in the form

I(k) ∼
∞∑

n=0

An

kγ+βn
,

giving expressions for An and γ in terms of α, β, n and the gamma function. Hence
establish the asymptotic approximation as k → ∞

I1(k) =

∫ 1

0
ektt−a(1− t2)−bdt ∼ 2−bΓ(1− b)ekkb−1

(
1 +

(a+ b/2)(1 − b)

k

)
,

where a < 1, b < 1.

(b) Using Laplace’s method, or otherwise, find the leading-order asymptotic approx-
imation as k → ∞ for

I2(k) =

∫ ∞

0
e−(2k2/t+t2/k) dt .

[You may assume that Γ(z) =

∫ ∞

0
tz−1e−t dt for Re z > 0 ,

and that

∫ ∞

−∞
e−qt2dt =

√
π/q for q > 0 . ]
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Paper 4, Section I

9A Classical Dynamics

Consider a heavy symmetric top of mass M with principal moments of inertia I1,
I2 and I3, where I1 = I2 6= I3. The top is pinned at point P , which is at a distance l from
the centre of mass, C, as shown in the figure.

P

C

l

Its angular velocity in a body frame (e1, e2, e3) is given by

ω = [φ̇ sin θ sinψ + θ̇ cosψ] e1 + [φ̇ sin θ cosψ − θ̇ sinψ] e2 + [ψ̇ + φ̇ cos θ] e3 ,

where φ, θ and ψ are the Euler angles.

(a) Assuming that {ea}, a = 1, 2, 3, are chosen to be the principal axes, write down the
Lagrangian of the top in terms of ωa and the principal moments of inertia. Hence
find the Lagrangian in terms of the Euler angles.

(b) Find all conserved quantities. Show that ω3, the spin of the top, is constant.

(c) By eliminating φ̇ and ψ̇, derive a second-order differential equation for θ.
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Paper 3, Section I

9A Classical Dynamics

(a) The action for a one-dimensional dynamical system with a generalized coordinate q
and Lagrangian L is given by

S =

∫ t2

t1

L(q, q̇, t) dt .

State the principle of least action. Write the expression for the Hamiltonian in terms
of the generalized velocity q̇, the generalized momentum p and the Lagrangian L.
Use it to derive Hamilton’s equations from the principle of least action.

(b) The motion of a particle of charge q and mass m in an electromagnetic field
with scalar potential φ(r, t) and vector potential A(r, t) is characterized by the
Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A) .

(i) Write down the Hamiltonian of the particle.

(ii) Consider a particle which moves in three dimensions in a magnetic field with
A = (0, Bx, 0), where B is a constant. There is no electric field. Obtain
Hamilton’s equations for the particle.
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Paper 2, Section I

9A Classical Dynamics

The components of the angular velocity ω of a rigid body and of the position vector
r are given in a body frame.

(a) The kinetic energy of the rigid body is defined as

T =
1

2

∫
d3r ρ(r)ṙ · ṙ ,

Given that the centre of mass is at rest, show that T can be written in the form

T =
1

2
Iabωaωb ,

where the explicit form of the tensor Iab should be determined.

(b) Explain what is meant by the principal moments of inertia.

(c) Consider a rigid body with principal moments of inertia I1 , I2 and I3, which are all
unequal. Derive Euler’s equations of torque-free motion

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 .

(d) The body rotates about the principal axis with moment of inertia I1. Derive the
condition for stable rotation.
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Paper 1, Section I

9A Classical Dynamics

Consider a one-dimensional dynamical system with generalized coordinate and
momentum (q, p).

(a) Define the Poisson bracket {f, g} of two functions f(q, p, t) and g(q, p, t).

(b) Verify the Leibniz rule
{fg, h} = f{g, h} + g{f, h}.

(c) Explain what is meant by a canonical transformation (q, p) → (Q,P ).

(d) State the condition for a transformation (q, p) → (Q,P ) to be canonical in terms
of the Poisson bracket {Q,P}. Use this to determine whether or not the following
transformations are canonical:

(i) Q =
q2

2
, P =

p

q
,

(ii) Q = tan q , P = p cos q ,

(iii) Q =
√

2q et cos p , P =
√
2q e−t sin p .
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Paper 4, Section II

15A Classical Dynamics

(a) Consider a system with one degree of freedom, which undergoes periodic motion in
the potential V (q). The system’s Hamiltonian is

H(p, q) =
p2

2m
+ V (q) .

(i) Explain what is meant by the angle and action variables, θ and I, of the
system and write down the integral expression for the action variable I. Is I
conserved? Is θ conserved?

(ii) Consider V (q) = λq6, where λ is a positive constant. Find I in terms of λ,
the total energy E, the mass M , and a dimensionless constant factor (which
you need not compute explicitly).

(iii) Hence describe how E changes with λ if λ varies slowly with time. Justify
your answer.

(b) Consider now a particle which moves in a plane subject to a central force-field
F = −kr−2r̂.

(i) Working in plane polar coordinates (r, φ), write down the Hamiltonian of the
system. Hence deduce two conserved quantities. Prove that the system is
integrable and state the number of action variables.

(ii) For a particle which moves on an elliptic orbit find the action variables
associated with radial and tangential motions. Can the relationship between
the frequencies of the two motions be deduced from this result? Justify your
answer.

(iii) Describe how E changes with m and k if one or both of them vary slowly
with time.

[You may use

r2∫

r1

{(
1− r1

r

)(r2
r

− 1
)} 1

2
dr =

π

2
(r1 + r2)− π

√
r1 r2 ,

where 0 < r1 < r2 .]
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Paper 2, Section II

15A Classical Dynamics

A planar pendulum consists of a mass m at the end of a light rod of length l. The
pivot of the pendulum is attached to a bead of mass M , which slides along a horizontal
rod without friction. The bead is connected to the ends of the horizontal rod by two
identical springs of force constant k. The pivot constrains the pendulum to swing in the
vertical plane through the horizontal rod. The horizontal rod is mounted on a bracket, so
the system could rotate about the vertical axis which goes through its centre as shown in
the figure.

l

k k

m

M

(a) Initially, the system is not allowed to rotate about the vertical axis.

(i) Identify suitable generalized coordinates and write down the Lagrangian of the
system.

(ii) Write down expression(s) for any conserved quantities. Justify your answer.

(iii) Derive the equations of motion.

(iv) For M = m/2 and gm/kl = 3, find the frequencies of small oscillations around
the stable equilibrium and the corresponding normal modes. Describe the
respective motions of the system.

(b) Assume now that the system is free to rotate about the vertical axis without friction.
Write down the Lagrangian of the system. Identify and calculate the additional
conserved quantity.
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Paper 4, Section I

4I Coding and Cryptography

Explain what is meant by a Bose–Ray Chaudhuri–Hocquenghem (BCH) code with

design distance δ. Prove that, for such a code, the minimum distance between code words

is at least δ. How many errors will the code detect? How many errors will it correct?

Paper 3, Section I

4I Coding and Cryptography

Let A be a random variable that takes values in the finite alphabet A. Prove that

there is a decodable binary code c : A → {0, 1}∗ that satisfies

H(A) 6 E(l(A)) 6 H(A) + 1 ,

where l(a) is the length of the code word c(a) and H(A) is the entropy of A.

Is it always possible to find such a code with E(l(A)) = H(A)? Justify your answer.

Paper 2, Section I

4I Coding and Cryptography

Let c : A → {0, 1}∗ be a decodable binary code defined on a finite alphabet A. Let

l(a) be the length of the code word c(a). Prove that

∑

a∈A
2−l(a) 6 1 .

Show that, for the decodable code c : A → {0, 1}∗ described above, there is a prefix-

free code p : A → {0, 1}∗ with each code word p(a) having length l(a). [You may use,

without proof, any standard results from the course.]
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Paper 1, Section I

4I Coding and Cryptography

State and prove Gibbs’ inequality.

Show that, for a pair of discrete random variables X and Y , each taking finitely

many values, the joint entropy H(X,Y ) satisfies

H(X,Y ) 6 H(X) +H(Y ) ,

with equality precisely when X and Y are independent.

Paper 2, Section II

12I Coding and Cryptography

What is the information capacity of a memoryless, time-independent channel?

Compute the information capacity of a binary symmetric channel with probability p of

error. Show the steps in your computation.

Binary digits are transmitted through a noisy channel, which is memoryless and

time-independent. With probability α (0 < α < 1) the digit is corrupted and noise is

received, otherwise the digit is transmitted unchanged. So, if we denote the input by 0

and 1 and the output as 0, ∗ and 1 with ∗ denoting the noise, the transition matrix is




1− α 0

α α

0 1− α


 .

Compute the information capacity of this channel.

Explain how to code a message for transmission through the channel described

above, and how to decode it, so that the probability of error for each bit is arbitrarily

small.
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Paper 1, Section II

12I Coding and Cryptography

Describe, briefly, either the RSA or the Elgamal public key cipher. You should

explain, without proof, why it is believed to be difficult to break the cipher you describe.

How can such a cipher be used to sign messages? You should explain how the

intended recipient of the message can (a) know from whom it came; (b) know that the

message has not been changed; and (c) demonstrate that the sender must have signed it.

Let I0, I1, . . . , IN be friendly individuals each of whom has a public key cipher. I0
wishes to send a message to IN by passing it first to I1, then I1 passes it to I2, I2 to I3,

until finally it is received by IN . At each stage the message can be modified to show from

whom it was received and to whom it is sent. Devise a way in which these modifications

can be made so that IN can be confident both of the content of the original message and

that the message has been passed through the intermediaries I1, I2, . . . , IN−1 in that order

and has not been modified by an enemy agent. Assume that it takes a negligible time to

transmit a message from Ik to Ik+1 for each k, but the time needed to modify a message

is not negligible.
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Paper 4, Section I

10E Cosmology
A homogeneous and isotropic universe, with cosmological constant Λ, has expansion

scale factor a(t) and Hubble expansion rate H = ȧ/a. The universe contains matter with
density ρ and pressure P which satisfy the positive-energy condition ρ+ 3P/c2 > 0. The
acceleration equation is

ä

a
= −4πG

3
(ρ+ 3P/c2) +

1

3
Λc2.

If Λ 6 0, show that
d

dt
(H−1) > 1.

Deduce that H → ∞ and a → 0 at a finite time in the past or the future. What property
of H distinguishes the two cases?

Give a simple counterexample with ρ = P = 0 to show that this deduction fails to
hold when Λ > 0.

Paper 3, Section I

10E Cosmology
Consider a finite sphere of zero-pressure material of uniform density ρ(t) which

expands with radius r(t) = a(t)r0, where r0 is an arbitary constant, due to the evolution
of the expansion scale factor a(t). The sphere has constant total mass M and its radius
satisfies

r̈ = −dΦ

dr
,

where

Φ(r) = −GM

r
− 1

6
Λr2c2,

with Λ constant. Show that the scale factor obeys the equation

ȧ2

a2
=

8πGρ

3
− Kc2

a2
+

1

3
Λc2,

where K is a constant. Explain why the sign, but not the magnitude, of K is important.
Find exact solutions of this equation for a(t) when

(i) K = Λ = 0 and ρ(t) 6= 0,

(ii) ρ = K = 0 and Λ > 0,

(iii) ρ = Λ = 0 and K 6= 0.

Which two of the solutions (i)–(iii) are relevant for describing the evolution of the
universe after the radiation-dominated era?
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Paper 2, Section I

10E Cosmology
A self-gravitating fluid with density ρ, pressure P (ρ) and velocity v in a gravitational

potential Φ obeys the equations

∂ρ

∂t
+∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v +

∇P

ρ
+∇Φ = 0 ,

∇2Φ = 4πGρ .

Assume that there exists a static constant solution of these equations with v = 0, ρ = ρ0
and Φ = Φ0, for which ∇Φ0 can be neglected. This solution is perturbed. Show that, to
first order in the perturbed quantities, the density perturbations satisfy

∂2ρ1
∂t2

= c2s∇2ρ1 + 4πGρ0ρ1 ,

where ρ = ρ0 + ρ1(x, t) and c2s = dP/dρ. Show that there are solutions to this equation of
the form

ρ1(x, t) = A exp[−ik · x+ iωt] ,

where A, ω and k are constants and

ω2 = c2s k · k− 4πGρ0 .

Interpret these solutions physically in the limits of small and large |k|, explaining what
happens to density perturbations on large and small scales, and determine the critical
wavenumber that divides the two distinct behaviours of the perturbation.
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Paper 1, Section I

10E Cosmology
Which particle states are expected to be relativistic and which interacting when the

temperature T of the early universe satisfies

(i) 1010 K < T < 5× 1010 K,

(ii) 5× 109 K < T < 1010 K,

(iii) T < 5× 109 K?

Calculate the total spin weight factor, g∗, of the relativistic particles and the total spin
weight factor, gI , of the interacting particles, in each of the three temperature intervals.

What happens when the temperature falls below 5 × 109 K? Calculate the ratio
of the temperatures of neutrinos and photons. Find the effective value of g∗ after the
universe cools below this temperature. [Note that the equilibrium entropy density is given
by s = (ρc2 + P )/T , where ρ is the density and P is the pressure.]

Paper 3, Section II

15E Cosmology
The luminosity distance to an astronomical light source is given by dL = χ/a(t),

where a(t) is the expansion scale factor and χ is the comoving distance in the universe
defined by dt = a(t)dχ. A zero-curvature Friedmann universe containing pressure-free
matter and a cosmological constant with density parameters Ωm and ΩΛ ≡ 1 − Ωm,
respectively, obeys the Friedmann equation

H2 = H2
0

(
Ωm0

a3
+ΩΛ0

)
,

where H = (da/dt)/a is the Hubble expansion rate of the universe and the subscript 0

denotes present-day values, with a0 ≡ 1.

If z is the redshift, show that

dL(z) =
1 + z

H0

∫ z

0

dz′

[(1− ΩΛ0)(1 + z′)3 +ΩΛ0]
1/2

.

Find dL(z) when ΩΛ0 = 0 and when Ωm0 = 0. Roughly sketch the form of dL(z) for
these two cases. What is the effect of a cosmological constant Λ on the luminosity distance
at a fixed value of z? Briefly describe how the relation between luminosity distance and
redshift has been used to establish the acceleration of the expansion of the universe.
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Paper 1, Section II

15E Cosmology
What are the cosmological flatness and horizon problems? Explain what form of

time evolution of the cosmological expansion scale factor a(t) must occur during a period
of inflationary expansion in a Friedmann universe. How can inflation solve the horizon and
flatness problems? [You may assume an equation of state where pressure P is proportional
to density ρ.]

The universe has Hubble expansion rate H = ȧ/a and contains only a scalar field φ
with self-interaction potential V (φ) > 0. The density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) ,

P =
1

2
φ̇2 − V (φ) ,

in units where c = ~ = 1. Show that the conservation equation

ρ̇+ 3H(ρ+ P ) = 0

requires
φ̈+ 3Hφ̇+ dV/dφ = 0 .

If the Friedmann equation has the form

3H2 = 8πGρ

and the scalar-field potential has the form

V (φ) = V0e
−λφ ,

where V0 and λ are positive constants, show that there is an exact cosmological solution
with

a(t) ∝ t16πG/λ2
,

φ(t) = φ0 +
2

λ
ln(t) ,

where φ0 is a constant. Find the algebraic relation between λ, V0 and φ0. Show that a
solution only exists when 0 < λ2 < 48πG. For what range of values of λ2 does inflation
occur? Comment on what happens when λ → 0.
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Paper 4, Section II

24G Differential Geometry

Let I = [0, l] be a closed interval, k(s), τ(s) smooth real valued functions on I with

k strictly positive at all points, and t0,n0,b0 a positively oriented orthonormal triad of

vectors in R3. An application of the fundamental theorem on the existence of solutions to

ODEs implies that there exists a unique smooth family of triples of vectors t(s),n(s),b(s)

for s ∈ I satisfying the differential equations

t′ = kn, n′ = −kt− τb, b′ = τn,

with initial conditions t(0) = t0, n(0) = n0 and b(0) = b0, and that {t(s),n(s),b(s)}
forms a positively oriented orthonormal triad for all s ∈ I. Assuming this fact, consider

α : I → R3 defined by α(s) =
∫ s
0 t(t)dt; show that α defines a smooth immersed curve

parametrized by arc-length, which has curvature and torsion given by k(s) and τ(s), and

that α is uniquely determined by this property up to rigid motions of R3. Prove that α

is a plane curve if and only if τ is identically zero.

If a > 0, calculate the curvature and torsion of the smooth curve given by

α(s) = (a cos(s/c), a sin(s/c), bs/c), where c =
√

a2 + b2.

Suppose now that α : [0, 2π] → R3 is a smooth simple closed curve parametrized by

arc-length with curvature everywhere positive. If both k and τ are constant, show that

k = 1 and τ = 0. If k is constant and τ is not identically zero, show that k > 1. Explain

what it means for α to be knotted; if α is knotted and τ is constant, show that k(s) > 2

for some s ∈ [0, 2π]. [You may use standard results from the course if you state them

precisely.]
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Paper 3, Section II

24G Differential Geometry

Let α : I → S be a parametrized curve on a smooth embedded surface S ⊂ R3.

Define what is meant by a vector field V along α and the concept of such a vector field

being parallel. If V and W are both parallel vector fields along α, show that the inner

product 〈V (t),W (t)〉 is constant.
Given a local parametrization φ : U → S, define the Christoffel symbols Γi

jk on U .

Given a vector v0 ∈ Tα(0)S, prove that there exists a unique parallel vector field V (t) along

α with V (0) = v0 (recall that V (t) is called the parallel transport of v0 along α).

Suppose now that the image of α also lies on another smooth embedded surface

S′ ⊂ R3 and that Tα(t)S = Tα(t)S
′ for all t ∈ I. Show that parallel transport of a vector

v0 is the same whether calculated on S or S′. Suppose S is the unit sphere in R3 with

centre at the origin and let α : [0, 2π] → S be the curve on S given by

α(t) = (sinφ cos t, sinφ sin t, cosφ)

for some fixed angle φ. Suppose v0 ∈ TPS is the unit tangent vector to α at P = α(0) =

α(2π) and let v1 be its image in TPS under parallel transport along α. Show that the

angle between v0 and v1 is 2π cosφ.

[Hint: You may find it useful to consider the circular cone S′ which touches the sphere S

along the curve α.]

Paper 2, Section II

25G Differential Geometry

Define the terms Gaussian curvature K and mean curvature H for a smooth

embedded oriented surface S ⊂ R3. [You may assume the fact that the derivative of

the Gauss map is self-adjoint.] If K = H2 at all points of S, show that both H and K are

locally constant. [Hint: Use the symmetry of second partial derivatives of the field of unit

normal vectors.]

If K = H2 = 0 at all points of S, show that the unit normal vector N to S is

locally constant and that S is locally contained in a plane. If K = H2 is a strictly positive

constant on S and φ : U → S is a local parametrization (where U is connected) on S with

unit normal vector N(u, v) for (u, v) ∈ U , show that φ(u, v) + N(u, v)/H is constant on

U . Deduce that S is locally contained in a sphere of radius 1/|H|.
If S is connected with K = H2 at all points of S, deduce that S is contained in

either a plane or a sphere.
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Paper 1, Section II

25G Differential Geometry

Define the concepts of (smooth) manifold and manifold with boundary for subsets

of RN .

Let X ⊂ R6 be the subset defined by the equations

x21 + x22 + x23 − x24 = 1, x24 − x25 − x26 = −1.

Prove that X is a manifold of dimension four.

For a > 0, let B(a) ⊂ R6 denote the spherical ball x21 + . . . + x26 6 a. Prove that

X ∩ B(a) is empty if a < 2, is a manifold diffeomorphic to S2 × S1 if a = 2, and is a

manifold with boundary if a > 2, with each component of the boundary diffeomorphic to

S2 × S1.

[You may quote without proof any general results from lectures that you may need.]
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Paper 4, Section I

7D Dynamical Systems
Consider the map xn+1 = λxn(1 − x2n) for −1 6 xn 6 1. What is the maximum

value, λmax, for which the interval [−1, 1] is mapped into itself?

Analyse the first two bifurcations that occur as λ increases from 0 towards λmax,
including an identification of the values of λ at which the bifurcation occurs and the type
of bifurcation.

What type of bifurcation do you expect as the third bifurcation? Briefly give your
reasoning.

Paper 3, Section I

7D Dynamical Systems
Define the Poincaré index of a closed curve C for a vector field f(x), x ∈ R2.

Explain carefully why the index of C is fully determined by the fixed points of the
dynamical system ẋ = f(x) that lie within C.

What is the Poincaré index for a closed curve C if it (a) encloses only a saddle point,
(b) encloses only a focus and (c) encloses only a node?

What is the Poincaré index for a closed curve C that is a periodic trajectory of the
dynamical system?

A dynamical system in R2 has 2 saddle points, 1 focus and 1 node. What is the
maximum number of different periodic orbits? [For the purposes of this question, two
orbits are said to be different if they enclose different sets of fixed points.]
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Paper 2, Section I

7D Dynamical Systems
Consider the system

ẋ = −x+ y + y2,

ẏ = µ− xy .

Show that when µ = 0 the fixed point at the origin has a stationary bifurcation.

Find the centre subspace of the extended system linearised about (x, y, µ) = (0, 0, 0).

Find an approximation to the centre manifold giving y as a function of x and µ,
including terms up to quadratic order.

Hence deduce an expression for ẋ on the centre manifold, and identify the type of
bifurcation at µ = 0.

Paper 1, Section I

7D Dynamical Systems
Consider the system

ẋ = y + xy ,

ẏ = x− 3
2y + x2.

Show that the origin is a hyperbolic fixed point and find the stable and unstable
invariant subspaces of the linearised system.

Calculate the stable and unstable manifolds correct to quadratic order, expressing
y as a function of x for each.
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Paper 4, Section II

14D Dynamical Systems
A dynamical system ẋ = f(x) has a fixed point at the origin. Define the terms

Lyapunov stability, asymptotic stability and Lyapunov function with respect to this fixed
point. State and prove Lyapunov’s first theorem and state (without proof) La Salle’s
invariance principle.

(a) Consider the system

ẋ = y ,

ẏ = −y − x3 + x5.

Construct a Lyapunov function of the form V = f(x)+g(y). Deduce that the origin
is asymptotically stable, explaining your reasoning carefully. Find the greatest value of
y0 such that use of this Lyapunov function guarantees that the trajectory through (0, y0)
approaches the origin as t → ∞.

(b) Consider the system

ẋ = x+ 4y + x2 + 2y2,

ẏ = −3x− 3y .

Show that the origin is asymptotically stable and that the basin of attraction of the
origin includes the region x2 + xy + y2 < 1

4 .
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Paper 3, Section II

14D Dynamical Systems
Let f : I → I be a continuous one-dimensional map of an interval I ⊂ R. Explain

what is meant by saying that f has a horseshoe.

A map g on the interval [a, b] is a tent map if

(i) g(a) = a and g(b) = a;

(ii) for some c with a < c < b, g is linear and increasing on the interval [a, c], linear and
decreasing on the interval [c, b], and continuous at c.

Consider the tent map defined on the interval [0, 1] by

f(x) =

{
µx 0 6 x 6 1

2

µ(1− x) 1
2 6 x 6 1

with 1 < µ 6 2. Find the corresponding expressions for f2(x) = f(f(x)).

Find the non-zero fixed point x0 and the points x−1 <
1
2 < x−2 that satisfy

f2(x−2) = f(x−1) = x0 = f(x0) .

Sketch graphs of f and f2 showing the points corresponding to x−2, x−1 and x0.
Indicate the values of f and f2 at their maxima and minima and also the gradients of
each piece of their graphs.

Identify a subinterval of [0, 1] on which f2 is a tent map. Hence demonstrate that
f2 has a horseshoe if µ > 21/2.

Explain briefly why f4 has a horseshoe when µ > 21/4.

Why are there periodic points of f arbitrarily close to x0 for µ > 21/2, but no such
points for 21/4 6 µ < 21/2? Explain carefully any results or terms that you use.
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Paper 4, Section II

35C Electrodynamics
(i) The action S for a point particle of rest mass m and charge q moving along a

trajectory xµ(λ) in the presence of an electromagnetic 4-vector potential Aµ is

S = −mc

∫ (
−ηµν

dxµ

dλ

dxν

dλ

)1/2

dλ+ q

∫
Aµ

dxµ

dλ
dλ ,

where λ is an arbitrary parametrization of the path and ηµν is the Minkowski metric. By
varying the action with respect to xµ(λ), derive the equation of motion mẍµ = qFµ

ν ẋ
ν ,

where Fµν = ∂µAν −∂νAµ and overdots denote differentiation with respect to proper time
for the particle.

(ii) The particle moves in constant electric and magnetic fields with non-zero
Cartesian components Ez = E and By = B, with B > E/c > 0 in some inertial frame.
Verify that a suitable 4-vector potential has components

Aµ = (0, 0, 0,−Bx −Et)

in that frame.

Find the equations of motion for x, y, z and t in terms of proper time τ . For the
case of a particle that starts at rest at the spacetime origin at τ = 0, show that

z̈ +
q2

m2

(
B2 − E2

c2

)
z =

qE

m
.

Find the trajectory xµ(τ) and sketch its projection onto the (x, z) plane.
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Paper 3, Section II

36C Electrodynamics
The 4-vector potential Aµ(t,x) (in the Lorenz gauge ∂µA

µ = 0) due to a localised
source with conserved 4-vector current Jµ is

Aµ(t,x) =
µ0

4π

∫
Jµ(tret,x

′)
|x− x′| d3x′ ,

where tret = t− |x − x′|/c. For a source that varies slowly in time, show that the spatial
components of Aµ at a distance r = |x| that is large compared to the spatial extent of the
source are

A(t,x) ≈ µ0

4πr

dP

dt

∣∣∣∣
t−r/c

,

where P is the electric dipole moment of the source, which you should define. Explain
what is meant by the far-field region, and calculate the leading-order part of the magnetic
field there.

A point charge q moves non-relativistically in a circle of radius a in the (x, y) plane
with angular frequency ω (such that aω ≪ c). Show that the magnetic field in the far-field
at the point x with spherical polar coordinates r, θ and φ has components along the θ and
φ directions given by

Bθ ≈ −µ0ω
2qa

4πrc
sin[ω(t− r/c)− φ] ,

Bφ ≈ µ0ω
2qa

4πrc
cos[ω(t− r/c)− φ] cos θ .

Calculate the total power radiated by the charge.
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Paper 1, Section II

36C Electrodynamics
(i) Starting from the field-strength tensor Fµν = ∂µAν−∂νAµ, where A

µ = (φ/c,A)
is the 4-vector potential with components such that

E = −∂A

∂t
−∇φ and B = ∇×A ,

derive the transformation laws for the components of the electric field E and the magnetic
field B under the standard Lorentz boost x′µ = Λµ

νx
ν with

Λµ
ν =




γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1


 .

(ii) Two point charges, each with electric charge q, are at rest and separated by a
distance d in some inertial frame S. By transforming the fields from the rest frame S,
calculate the magnitude and direction of the force between the two charges in an inertial
frame in which the charges are moving with speed βc in a direction perpendicular to their
separation.

(iii) The 4-force for a particle with 4-momentum pµ is Fµ = dpµ/dτ , where τ is
proper time. Show that the components of Fµ in an inertial frame in which the particle
has 3-velocity v are

Fµ = γ (F · v/c,F) ,
where γ = (1 − v · v/c2)−1/2 and F is the 3-force acting on the particle. Hence verify
that your result in (ii) above is consistent with Lorentz transforming the electromagnetic
3-force from the rest frame S.

Part II, 2014 List of Questions



39

Paper 4, Section II

37B Fluid Dynamics II
An incompressible fluid of density ρ and kinematic viscosity ν is confined in a channel

with rigid stationary walls at y = ±h. A spatially uniform pressure gradient −G cosωt is
applied in the x-direction. What is the physical significance of the dimensionless number
S = ωh2/ν?

Assuming that the flow is unidirectional and time-harmonic, obtain expressions for
the velocity profile and the total flux. [You may leave your answers as the real parts of
complex functions.]

In each of the limits S → 0 and S → ∞, find and sketch the flow profiles, find
leading-order asymptotic expressions for the total flux, and give a physical interpretation.

Suppose now that G = 0 and that the channel walls oscillate in their own plane with
velocity U cosωt in the x-direction. Without explicit calculation of the solution, sketch
the flow profile in each of the limits S → 0 and S → ∞.

Paper 2, Section II

37B Fluid Dynamics II
Air is blown over the surface of a large, deep reservoir of water in such a way as to

exert a tangential stress in the x-direction of magnitude Kx2 for x > 0, with K > 0. The
water is otherwise at rest and occupies the region y > 0. The surface y = 0 remains flat.

Find order-of-magnitude estimates for the boundary-layer thickness δ(x) and tan-
gential surface velocity U(x) in terms of the relevant physical parameters.

Using the boundary-layer equations, find the ordinary differential equation govern-
ing the dimensionless function f defined in the streamfunction

ψ(x, y) = U(x)δ(x)f(η), where η = y/δ(x).

What are the boundary conditions on f?

Does f → 0 as η → ∞? Why, or why not?

The total horizontal momentum flux P (X) across the vertical line x = X is
proportional to Xa for X > 0. Find the exponent a. By considering the steadiness of the
momentum balance in the region 0 < x < X, explain why the value of a is consistent with
the form of the stress exerted on the boundary.
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Paper 3, Section II

38B Fluid Dynamics II
A rigid sphere of radius a falls under gravity through an incompressible fluid of

density ρ and viscosity µ towards a rigid horizontal plane. The minimum gap h0(t) between
the sphere and the plane satisfies h0 ≪ a. Find an approximation for the gap thickness
h(r, t) between the sphere and the plane in the region r ≪ a, where r is the distance from
the axis of symmetry.

For a prescribed value of ḣ0 = dh0/dt, use lubrication theory to find the radial
velocity and the fluid pressure in the region r ≪ a. Explain why the approximations of
lubrication theory require h0 ≪ a and ρh0ḣ0 ≪ µ.

Calculate the total vertical force due to the motion that is exerted by the fluid
on the sphere. Deduce that if the sphere is settling under its own weight (corrected for
buoyancy) then h0(t) decreases exponentially. What is the exponential decay rate for a
solid sphere of density ρs in a fluid of density ρf?

Paper 1, Section II

38B Fluid Dynamics II
A particle of arbitrary shape and volume 4πa3/3 moves at velocity U(t) through an

unbounded incompressible fluid of density ρ and viscosity µ. The Reynolds number of the
flow is very small so that the inertia of the fluid can be neglected. Show that the particle
experiences a force F(t) due to the surface stresses given by

Fi(t) = −µaAijUj(t),

where Aij is a dimensionless second-rank tensor determined solely by the shape and
orientation of the particle. State the reason why Aij must be positive definite.

Show further that, if the particle has the same reflectional symmetries as a cube,
then

Aij = λδij .

Let b be the radius of the smallest sphere that contains the particle (still assuming
cubic symmetry). By considering the Stokes flow associated with this sphere, suitably
extended, and using the minimum dissipation theorem (which should be stated carefully),
show that

λ 6 6πb/a.

[You may assume the expression for the Stokes drag on a sphere.]
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8B Further Complex Methods
Let f : C → C be a function such that

f(z + ω1) = f(z) , f(z + ω2) = f(z) , (1)

where ω1, ω2 ∈ C\{0} and ω1/ω2 is not real. Show that if f is analytic on C then it is a
constant. [Liouville’s theorem may be used if stated.] Give an example of a non-constant
meromorphic function which satisfies (1).

Paper 3, Section I

8B Further Complex Methods
State the conditions for a point z = z0 to be a regular singular point of a linear

second-order homogeneous ordinary differential equation in the complex plane.

Find all singular points of the Airy equation

w′′(z)− zw(z) = 0 ,

and determine whether they are regular or irregular.

Paper 1, Section I

8B Further Complex Methods
Show that the Cauchy–Riemann equations for f : C → C are equivalent to

∂f

∂z̄
= 0 ,

where z = x + iy, and ∂/∂z̄ should be defined in terms of ∂/∂x and ∂/∂y. Use Green’s
theorem, together with the formula dz dz̄ = −2i dx dy, to establish the generalised Cauchy
formula ∮

γ
f(z, z̄) dz = −

∫ ∫

D

∂f

∂z̄
dz dz̄ ,

where γ is a contour in the complex plane enclosing the region D and f is sufficiently
differentiable.
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8B Further Complex Methods
Suppose z = 0 is a regular singular point of a linear second-order homogeneous

ordinary differential equation in the complex plane. Define the monodromy matrix M
around z = 0.

Demonstrate that if

M =

(
1 1
0 1

)

then the differential equation admits a solution of the form a(z) + b(z) log z, where a(z)
and b(z) are single-valued functions.

Paper 2, Section II

14B Further Complex Methods
Use the Euler product formula

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)

to show that:

(i) Γ(z + 1) = zΓ(z) ;

(ii)
1

Γ(z)
= zeγz

∞∏

k=1

(
1 +

z

k

)
e−z/k, where γ = lim

n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
.

Deduce that
d

dz
log (Γ(z)) = −γ − 1

z
+ z

∞∑

k=1

1

k(z + k)
.
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Paper 1, Section II

14B Further Complex Methods
Obtain solutions of the second-order ordinary differential equation

zw′′ − w = 0

in the form

w(z) =

∫

γ
f(t)e−zt dt,

where the function f and the choice of contour γ should be determined from the differential
equation.

Show that a non-trivial solution can be obtained by choosing γ to be a suitable
closed contour, and find the resulting solution in this case, expressing your answer in the
form of a power series.

Describe a contour γ that would provide a second linearly independent solution for
the case Re(z) > 0.
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18H Galois Theory
(i) Let G be a finite subgroup of the multiplicative group of a field. Show that G is

cyclic.

(ii) Let Φn(X) be the nth cyclotomic polynomial. Let p be a prime not dividing n,
and let L be a splitting field for Φn over Fp. Show that L has pm elements, where m is
the least positive integer such that pm ≡ 1 (mod n).

(iii) Find the degrees of the irreducible factors of X35 − 1 over F2, and the number
of factors of each degree.

Paper 3, Section II

18H Galois Theory
Let L/K be an algebraic extension of fields, and x ∈ L. What does it mean to say

that x is separable over K? What does it mean to say that L/K is separable?

Let K = Fp(t) be the field of rational functions over Fp.

(i) Show that if x is inseparable over K then K(x) contains a pth root of t.

(ii) Show that if L/K is finite there exists n > 0 and y ∈ L such that yp
n
= t and

L/K(y) is separable.

Show that Y 2+tY +t is an irreducible separable polynomial over the field of rational
functions K = F2(t). Find the degree of the splitting field of X4 + tX2 + t over K.

Paper 2, Section II

18H Galois Theory
Describe the Galois correspondence for a finite Galois extension L/K.

Let L be the splitting field of X4 − 2 over Q. Compute the Galois group G of L/Q.
For each subgroup of G, determine the corresponding subfield of L.

Let L/K be a finite Galois extension whose Galois group is isomorphic to Sn. Show
that L is the splitting field of a separable polynomial of degree n.
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18H Galois Theory
What is meant by the statement that L is a splitting field for f ∈ K[X]?

Show that if f ∈ K[X], then there exists a splitting field for f over K. Explain the
sense in which a splitting field for f over K is unique.

Determine the degree [L : K] of a splitting field L of the polynomial f = X4−4X2+2
over K in the cases (i) K = Q, (ii) K = F5, and (iii) K = F7.
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36E General Relativity
A plane-wave spacetime has line element

ds2 = Hdu2 + 2du dv + dx2 + dy2,

where H = x2 − y2. Show that the line element is unchanged by the coordinate
transformation

u = ū, v = v̄ + x̄eū − 1
2e

2ū, x = x̄− eū, y = ȳ. (∗)

Show more generally that the line element is unchanged by coordinate transforma-
tions of the form

u = ū+ a, v = v̄ + bx̄+ c, x = x̄+ p, y = ȳ,

where a, b, c and p are functions of ū, which you should determine and which depend in
total on four parameters (arbitrary constants of integration).

Deduce (without further calculation) that the line element is unchanged by a 6-
parameter family of coordinate transformations, of which a 5-parameter family leave
invariant the surfaces u = constant.

For a general coordinate transformation xa = xa(x̄b), give an expression for the
transformed Ricci tensor R̄cd in terms of the Ricci tensor Rab and the transformation

matrices
∂xa

∂x̄c
. Calculate R̄x̄x̄ when the transformation is given by (∗) and deduce that

Rvv = Rvx.

Paper 2, Section II

36E General Relativity
Show how the geodesic equations and hence the Christoffel symbols Γa

bc can be
obtained from a Lagrangian.

In units with c = 1, the FLRW spacetime line element is

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) .

Show that Γ1
01 = ȧ/a.

You are given that, for the above metric, G0
0 = −3ȧ2/a2 and G1

1 = −2ä/a− ȧ2/a2,
where Ga

b is the Einstein tensor, which is diagonal. Verify by direct calculation that
∇bGa

b = 0.

Solve the vacuum Einstein equations in the presence of a cosmological constant to de-
termine the form of a(t).
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37E General Relativity
The vector field V a is the normalised (VaV

a = −c2) tangent to a congruence of
timelike geodesics, and Bab = ∇bVa.

Show that:

(i) V aBab = V bBab = 0 ;

(ii) V c∇cBab = −Bc
bBac −Rd

acbV
cVd .

[You may use the Ricci identity ∇c∇bXa = ∇b∇cXa −Rd
acbXd .]

Now assume that Bab is symmetric and let θ = Ba
a. By writing Bab = B̃ab +

1
4θgab,

or otherwise, show that
dθ

dτ
6 −1

4θ
2 −R00 ,

where R00 = RabV
aV b and

dθ

dτ
≡ V a∇aθ. [You may use without proof the result that

B̃abB̃
ab > 0.]

Assume, in addition, that the stress-energy tensor Tab takes the perfect-fluid form
(ρ+ p/c2)VaVb + pgab and that ρc2 + 3p > 0. Show that

dθ−1

dτ
>

1

4
,

and deduce that, if θ(0) < 0, then |θ(τ)| will become unbounded for some value of τ less
than 4/|θ(0)|.

Part II, 2014 List of Questions [TURN OVER



48

Paper 1, Section II

37E General Relativity
For a timelike geodesic in the equatorial plane (θ = 1

2π) of the Schwarzschild space-
time with line element

ds2 = −(1− rs/r)c
2dt2 + (1− rs/r)

−1dr2 + r2(dθ2 + sin2 θ dφ2) ,

derive the equation
1
2 ṙ

2 + V (r) = 1
2(E/c)2 ,

where
2V (r)

c2
= 1− rs

r
+

h2

c2r2
− h2rs

c2r3

and h and E are constants. The dot denotes the derivative with respect to an affine
parameter τ satisfying c2dτ2 = −ds2.

Given that there is a stable circular orbit at r = R, show that

h2

c2
=

R2ǫ

2− 3ǫ
,

where ǫ = rs/R.

Compute Ω, the orbital angular frequency (with respect to τ).

Show that the angular frequency ω of small radial perturbations is given by

ω2R2

c2
=

ǫ(1− 3ǫ)

2− 3ǫ
.

Deduce that the rate of precession of the perihelion of the Earth’s orbit, Ω − ω,
is approximately 3Ω3T 2, where T is the time taken for light to travel from the Sun to
the Earth. [You should assume that the Earth’s orbit is approximately circular, with
rs/R ≪ 1 and E ≃ c2.]
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3F Geometry and Groups
Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite

orbit in H3 ∪S2
∞, and that Λ(G) 6= ∅, prove that if E ⊂ C∪ {∞} is any non-empty closed

set which is invariant under G, then Λ(G) ⊂ E.

Paper 3, Section I

3F Geometry and Groups
Let H2 denote the hyperbolic plane, and T ⊂ H2 be a non-degenerate triangle,

i.e. the bounded region enclosed by three finite-length geodesic arcs. Prove that the three
angle bisectors of T meet at a point.

Must the three vertices of T lie on a hyperbolic circle? Justify your answer.

Paper 2, Section I

3F Geometry and Groups
Let g, h be non-identity Möbius transformations. Prove that g and h commute if

and only if one of the following holds:

1. Fix(g) = Fix(h);

2. g, h are involutions each of which exchanges the other’s fixed points.

Give an example to show that the second case can occur.

Paper 1, Section I

3F Geometry and Groups
Let G 6 SO(3) be a finite group. Suppose G does not preserve any plane in R3.

Show that for any point p in the unit sphere S2 ⊂ R3, the stabiliser StabG(p) contains at
most 5 elements.
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11F Geometry and Groups
Prove that an orientation-preserving isometry of the ball-model of hyperbolic space

H3 which fixes the origin is an element of SO(3). Hence, or otherwise, prove that a finite
subgroup of the group of orientation-preserving isometries of hyperbolic space H3 has a
common fixed point.

Can an infinite non-cyclic subgroup of the isometry group of H3 have a common
fixed point? Can any such group be a Kleinian group? Justify your answers.

Paper 4, Section II

12F Geometry and Groups
Define the s-dimensional Hausdorff measure Hs(F ) of a set F ⊂ RN . Explain briefly

how properties of this measure may be used to define the Hausdorff dimension dimH(F )
of such a set.

Prove that the limit sets of conjugate Kleinian groups have equal Hausdorff
dimension. Hence, or otherwise, prove that there is no subgroup of PSL(2,R) which
is conjugate in PSL(2,C) to PSL(2,Z ⊕ Zi).
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17I Graph Theory

Define the Ramsey number R(r)(s, t). What is the value of R(1)(s, t)? Prove that

R(r)(s, t) 6 1+R(r−1)(R(r)(s−1, t), R(r)(s, t−1)) holds for r > 2 and deduce that R(r)(s, t)

exists.

Show that R(2)(3, 3) = 6 and that R(2)(3, 4)=9.

Show that 7 6 R(3)(4, 4) 6 19. [Hint: For the lower bound, choose a suitable subset

U and colour e red if |U ∩ e| is odd.]

Paper 3, Section II

17I Graph Theory
Prove that χ(G) 6 ∆(G) + 1 for every graph G. Prove further that, if κ(G) > 3,

then χ(G) 6 ∆(G) unless G is complete.

Let k > 2. A graph G is said to be k-critical if χ(G) = k + 1, but χ(G− v) = k for
every vertex v of G. Show that, if G is k-critical, then κ(G) > 2.

Let k > 2, and let H be the graph Kk+1 with an edge removed. Show that H has the
following property: it has two vertices which receive the same colour in every k-colouring
of H. By considering two copies of H, construct a k-colourable graph G of order 2k + 1
with the following property: it has three vertices which receive the same colour in every
k-colouring of G.

Construct, for all integers k > 2 and ℓ > 2, a k-critical graph G of order ℓk+1 with
κ(G) = 2.

Paper 2, Section II

17I Graph Theory

Let k and n be integers with 1 6 k < n. Show that every connected graph of

order n, in which d(u) + d(v) > k for every pair u, v of non-adjacent vertices, contains a

path of length k.

Let k and n be integers with 1 6 k 6 n. Show that a graph of order n that contains

no path of length k has at most (k − 1)n/2 edges, and that this value is achieved only if

k divides n and G is the union of n/k disjoint copies of Kk. [Hint: Proceed by induction

on n and consider a vertex of minimum degree.]

Part II, 2014 List of Questions [TURN OVER



52

Paper 1, Section II

17I Graph Theory

Show that a graph is bipartite if and only if all of its cycles are of even length.

Show that a bridgeless plane graph is bipartite if and only if all of its faces are of

even length.

Let G be an Eulerian plane graph. Show that the faces of G can be coloured with

two colours so that no two contiguous faces have the same colour. Deduce that it is

possible to assign a direction to each edge of G in such a way that the edges around each

face form a directed cycle.
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32D Integrable Systems
What does it mean to say that a finite-dimensional Hamiltonian system is integrable?

State the Arnold–Liouville theorem.

A six-dimensional dynamical system with coordinates (x1, x2, x3, y1, y2, y3) is gov-
erned by the differential equations

dxi
dt

= − 1

2π

∑

j 6=i

Γj(yi − yj)

(xi − xj)2 + (yi − yj)2
,

dyi
dt

=
1

2π

∑

j 6=i

Γj(xi − xj)

(xi − xj)2 + (yi − yj)2

for i = 1, 2, 3, where {Γi}3i=1 are positive constants. Show that these equations can be
written in the form

Γi
dxi
dt

=
∂F

∂yi
, Γi

dyi
dt

= −∂F

∂xi
, i = 1, 2, 3

for an appropriate function F . By introducing the coordinates

q = (x1, x2, x3) , p = (Γ1y1,Γ2y2,Γ3y3) ,

show that the system can be written in Hamiltonian form

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q

for some Hamiltonian H = H(q,p) which you should determine.

Show that the three functions

A =

3∑

i=1

Γixi, B =

3∑

i=1

Γiyi, C =

3∑

i=1

Γi

(
x2i + y2i

)

are first integrals of the Hamiltonian system.

Making use of the fundamental Poisson brackets {qi, qj} = {pi, pj} = 0 and
{qi, pj} = δij, show that

{A,C} = 2B, {B,C} = −2A.

Hence show that the Hamiltonian system is integrable.
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32D Integrable Systems
Let u = u(x) be a smooth function that decays rapidly as |x| → ∞ and let

L = −∂2
x + u(x) denote the associated Schrödinger operator. Explain very briefly each of

the terms appearing in the scattering data

S =
{
{χn, cn}Nn=1, R(k)

}
,

associated with the operator L. What does it mean to say u(x) is reflectionless?

Given S, define the function

F (x) =
N∑

n=1

c2ne
−χnx +

1

2π

∫ ∞

−∞
eikxR(k) dk .

If K = K(x, y) is the unique solution to the GLM equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y) dz = 0 ,

what is the relationship between u(x) and K(x, x)?

Now suppose that u = u(x, t) is time dependent and that it solves the KdV equation
ut + uxxx − 6uux = 0. Show that L = −∂2

x + u(x, t) obeys the Lax equation

Lt = [L,A], where A = 4∂3
x − 3(u∂x + ∂xu) .

Show that the discrete eigenvalues of L are time independent.

In what follows you may assume the time-dependent scattering data take the form

S(t) =

{{
χn, cne

4χ3
nt
}N

n=1
, R(k, 0)e8ik

3t

}
.

Show that if u(x, 0) is reflectionless, then the solution to the KdV equation takes the form

u(x, t) = −2
∂2

∂x2
log [detA(x, t)] ,

where A is an N ×N matrix which you should determine.

Assume further that R(k, 0) = k2f(k), where f is smooth and decays rapidly at
infinity. Show that, for any fixed x,

∫ ∞

−∞
eikxR(k, 0) e8ik

3t dk = O(t−1) as t → ∞ .

Comment briefly on the significance of this result.

[You may assume
1

detA

d

dx
(detA) = tr

(
A−1dA

dx

)
for a non-singular matrix A(x).]
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32D Integrable Systems
Consider the coordinate transformation

gǫ : (x, u) 7→ (x̃, ũ) = (x cos ǫ− u sin ǫ, x sin ǫ+ u cos ǫ) .

Show that gǫ defines a one-parameter group of transformations. Define what is meant by
the generator V of a one-parameter group of transformations and compute it for the above
case.

Now suppose u = u(x). Explain what is meant by the first prolongation pr(1)gǫ of
gǫ. Compute pr(1)gǫ in this case and deduce that

pr(1)V = V + (1 + u2x)
∂

∂ux
. (⋆)

Similarly find pr(2)V .

Define what is meant by a Lie point symmetry of the first-order differential equation
∆[x, u, ux] = 0. Describe this condition in terms of the vector field that generates the Lie
point symmetry. Consider the case

∆[x, u, ux] ≡ ux −
u+ xf(x2 + u2)

x− uf(x2 + u2)
,

where f is an arbitrary smooth function of one variable. Using (⋆), show that gǫ generates
a Lie point symmetry of the corresponding differential equation.
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21G Linear Analysis
(i) State carefully the theorems of Stone–Weierstrass and Arzelá–Ascoli (work with

real scalars only).

(ii) Let F denote the family of functions on [0, 1] of the form

f(x) =

∞∑

n=1

an sin(nx),

where the an are real and |an| 6 1/n3 for all n ∈ N. Prove that any sequence in F has a
subsequence that converges uniformly on [0, 1].

(iii) Let f : [0, 1] → R be a continuous function such that f(0) = 0 and f ′(0) exists.
Show that for each ε > 0 there exists a real polynomial p having only odd powers, i.e. of
the form

p(x) = a1x+ a3x
3 + · · · + a2m−1x

2m−1 ,

such that supx∈[0,1]|f(x) − p(x)| < ε. Show that the same holds without the assumption
that f is differentiable at 0.

Paper 1, Section II

22G Linear Analysis
Let X and Y be normed spaces. What is an isomorphism between X and Y ? Show

that a bounded linear map T : X → Y is an isomorphism if and only if T is surjective and
there is a constant c > 0 such that ‖Tx‖ > c‖x‖ for all x ∈ X. Show that if there is an
isomorphism T : X → Y and X is complete, then Y is complete.

Show that two normed spaces of the same finite dimension are isomorphic. [You may
assume without proof that any two norms on a finite-dimensional space are equivalent.]
Briefly explain why this implies that every finite-dimensional space is complete, and every
closed and bounded subset of a finite-dimensional space is compact.

Let Z and F be subspaces of a normed space X with Z ∩F = {0}. Assume that Z
is closed in X and F is finite-dimensional. Prove that Z + F is closed in X. [Hint: First
show that the function x 7→ d(x,Z) = inf{‖x− z‖ : z ∈ Z} restricted to the unit sphere of
F achieves its minimum.]
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22G Linear Analysis
(a) Let X and Y be Banach spaces, and let T : X → Y be a surjective linear map.

Assume that there is a constant c > 0 such that ‖Tx‖ > c‖x‖ for all x ∈ X. Show that
T is continuous. [You may use any standard result from general Banach space theory
provided you clearly state it.] Give an example to show that the assumption that X and
Y are complete is necessary.

(b) Let C be a closed subset of a Banach space X such that

(i) x1 + x2 ∈ C for each x1, x2 ∈ C;

(ii) λx ∈ C for each x ∈ C and λ > 0;

(iii) for each x ∈ X, there exist x1, x2 ∈ C such that x = x1 − x2.

Prove that, for some M > 0, the unit ball of X is contained in the closure of the set

{x1 − x2 : xi ∈ C, ‖xi‖ 6 M (i = 1, 2)} .

[You may use without proof any version of the Baire Category Theorem.] Deduce that,
for some K > 0, every x ∈ X can be written as x = x1 − x2 with xi ∈ C and
‖xi‖ 6 K‖x‖ (i = 1, 2).

Paper 4, Section II

22G Linear Analysis
Define the spectrum σ(T ) and the approximate point spectrum σap(T ) of a bounded

linear operator T on a Banach space. Prove that σap(T ) ⊂ σ(T ) and that σ(T ) is a
closed and bounded subset of C. [You may assume without proof that the set of invertible
operators is open.]

Let T be a hermitian operator on a non-zero Hilbert space. Prove that σ(T ) is not
empty.

Let K be a non-empty, compact subset of C. Show that there is a bounded linear
operator T : ℓ2 → ℓ2 with σ(T ) = K. [You may assume without proof that a compact
metric space is separable.]
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16I Logic and Set Theory
Explain what is meant by a chain-complete poset. State the Bourbaki–Witt fixed-

point theorem.

We call a poset (P,6) Bourbakian if every order-preserving map f : P → P has a
least fixed point µ(f). Suppose P is Bourbakian, and let f, g : P ⇉ P be order-preserving
maps with f(x) 6 g(x) for all x ∈ P ; show that µ(f) 6 µ(g). [Hint: Consider the function
h : P → P defined by h(x) = f(x) if x 6 µ(g), h(x) = µ(g) otherwise.]

Suppose P is Bourbakian and f : α → P is an order-preserving map from an ordinal
to P . Show that there is an order-preserving map g : P → P whose fixed points are exactly
the upper bounds of the set {f(β) | β < α}, and deduce that this set has a least upper
bound.

Let C be a chain with no greatest member. Using the Axiom of Choice and Hartogs’
Lemma, show that there is an order-preserving map f : α → C, for some ordinal α, whose
image has no upper bound in C. Deduce that any Bourbakian poset is chain-complete.

Paper 3, Section II

16I Logic and Set Theory
Explain what is meant by a structure for a first-order signature Σ, and describe

briefly how first-order terms and formulae in the language over Σ are interpreted in a
structure. Suppose that A and B are Σ-structures, and that φ is a conjunction of atomic
formulae over Σ: show that an n-tuple ((a1, b1), . . . , (an, bn)) belongs to the interpretation
[[φ]]A×B of φ in A×B if and only if (a1, . . . , an) ∈ [[φ]]A and (b1, . . . , bn) ∈ [[φ]]B .

A first-order theory T is called regular if its axioms all have the form

(∀→
x)(φ⇒ (∃→

y )ψ),

where
→
x and

→
y are (possibly empty) strings of variables and φ and ψ are conjunctions of

atomic formulae (possibly the empty conjunction ⊤). Show that if A and B are models of
a regular theory T, then so is A×B.

Now suppose that T is a regular theory, and that a sentence of the form

(∀→
x)(φ ⇒ (ψ1 ∨ ψ2 ∨ · · · ∨ ψn))

is derivable from the axioms of T, where φ and the ψi are conjunctions of atomic formu-
lae. Show that the sentence (∀→

x)(φ ⇒ ψi) is derivable for some i. [Hint: Suppose not,
and use the Completeness Theorem to obtain a suitable family of T-models A1, . . . , An.]
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Paper 2, Section II

16I Logic and Set Theory
Write down the recursive definitions of ordinal addition, multiplication and expo-

nentiation. Show that, for any nonzero ordinal α, there exist unique ordinals β, γ and n
such that α = ωβ.n+ γ, γ < ωβ and 0 < n < ω.

Hence or otherwise show that α (that is, the set of ordinals less than α) is closed
under addition if and only if α = ωβ for some β. Show also that an infinite ordinal α is
closed under multiplication if and only if α = ω(ωγ) for some γ.

[You may assume the standard laws of ordinal arithmetic, and the fact that α 6 ωα

for all α.]

Paper 1, Section II

16I Logic and Set Theory
Explain what is meant by saying that a binary relation r ⊆ a × a is well-founded.

Show that r is well-founded if and only if, for any set b and any function f : Pb → b, there
exists a unique function g : a → b satisfying

g(x) = f({g(y) | 〈y, x〉 ∈ r})

for all x ∈ a. [Hint: For ‘if ’, it suffices to take b = {0, 1}, with f : Pb → b defined by
f(b′) = 1 ⇔ 1 ∈ b′.]
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Paper 4, Section I

6B Mathematical Biology
The concentration c(x, t) of a chemical in one dimension obeys the equations

∂c

∂t
=

∂

∂x

(
c2

∂c

∂x

)
,

∫ ∞

−∞
c(x, t) dx = 1 .

State the physical interpretation of each equation.

Seek a similarity solution of the form c = tαf(ξ), where ξ = tβx. Find equations
involving α and β from the differential equation and the integral. Show that these are
satisfied by α = β = −1/4.

Find the solution for f(ξ). Find and sketch the solution for c(x, t).

Paper 3, Section I

6B Mathematical Biology
An epidemic model is given by

dS

dt
= −rIS ,

dI

dt
= +rIS − aI ,

where S(t) are the susceptibles, I(t) are the infecteds, and a and r are positive parameters.
The basic reproduction ratio is defined as R0 = rN/a, where N is the total population
size. Find a condition on R0 for an epidemic to be possible if, initially, S ≈ N and I is
small but non-zero.

Now suppose a proportion p of the population was vaccinated (with a completely
effective vaccine) so that initially S ≈ (1−p)N . On a sketch of the (R0, p) plane, mark the
regions where an epidemic is still possible, where the vaccination will prevent an epidemic,
and where no vaccination was necessary.

For the case when an epidemic is possible, show that σ, the proportion of the initially
susceptible population that has not been infected by the end of an epidemic, satisfies

σ − 1

(1− p)R0
log σ ≈ 1.
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Paper 2, Section I

6B Mathematical Biology
Consider an experiment where two or three individuals are added to a population

with probability λ2 and λ3 respectively per unit time. The death rate in the population
is a constant β per individual per unit time.

Write down the master equation for the probability pn(t) that there are n individuals
in the population at time t. From this, derive an equation for ∂φ

∂t , where φ is the generating
function

φ(s, t) =

∞∑

n=0

snpn(t).

Find the solution for φ in steady state, and show that the mean and variance of the
population size are given by

〈n〉 = 3
λ3

β
+ 2

λ2

β
, var(n) = 6

λ3

β
+ 3

λ2

β
.

Hence show that, for a free choice of λ2 and λ3 subject to a given target mean, the
experimenter can minimise the variance by only adding two individuals at a time.

Paper 1, Section I

6B Mathematical Biology
A population model for two species is given by

dN

dt
= aN − bNP − kN2 ,

dP

dt
= −dP + cNP ,

where a, b, c, d and k are positive parameters. Show that this may be rescaled to

du

dτ
= u(1− v − βu) ,

dv

dτ
= −αv(1− u) ,

and give α and β in terms of the original parameters.

For β < 1 find all fixed points in u > 0, v > 0, and analyse their stability. Assuming
that both populations are present initially, what does this suggest will be the long-term
outcome?
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Paper 3, Section II

13B Mathematical Biology
A discrete-time model for breathing is given by

Vn+1 = αCn−k , (1)

Cn+1 − Cn = γ − βVn+1 , (2)

where Vn is the volume of each breath in time step n and Cn is the concentration of carbon
dioxide in the blood at the end of time step n. The parameters α, β and γ are all positive.
Briefly explain the biological meaning of each of the above equations.

Find the steady state. For k = 0 and k = 1 determine the stability of the steady
state.

For general (integer) k > 1, by seeking parameter values when the modulus of
a perturbation to the steady state is constant, find the range of parameters where the
solution is stable. What is the periodicity of the constant-modulus solution at the edge of
this range? Comment on how the size of the range depends on k.

This can be developed into a more realistic model by changing the term −βVn+1

to −βCnVn+1 in (2). Briefly explain the biological meaning of this change. Show that for
both k = 0 and k = 1 the new steady state is stable if 0 < a < 1, where a =

√
αβγ.

Paper 2, Section II

13B Mathematical Biology
An activator–inhibitor system is described by the equations

∂u

∂t
=

au

v
− u2 + d1

∂2u

∂x2
,

∂v

∂t
= v2 − v

u2
+ d2

∂2v

∂x2
,

where a, d1, d2 > 0.

Find the range of a for which the spatially homogeneous system has a stable
equilibrium solution with u > 0 and v > 0. Determine when the equilibrium is a stable
focus, and sketch the phase diagram for this case (restricting attention to u > 0 and
v > 0).

For the case when the homogeneous system is stable, consider spatial perturbations
proportional to cos(kx) of the solution found above. Briefly explain why the system will
be stable to spatial perturbations with very small or very large k. Find conditions for the
system to be unstable to a spatial perturbation (for some range of k which need not be
given). Sketch the region satisfying these conditions in the (a, d1/d2) plane.

Find kc, the critical wavenumber at the onset of instability, in terms of a and d1.
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Paper 4, Section II

20F Number Fields
Explain what is meant by an integral basis for a number field. Splitting into the

cases d ≡ 1 (mod 4) and d ≡ 2, 3 (mod 4), find an integral basis for K = Q(
√
d) where

d 6= 0, 1 is a square-free integer. Justify your answer.

Find the fundamental unit in Q(
√
13). Determine all integer solutions to the

equation x2 + xy − 3y2 = 17.

Paper 2, Section II

20F Number Fields
(i) Show that each prime ideal in a number fieldK divides a unique rational prime p.

Define the ramification index and residue class degree of such an ideal. State and prove a
formula relating these numbers, for all prime ideals dividing a given rational prime p, to
the degree of K over Q.

(ii) Show that if ζn is a primitive nth root of unity then
∏n−1

j=1 (1− ζjn) = n. Deduce
that if n = pq, where p and q are distinct primes, then 1− ζn is a unit in Z[ζn].

(iii) Show that if K = Q(ζp) where p is prime, then any prime ideal of K dividing
p has ramification index at least p− 1. Deduce that [K : Q] = p− 1.

Paper 1, Section II

20F Number Fields
State a result involving the discriminant of a number field that implies that the

class group is finite.

Use Dedekind’s theorem to factor 2, 3, 5 and 7 into prime ideals in K = Q(
√
−34).

By factoring 1 +
√
−34 and 4 +

√
−34, or otherwise, prove that the class group of K is

cyclic, and determine its order.
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Paper 4, Section I

1F Number Theory
State the Chinese Remainder Theorem.

Find all solutions to the simultaneous congruences

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 5 (mod 7).

A positive integer is said to be square-free if it is the product of distinct primes.
Show that there are 100 consecutive numbers that are not square-free.

Paper 3, Section I

1F Number Theory
Show that the continued fraction for

√
51 is [7; 7, 14].

Hence, or otherwise, find positive integers x and y that satisfy the equation
x2 − 51y2 = 1.

Are there integers x and y such that x2 − 51y2 = −1?

Paper 2, Section I

1F Number Theory
Show that ∑

p6x

1

p
> log log x− 1

2
.

Deduce that there are infinitely many primes.

Paper 1, Section I

1F Number Theory
Define what it means for a number N to be a pseudoprime to the base b.

Show that if there is a base b to which N is not a pseudoprime, then N is a
pseudoprime to at most half of all possible bases.

Let n be an integer greater than 1 such that Fn = 22
n
+ 1 is composite. Show that

Fn is a pseudoprime to the base 2.
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Paper 4, Section II

11F Number Theory
Define the Legendre and Jacobi symbols.

State the law of quadratic reciprocity for the Legendre symbol.

State the law of quadratic reciprocity for the Jacobi symbol, and deduce it from the
corresponding result for the Legendre symbol.

Let p be a prime with p ≡ 1 (mod 4). Prove that the sum of the quadratic residues
in the set {1, 2, . . . , p− 1} is equal to the sum of the quadratic non-residues in this set.

For which primes p is 7 a quadratic residue?

Paper 3, Section II

11F Number Theory
State and prove Lagrange’s theorem about polynomial congruences modulo a prime.

Define the Euler totient function φ.

Let p be a prime and let d be a positive divisor of p−1. Show that there are exactly
φ(d) elements of (Z/pZ)× with order d.

Deduce that (Z/pZ)× is cyclic.

Let g be a primitive root modulo p2. Show that g must be a primitive root modulo p.

Let g be a primitive root modulo p. Must it be a primitive root modulo p2? Give
a proof or a counterexample.

Part II, 2014 List of Questions [TURN OVER



66

Paper 4, Section II

39D Numerical Analysis
Let A be a real symmetric n× n matrix with n distinct real eigenvalues λ1 < λ2 <

· · · < λn and a corresponding orthogonal basis of normalized real eigenvectors {wi}ni=1 .

(i) Let s ∈ R satisfy s < λ1. Given a unit vector x(0) ∈ Rn, the iteration scheme

(A− sI)y = x(k),

x(k+1) = y/‖y‖ ,

generates a sequence of vectors x(k+1) for k = 0, 1, 2, . . . . Assuming that x(0) =
∑

ciwi

with c1 6= 0, prove that x(k) tends to ±w1 as k → ∞. What happens to x(k) if s > λ1?
[Consider all cases.]

(ii) Describe how to implement an inverse-iteration algorithm to compute the
eigenvalues and eigenvectors of A, given some initial estimates for the eigenvalues.

(iii) Let n = 2. For iterates x(k) of an inverse-iteration algorithm with a fixed value
of s 6= λ1, λ2, show that if

x(k) = (w1 + ǫkw2)/(1 + ǫ2k)
1/2 ,

where |ǫk| is small, then |ǫk+1| is of the same order of magnitude as |ǫk|.
(iv) Let n = 2 still. Consider the iteration scheme

sk =
(
x(k) , Ax(k)

)
, (A− skI)y = x(k), x(k+1) = y/‖y‖

for k = 0, 1, 2, . . . , where ( , ) denotes the inner product. Show that with this scheme
|ǫk+1| = |ǫk|3 .
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Paper 2, Section II

39D Numerical Analysis
Consider the one-dimensional advection equation

ut = ux , −∞ < x < ∞ , t > 0 ,

subject to an initial condition u(x, 0) = ϕ(x). Consider discretization of this equation
with finite differences on an equidistant space-time {(mh,nk), m ∈ Z, n ∈ Z+} with
step size h > 0 in space and step size k > 0 in time. Define the Courant number µ and
explain briefly how such a discretization can be used to derive numerical schemes in which
solutions unm ≈ u(mh,nk), m ∈ Z and n ∈ Z+ satisfy equations of the form

s∑

i=r

aiu
n+1
m+i =

s∑

i=r

biu
n
m+i , (1)

where the coefficients ai, bi are independent of m,n.

(i) Define the order of a numerical scheme such as (1). Define what a convergent
numerical scheme is. Explain the notion of stability and state the Lax equivalence
theorem that connects convergence and stability of numerical schemes for linear
partial differential equations.

(ii) Consider the following example of (1):

un+1
m = unm +

µ

2
(unm+1 − unm−1) +

µ2

2
(unm+1 − 2unm + unm−1) . (2)

Determine conditions on µ such that the scheme (2) is stable and convergent. What
is the order of this scheme?
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Paper 3, Section II

40D Numerical Analysis
Consider the linear system

Ax = b , (1)

where A ∈ Rn×n and b, x ∈ Rn.

(i) Define the Jacobi iteration method with relaxation parameter ω for solving (1).

(ii) Assume that A is a symmetric positive-definite matrix whose diagonal part D is
such that the matrix 2D−A is also positive definite. Prove that the relaxed Jacobi
iteration method always converges if the relaxation parameter ω is equal to 1.

(iii) Let A be the tridiagonal matrix with diagonal elements aii = α and off-diagonal
elements ai+1,i = ai,i+1 = β, where 0 < β < 1

2α. For which values of ω (expressed in
terms of α and β) does the relaxed Jacobi iteration method converge? What choice
of ω gives the optimal convergence speed?

[You may quote without proof any relevant results about the convergence of iterative
methods and about the eigenvalues of matrices.]
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Paper 1, Section II

40D Numerical Analysis
(i) Consider the numerical approximation of the boundary-value problem

u′′ = f , u : [0, 1] → R ,

u(0) = ϕ0 , u(1) = ϕ1 ,

where ϕ0, ϕ1 are given constants and f is a given smooth function on [0, 1]. A grid
{x1, x2, . . . , xN}, N > 3, on [0, 1] is given by

x1 = α1h , xi = xi−1 + h for i = 2, . . . , N − 1 , xN = 1− α2h ,

where 0 < α1, α2 < 1, α1 + α2 = 1 and h = 1/N . Derive finite-difference approximations
for u′′(xi), for i = 1, . . . , N , using at most one neighbouring grid point of xi on each
side. Hence write down a numerical scheme to solve the problem, displaying explicitly
the entries of the system matrix A in the resulting system of linear equations Au = b,
A ∈ RN×N , u, b ∈ RN . What is the overall order of this numerical scheme? Explain
briefly one strategy by which the order could be improved with the same grid.

(ii) Consider the numerical approximation of the boundary-value problem

∇2u = f , u : Ω → R ,

u(x) = 0 for all x ∈ ∂Ω ,

where Ω ⊂ R2 is an arbitrary, simply connected bounded domain with smooth boundary
∂Ω, and f is a given smooth function. Define the 9-point formula used to approximate the
Laplacian. Using this formula and an equidistant grid inside Ω, define a numerical scheme
for which the system matrix is symmetric and negative definite. Prove that the system
matrix of your scheme has these properties for all choices of ordering of the grid points.
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Paper 4, Section II

28J Optimization and Control
A girl begins swimming from a point (0, 0) on the bank of a straight river. She

swims at a constant speed v relative to the water. The speed of the downstream current
at a distance y from the shore is c(y). Hence her trajectory is described by

ẋ = v cos θ + c(y) , ẏ = v sin θ ,

where θ is the angle at which she swims relative to the direction of the current.

She desires to reach a downstream point (1, 0) on the same bank as she starts,
as quickly as possible. Construct the Hamiltonian for this problem, and describe how
Pontryagin’s maximum principle can be used to give necessary conditions that must hold
on an optimal trajectory. Given that c(y) is positive, increasing and differentiable in y,
show that on an optimal trajectory

d

dt
tan

(
θ(t)

)
= −c′

(
y(t)

)
.

Paper 3, Section II

28J Optimization and Control
A particle follows a discrete-time trajectory on R given by

xt+1 = Axt + ξtut + ǫt

for t = 1, 2, . . . , T, where T > 2 is a fixed integer, A is a real constant, xt is the position
of the particle and ut is the control action at time t, and (ξt, ǫt)

T
t=1 is a sequence of

independent random vectors with E ξt = E ǫt = 0, var(ξt) = Vξ > 0, var(ǫt) = Vǫ > 0 and
cov(ξt, ǫt) = 0.

Find the closed-loop control, i.e. the control action ut defined as a function of
(x1, . . . , xt;u1, . . . , ut−1), that minimizes

T∑

t=1

x2t + c

T−1∑

t=1

ut ,

where c > 0 is given. [Note that this function is quadratic in x, but linear in u.]

Does the closed-loop control depend on Vǫ or on Vξ? Deduce the form of the optimal
open-loop control.
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Paper 2, Section II

29J Optimization and Control
Describe the elements of a discrete-time stochastic dynamic programming equation

for the problem of maximizing the expected sum of non-negative rewards over an infinite
horizon. Give an example to show that there may not exist an optimal policy. Prove that
if a policy has a value function that satisfies the dynamic programming equation then the
policy is optimal.

A squirrel collects nuts for the coming winter. There are plenty of nuts lying around,
but each time the squirrel leaves its lair it risks being caught by a predator. Assume that
the outcomes of the squirrel’s journeys are independent, that it is caught with probability
p, and that it returns safely with a random weight of nuts, exponentially distributed with
parameter λ. By solving the dynamic programming equation for the value function F (x),
find a policy maximizing the expected weight of nuts collected for the winter. Here the
state variable x takes values in R+ (the weight of nuts so far collected) or −1 (a no-return
state when the squirrel is caught).
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Paper 4, Section II

30D Partial Differential Equations
(a) Derive the solution of the one-dimensional wave equation

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (1)

with Cauchy data given by C2 functions uj = uj(x) , j = 0, 1, and where x ∈ R and
utt = ∂2t u etc. Explain what is meant by the property of finite propagation speed for the
wave equation. Verify that the solution to (1) satisfies this property.

(b) Consider the Cauchy problem

utt − uxx + x2u = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) . (2)

By considering the quantities

e = 1
2

(
u2t + u2x + x2u2

)
and p = −utux ,

prove that solutions of (2) also satisfy the property of finite propagation speed.

(c) Define what is meant by a strongly continuous one-parameter group of unitary
operators on a Hilbert space. Consider the Cauchy problem for the Schrödinger equation
for ψ(x, t) ∈ C:

iψt = −ψxx + x2ψ , ψ(x, 0) = ψ0(x) , −∞ < x <∞ . (3)

[In the following you may use without proof the fact that there is an orthonormal set
of (real-valued) Schwartz functions {fj(x)}∞j=1 which are eigenfunctions of the differential

operator P = −∂2x + x2 with eigenvalues 2j + 1, i.e.

Pfj = (2j + 1)fj , fj ∈ S(R) , (fj, fk)L2 =

∫

R
fj(x)fk(x)dx = δjk ,

and which have the property that any function u ∈ L2 can be written uniquely as a sum
u(x) =

∑
j(fj , u)L2fj(x) which converges in the metric defined by the L2 norm.]

Write down the solution to (3) in the case that ψ0 is given by a finite sum
ψ0 =

∑N
j=1(fj, ψ0)L2fj and show that your formula extends to define a strongly continuous

one-parameter group of unitary operators on the Hilbert space L2 of square-integrable
(complex-valued) functions, with inner product (f, g)L2 =

∫
R f(x)g(x)dx.
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Paper 3, Section II

30D Partial Differential Equations
(a) Consider variable-coefficient operators of the form

Pu = −
n∑

j,k=1

ajk∂j∂ku+
n∑

j=1

bj∂ju+ cu

whose coefficients are defined on a bounded open set Ω ⊂ Rn with smooth boundary ∂Ω.
Let ajk satisfy the condition of uniform ellipticity, namely

m‖ξ‖2 6
n∑

j,k=1

ajk(x)ξjξk 6 M‖ξ‖2 for all x ∈ Ω and ξ ∈ Rn

for suitably chosen positive numbers m,M .

State and prove the weak maximum principle for solutions of Pu = 0 . [Any results
from linear algebra and calculus needed in your proof should be stated clearly, but need
not be proved.]

(b) Consider the nonlinear elliptic equation

−∆u+ eu = f (1)

for u : Rn → R satisfying the additional condition

lim
|x|→∞

u(x) = 0 . (2)

Assume that f ∈ S(Rn). Prove that any two C2 solutions of (1) which also satisfy (2) are
equal.

Now let u ∈ C2(Rn) be a solution of (1) and (2). Prove that if f(x) < 1 for all x
then u(x) < 0 for all x. Prove that if maxx f(x) = L > 1 then u(x) 6 lnL for all x.
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Paper 1, Section II

30D Partial Differential Equations
State the Cauchy–Kovalevskaya theorem, including a definition of the term non-

characteristic.

For which values of the real number a, and for which functions f , does the Cauchy–
Kovalevskaya theorem ensure that the Cauchy problem

utt = uxx + auxxxx , u(x, 0) = 0 , ut(x, 0) = f(x) (1)

has a local solution?

Now consider the Cauchy problem (1) in the case that f(x) =
∑

m∈Z f̂(m)eimx is a
smooth 2π-periodic function.

(i) Show that if a 6 0 there exists a unique smooth solution u for all times, and
show that for all T > 0 there exists a number C = C(T ) > 0, independent of f , such that

∫ +π

−π
|u(x, t)|2dx 6 C

∫ +π

−π
|f(x)|2dx (2)

for all t : |t| 6 T .

(ii) If a = 1 does there exist a choice of C = C(T ) for which (2) holds? Give a full
justification for your answer.
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Paper 2, Section II

31D Partial Differential Equations
In this question, functions are all real-valued, and

Hs
per = {u =

∑

m∈Z
û(m)eimx ∈ L2 : ‖u‖2Hs =

∑

m∈Z
(1 +m2)s|û(m)|2 < ∞}

are the Sobolev spaces of functions 2π-periodic in x, for s = 0, 1, 2, . . . .

State Parseval’s theorem. For s = 0, 1 prove that the norm ‖u‖Hs is equivalent to
the norm ‖ ‖s defined by

‖u‖2s =
s∑

r=0

∫ +π

−π
(∂r

xu)
2 dx .

Consider the Cauchy problem

ut − uxx = f , u(x, 0) = u0(x) , t > 0 , (1)

where f = f(x, t) is a smooth function which is 2π-periodic in x, and the initial value u0
is also smooth and 2π-periodic. Prove that if u is a smooth solution which is 2π-periodic
in x, then it satisfies

∫ T

0
(u2t + u2xx ) dt 6 C

(
‖u0‖2H1 +

∫ T

0

∫ π

−π
|f(x, t)|2 dx dt

)

for some number C > 0 which does not depend on u or f .

State the Lax–Milgram lemma. Prove, using the Lax–Milgram lemma, that if

f(x, t) = eλtg(x)

with g ∈ H0
per and λ > 0, then there exists a weak solution to (1) of the form

u(x, t) = eλtφ(x) with φ ∈ H1
per. Does the same hold for all λ ∈ R? Briefly explain

your answer.
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32A Principles of Quantum Mechanics
Define the interaction picture for a quantum mechanical system with Schrödinger

picture Hamiltonian H0 + V (t) and explain why the interaction and Schrödinger pictures
give the same physical predictions for transition rates between eigenstates of H0. Derive
the equation of motion for the interaction picture states |ψ(t)〉.

A system consists of just two states |1〉 and |2〉, with respect to which

H0 =

(
E1 0
0 E2

)
, V (t) = ~λ

(
0 eiωt

e−iωt 0

)
.

Writing the interaction picture state as |ψ(t)〉 = a1(t)|1〉 + a2(t)|2〉, show that the
interaction picture equation of motion can be written as

iȧ1(t) = λeiµta2(t) , iȧ2(t) = λe−iµta1(t) , (∗)

where µ = ω − ω21 and ω21 = (E2 − E1)/~. Hence show that a2(t) satisfies

ä2 + iµ ȧ2 + λ2a2 = 0 .

Given that a2(0) = 0, show that the solution takes the form

a2(t) = αe−iµt/2 sinΩt ,

where Ω is a frequency to be determined and α is a complex constant of integration.

Substitute this solution for a2(t) into (∗) to determine a1(t) and, by imposing the
normalization condition ‖|ψ(t)〉‖2 = 1 at t = 0, show that |α|2 = λ2/Ω2 .

At time t = 0 the system is in the state |1〉. Write down the probability of finding
the system in the state |2〉 at time t.
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Paper 3, Section II

33A Principles of Quantum Mechanics
Let J = (J1, J2, J3) and |j m〉 denote the standard angular-momentum operators

and states so that, in units where ~ = 1,

J2|j m〉 = j(j + 1)|j m〉 , J3|j m〉 = m|j m〉 .

Show that U(θ) = exp(−iθJ2) is unitary. Define

Ji(θ) = U(θ)Ji U
−1(θ) for i = 1, 2, 3

and
|j m〉θ = U(θ)|j m〉 .

Find expressions for J1(θ), J2(θ) and J3(θ) as linear combinations of J1, J2 and J3. Briefly
explain why U(θ) represents a rotation of J through angle θ about the 2-axis.

Show that
J3(θ)|j m〉θ = m|j m〉θ . (∗)

Express |1 0〉θ as a linear combination of the states |1m〉, m = −1, 0, 1. By
expressing J1 in terms of J±, use (∗) to determine the coefficients in this expansion.

A particle of spin 1 is in the state |1 0〉 at time t = 0. It is subject to the Hamiltonian

H = −µB · J ,

where B = (0,B, 0). At time t the value of J3 is measured and found to be J3 = 0. At
time 2t the value of J3 is measured again and found to be J3 = 1. Show that the joint
probability for these two values to be measured is

1

8
sin2(2µBt) .

[The following result may be quoted: J± |j m〉 =
√

(j ∓m)(j ±m+ 1) |j m± 1〉 .]
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Paper 2, Section II

33A Principles of Quantum Mechanics

(i) Let a and a† be the annihilation and creation operators, respectively, for a simple
harmonic oscillator whose Hamiltonian is

H0 = ω
(
a†a+ 1

2

)
,

with [a, a†] = 1. Explain how the set of eigenstates { |n〉 : n = 0, 1, 2, . . .} of H0 is
obtained and deduce the corresponding eigenvalues. Show that

a|0〉 = 0 ,

a|n〉 = √
n|n− 1〉 , n > 1 ,

a†|n〉 =
√
n+ 1|n+ 1〉 , n > 0 .

(ii) Consider a system whose unperturbed Hamiltonian is

H0 =
(
a†a+ 1

2

)
+ 2

(
b†b+ 1

2

)
,

where [a, a†] = 1, [b, b†] = 1 and all other commutators are zero. Find the
degeneracies of the eigenvalues of H0 with energies E0 =

3
2 ,

5
2 ,

7
2 ,

9
2 and 11

2 .

The system is perturbed so that it is now described by the Hamiltonian

H = H0 + λH ′,

where H ′ = (a†)2b+ a2b†. Using degenerate perturbation theory, calculate to O(λ)
the energies of the eigenstates associated with the level E0 =

9
2 .

Write down the eigenstates, to O(λ), associated with these perturbed energies. By
explicit evaluation show that they are in fact exact eigenstates of H with these
energies as eigenvalues.
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Paper 1, Section II

33A Principles of Quantum Mechanics
Let x̂, p̂ and H(x̂, p̂) = p̂2/2m+V (x̂) be the position operator, momentum operator

and Hamiltonian for a particle moving in one dimension. Let |ψ〉 be the state vector for
the particle. The position and momentum eigenstates have inner products

〈x|p〉 =
1√
2π~

exp(ipx/~) , 〈x|x′〉 = δ(x − x′) and 〈p|p′〉 = δ(p − p′) .

Show that

〈x|p̂|ψ〉 = −i~ ∂
∂x
ψ(x) and 〈p|x̂|ψ〉 = i~

∂

∂p
ψ̃(p) ,

where ψ(x) and ψ̃(p) are the wavefunctions in the position representation and momentum
representation, respectively. Show how ψ(x) and ψ̃(p) may be expressed in terms of each
other.

For general V (x̂), express 〈p|V (x̂)|ψ〉 in terms of ψ̃(p), and hence write down the
time-independent Schrödinger equation in the momentum representation satisfied by ψ̃(p).

Consider now the case V (x) = −(~2λ/m)δ(x), λ > 0. Show that there is a bound
state with energy E = −ε, ε > 0, with wavefunction ψ̃(p) satisfying

ψ̃(p) =
~λ
π

1

2mε+ p2

∫ ∞

−∞
ψ̃(p′) dp′ .

Hence show that there is a unique value for ε and determine this value.
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Paper 4, Section II

27J Principles of Statistics
Suppose you have at hand a pseudo-random number generator that can simulate an

i.i.d. sequence of uniform U [0, 1] distributed random variables U∗
1 , . . . , U

∗
N for any N ∈ N.

Construct an algorithm to simulate an i.i.d. sequence X∗
1 , . . . ,X

∗
N of standard normal

N(0, 1) random variables. [Should your algorithm depend on the inverse of any cumulative
probability distribution function, you are required to provide an explicit expression for this
inverse function.]

Suppose as a matter of urgency you need to approximately evaluate the integral

I =
1√
2π

∫

R

1

(π + |x|)1/4 e
−x2/2dx.

Find an approximation IN of this integral that requires N simulation steps from your
pseudo-random number generator, and which has stochastic accuracy

Pr(|IN − I| > N−1/4) 6 N−1/2,

where Pr denotes the joint law of the simulated random variables. Justify your answer.

Paper 3, Section II

27J Principles of Statistics
State and prove Wilks’ theorem about testing the simple hypothesis H0 : θ = θ0,

against the alternative H1 : θ ∈ Θ \ {θ0}, in a one-dimensional regular parametric model
{f(·, θ) : θ ∈ Θ},Θ ⊆ R. [You may use without proof the results from lectures on the
consistency and asymptotic distribution of maximum likelihood estimators, as well as on
uniform laws of large numbers. Necessary regularity conditions can be assumed without
statement.]

Find the maximum likelihood estimator θ̂n based on i.i.d. observations X1, . . . ,Xn

in a N(0, θ)-model, θ ∈ Θ = (0,∞). Deduce the limit distribution as n → ∞ of the
sequence of statistics

−n
(
log(X2)− (X2 − 1)

)
,

where X2 = (1/n)
∑n

i=1 X
2
i and X1, . . . ,Xn are i.i.d. N(0, 1).
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Paper 2, Section II

28J Principles of Statistics
In a general decision problem, define the concepts of a Bayes rule and of admissi-

bility. Show that a unique Bayes rule is admissible.

Consider i.i.d. observations X1, . . . ,Xn from a Poisson(θ), θ ∈ Θ = (0,∞), model.
Can the maximum likelihood estimator θ̂MLE of θ be a Bayes rule for estimating θ in
quadratic risk for any prior distribution on θ that has a continuous probability density on
(0,∞)? Justify your answer.

Now model the Xi as i.i.d. copies of X|θ ∼ Poisson(θ), where θ is drawn from a
prior that is a Gamma distribution with parameters α > 0 and λ > 0 (given below).
Show that the posterior distribution of θ|X1, . . . ,Xn is a Gamma distribution and find its
parameters. Find the Bayes rule θ̂BAYES for estimating θ in quadratic risk for this prior.
[The Gamma probability density function with parameters α > 0, λ > 0 is given by

f(θ) =
λαθα−1e−λθ

Γ(α)
, θ > 0,

where Γ(α) is the usual Gamma function.]

Finally assume that the Xi have actually been generated from a fixed Poisson(θ0)
distribution, where θ0 > 0. Show that

√
n(θ̂BAYES−θ̂MLE ) converges to zero in probability

and deduce the asymptotic distribution of
√
n(θ̂BAYES − θ0) under the joint law PN

θ0
of the

random variables X1,X2, . . . . [You may use standard results from lectures without proof
provided they are clearly stated.]

Paper 1, Section II

28J Principles of Statistics
State without proof the inequality known as the Cramér–Rao lower bound in a

parametric model {f(·, θ) : θ ∈ Θ},Θ ⊆ R. Give an example of a maximum likelihood
estimator that attains this lower bound, and justify your answer.

Give an example of a parametric model where the maximum likelihood estimator
based on observations X1, . . . ,Xn is biased. State without proof an analogue of the
Cramér–Rao inequality for biased estimators.

Define the concept of a minimax decision rule, and show that the maximum
likelihood estimator θ̂MLE based on X1, . . . ,Xn in a N(θ, 1) model is minimax for
estimating θ ∈ Θ = R in quadratic risk.
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Paper 4, Section II

25K Probability and Measure
Let (Xn : n ∈ N) be a sequence of independent identically distributed random

variables. Set Sn = X1 + · · ·+Xn.

(i) State the strong law of large numbers in terms of the random variables Xn.

(ii) Assume now that the Xn are non-negative and that their expectation is infinite. Let
R ∈ (0,∞). What does the strong law of large numbers say about the limiting behaviour
of SR

n /n, where SR
n = (X1 ∧R) + · · ·+ (Xn ∧R)?

Deduce that Sn/n → ∞ almost surely.

Show that ∞∑

n=0

P(Xn > n) = ∞.

Show that Xn > Rn infinitely often almost surely.

(iii) Now drop the assumption that the Xn are non-negative but continue to assume that
E(|X1|) = ∞. Show that, almost surely,

lim sup
n→∞

|Sn|/n = ∞.

Paper 3, Section II

25K Probability and Measure
(i) Let (E, E , µ) be a measure space. What does it mean to say that a function

θ : E → E is a measure-preserving transformation?

What does it mean to say that θ is ergodic?

State Birkhoff’s almost everywhere ergodic theorem.

(ii) Consider the set E = (0, 1]2 equipped with its Borel σ-algebra and Lebesgue
measure. Fix an irrational number a ∈ (0, 1] and define θ : E → E by

θ(x1, x2) = (x1 + a, x2 + a),

where addition in each coordinate is understood to be modulo 1. Show that θ is a measure-
preserving transformation. Is θ ergodic? Justify your answer.

Let f be an integrable function on E and let f̄ be the invariant function associated
with f by Birkhoff’s theorem. Write down a formula for f̄ in terms of f . [You are not
expected to justify this answer.]
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Paper 2, Section II

26K Probability and Measure
State and prove the monotone convergence theorem.

Let (E1, E1, µ1) and (E2, E2, µ2) be finite measure spaces. Define the product
σ-algebra E = E1 ⊗ E2 on E1 × E2.

Define the product measure µ = µ1⊗µ2 on E , and show carefully that µ is countably
additive.

[You may use without proof any standard facts concerning measurability provided
these are clearly stated.]

Paper 1, Section II

26K Probability and Measure
What is meant by the Borel σ-algebra on the real line R?

Define the Lebesgue measure of a Borel subset of R using the concept of outer
measure.

Let µ be the Lebesgue measure on R. Show that, for any Borel set B which is
contained in the interval [0, 1], and for any ε > 0, there exist n ∈ N and disjoint intervals
I1, . . . , In contained in [0, 1] such that, for A = I1 ∪ · · · ∪ In, we have

µ(A△B) 6 ε,

where A△B denotes the symmetric difference (A \B) ∪ (B \ A).
Show that there does not exist a Borel set B contained in [0, 1] such that, for all

intervals I contained in [0, 1],
µ(B ∩ I) = µ(I)/2.
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Paper 4, Section II

19H Representation Theory
Let G =SU(2).

(i) Sketch a proof that there is an isomorphism of topological groups G/{±I} ∼=
SO(3).

(ii) Let V2 be the irreducible complex representation of G of dimension 3. Compute
the character of the (symmetric power) representation Sn(V2) of G for any n > 0. Show
that the dimension of the space of invariants (Sn(V2))

G, meaning the subspace of Sn(V2)
where G acts trivially, is 1 for n even and 0 for n odd. [Hint: You may find it helpful to
restrict to the unit circle subgroup S1 6 G. The irreducible characters of G may be quoted
without proof.]

Using the fact that V2 yields the standard 3-dimensional representation of SO(3),
show that

⊕
n>0 S

nV2
∼= C[x, y, z]. Deduce that the ring of complex polynomials in three

variables x, y, z which are invariant under the action of SO(3) is a polynomial ring in one
generator. Find a generator for this polynomial ring.

Paper 3, Section II

19H Representation Theory
(i) State Frobenius’ theorem for transitive permutation groups acting on a finite set.

Define Frobenius group and show that any finite Frobenius group (with an appropriate
action) satisfies the hypotheses of Frobenius’ theorem.

(ii) Consider the group

Fp,q := 〈a, b : ap = bq = 1, b−1ab = au〉,

where p is prime, q divides p− 1 (q not necessarily prime), and u has multiplicative order
q modulo p (such elements u exist since q divides p − 1). Let S be the subgroup of Z×

p

consisting of the powers of u, so that |S| = q. Write r = (p − 1)/q, and let v1, . . . , vr be
coset representatives for S in Z×

p .

(a) Show that Fp,q has q+ r conjugacy classes and that a complete list of the classes
comprises {1}, {avjs : s ∈ S} (1 6 j 6 r) and {ambn : 0 6 m 6 p− 1} (1 6 n 6 q − 1).

(b) By observing that the derived subgroup F ′
p,q = 〈a〉, find q 1-dimensional

characters of Fp,q. [Appropriate results may be quoted without proof.]

(c) Let ε = e2πi/p. For v ∈ Z×
p denote by ψv the character of 〈a〉 defined by

ψv(a
x) = εvx (0 6 x 6 p − 1). By inducing these characters to Fp,q, or otherwise, find r

distinct irreducible characters of degree q.
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Paper 2, Section II

19H Representation Theory
In this question work over C. Let H be a subgroup of G. State Mackey’s restriction

formula, defining all the terms you use. Deduce Mackey’s irreducibility criterion.

Let G = 〈g, r : gm = r2 = 1, rgr−1 = g−1〉 (the dihedral group of order 2m)
and let H = 〈g〉 (the cyclic subgroup of G of order m). Write down the m inequivalent
irreducible characters χk (1 6 k 6 m) of H. Determine the values of k for which the
induced character IndGHχk is irreducible.

Paper 1, Section II

19H Representation Theory
(i) Let K be any field and let λ ∈ K. Let Jλ,n be the n× n Jordan block

Jλ,n =




λ 1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · 0 λ




.

Compute J r
λ,n for each r > 0.

(ii) Let G be a cyclic group of order N , and let K be an algebraically closed field of
characteristic p > 0. Determine all the representations of G on vector spaces over K, up
to equivalence. Which are irreducible? Which do not split as a direct sum W ⊕W ′, with
W 6= 0 and W ′ 6= 0?
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Paper 3, Section II

22H Riemann Surfaces
State the Uniformization Theorem.

Show that any domain of C whose complement has more than one point is
uniformized by the unit disc ∆. [You may use the fact that for C∞ the group of
automorphisms consists of Möbius transformations, and for C it consists of maps of the
form z 7→ az + b with a ∈ C∗ and b ∈ C.]

Let X be the torus C/Λ, where Λ is a lattice. Given p ∈ X, show that X \ {p} is
uniformized by the unit disc ∆.

Is it true that a holomorphic map from C to a compact Riemann surface of genus
two must be constant? Justify your answer.

Paper 2, Section II

23H Riemann Surfaces
State and prove the Valency Theorem and define the degree of a non-constant

holomorphic map between compact Riemann surfaces.

Let X be a compact Riemann surface of genus g and π : X → C∞ a holomorphic
map of degree two. Find the cardinality of the set R of ramification points of π. Find
also the cardinality of the set of branch points of π. [You may use standard results from
lectures provided they are clearly stated.]

Define σ : X → X as follows: if p ∈ R, then σ(p) = p; otherwise, σ(p) = q where q is
the unique point such that π(q) = π(p) and p 6= q. Show that σ is a conformal equivalence
with πσ = π and σσ = id.
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Paper 1, Section II

23H Riemann Surfaces
If X is a Riemann surface and p : Y → X is a covering map of topological spaces,

show that there is a conformal structure on Y such that p : Y → X is analytic.

Let f(z) be the complex polynomial z5−1. Consider the subspace R of C2 = C×C
given by the equation w2 = f(z), where (z, w) denotes coordinates in C2, and let π : R → C
be the restriction of the projection map onto the first factor. Show that R has the structure
of a Riemann surface which makes π an analytic map. If τ denotes projection onto the
second factor, show that τ is also analytic. [You may assume that R is connected.]

Find the ramification points and the branch points of both π and τ . Compute also
the ramification indices at the ramification points.

Assuming that it is possible to add a point P to R so that X = R ∪ {P} is a
compact Riemann surface and τ extends to a holomorphic map τ : X → C∞ such that
τ−1(∞) = {P}, compute the genus of X.
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Paper 4, Section I

5K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I) and X is an n × p design matrix with full column

rank. Write down a (1− α)-level confidence set for β.

Define the Cook’s distance for the observation (Yi, xi) where x
T
i is the ith row of X,

and give its interpretation in terms of confidence sets for β.

In the model above with n = 100 and p = 4, you observe that one observation has
Cook’s distance 3.1. Would you be concerned about the influence of this observation?
Justify your answer.

[Hint: You may find some of the following facts useful:

1. If Z ∼ χ2
4, then P(Z 6 1.06) = 0.1, P(Z 6 7.78) = 0.9.

2. If Z ∼ F4,96, then P(Z 6 0.26) = 0.1, P(Z 6 2.00) = 0.9.

3. If Z ∼ F96,4, then P(Z 6 0.50) = 0.1, P(Z 6 3.78) = 0.9.]
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Paper 3, Section I

5K Statistical Modelling
In an experiment to study factors affecting the production of the plastic polyvinyl

chloride (PVC), three experimenters each used eight devices to produce the PVC and
measured the sizes of the particles produced. For each of the 24 combinations of device
and experimenter, two size measurements were obtained.

The experimenters and devices used for each of the 48 measurements are stored in
R as factors in the objects experimenter and device respectively, with the measurements
themselves stored in the vector psize. The following analysis was performed in R.

> fit0 <- lm(psize ~ experimenter + device)

> fit <- lm(psize ~ experimenter + device + experimenter:device)

> anova(fit0, fit)

Analysis of Variance Table

Model 1: psize ~ experimenter + device

Model 2: psize ~ experimenter + device + experimenter:device

Res.Df RSS Df Sum of Sq F Pr(>F)

1 38 49.815

2 24 35.480 14 14.335 0.6926 0.7599

Let X and X0 denote the design matrices obtained by model.matrix(fit) and
model.matrix(fit0) respectively, and let Y denote the response psize. Let P and P0

denote orthogonal projections onto the column spaces of X and X0 respectively.

For each of the following quantities, write down their numerical values if they appear
in the analysis of variance table above; otherwise write ‘unknown’.

1. ‖(I − P )Y ‖2

2. ‖X(XTX)−1XTY ‖2

3. ‖(I − P0)Y ‖2 − ‖(I − P )Y ‖2

4.
‖(P − P0)Y ‖2/14
‖(I − P )Y ‖2/24

5.
∑48

i=1 Yi/48

Out of the two models that have been fitted, which appears to be the more
appropriate for the data according to the analysis performed, and why?
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Paper 2, Section I

5K Statistical Modelling
Define the concept of an exponential dispersion family. Show that the family of

scaled binomial distributions 1
nBin(n, p), with p ∈ (0, 1) and n ∈ N, is of exponential

dispersion family form.

Deduce the mean of the scaled binomial distribution from the exponential dispersion
family form.

What is the canonical link function in this case?

Paper 1, Section I

5K Statistical Modelling
Write down the model being fitted by the following R command, where y ∈ {0, 1, 2, . . .}n

and X is an n× p matrix with real-valued entries.

fit <- glm(y ~ X, family = poisson)

Write down the log-likelihood for the model. Explain why the command

sum(y) - sum(predict(fit, type = "response"))

gives the answer 0, by arguing based on the log-likelihood you have written down.
[Hint: Recall that if Z ∼ Pois(µ) then

P(Z = k) =
µke−µ

k!

for k ∈ {0, 1, 2, . . .}.]
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Paper 4, Section II

13K Statistical Modelling
In a study on infant respiratory disease, data are collected on a sample of 2074

infants. The information collected includes whether or not each infant developed a
respiratory disease in the first year of their life; the gender of each infant; and details
on how they were fed as one of three categories (breast-fed, bottle-fed and supplement).
The data are tabulated in R as follows:

disease nondisease gender food

1 77 381 Boy Bottle-fed

2 19 128 Boy Supplement

3 47 447 Boy Breast-fed

4 48 336 Girl Bottle-fed

5 16 111 Girl Supplement

6 31 433 Girl Breast-fed

Write down the model being fit by the R commands on the following page:
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> total <- disease + nondisease

> fit <- glm(disease/total ~ gender + food, family = binomial,

+ weights = total)

The following (slightly abbreviated) output from R is obtained.

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***

genderGirl -0.3126 0.1410 -2.216 0.0267 *

foodBreast-fed -0.6693 0.1530 -4.374 1.22e-05 ***

foodSupplement -0.1725 0.2056 -0.839 0.4013

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.37529 on 5 degrees of freedom

Residual deviance: 0.72192 on 2 degrees of freedom

Briefly explain the justification for the standard errors presented in the output above.

Explain the relevance of the output of the following R code to the data being studied,
justifying your answer:

> exp(c(-0.6693 - 1.96*0.153, -0.6693 + 1.96*0.153))

[1] 0.3793940 0.6911351

[Hint: It may help to recall that if Z ∼ N(0, 1) then P(Z > 1.96) = 0.025.]

Let D1 be the deviance of the model fitted by the following R command.

> fit1 <- glm(disease/total ~ gender + food + gender:food,

+ family = binomial, weights = total)

What is the numerical value of D1? Which of the two models that have been fitted should
you prefer, and why?
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Paper 1, Section II

13K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I). Here X is an n × p matrix of predictors with full

column rank where n > p+ 3, and β ∈ Rp is an unknown vector of regression coefficients.
Let X0 be the matrix formed from the first p0 < p columns of X, and partition β as
β = (βT

0 , β
T
1 )

T where β0 ∈ Rp0 and β1 ∈ Rp−p0. Denote the orthogonal projections onto
the column spaces of X and X0 by P and P0 respectively.

It is desired to test the null hypothesisH0 : β1 = 0 against the alternative hypothesis
H1 : β1 6= 0. Recall that the F -test for testing H0 against H1 rejects H0 for large values
of

F =
‖(P − P0)Y ‖2/(p − p0)

‖(I − P )Y ‖2/(n − p)
.

Show that (I − P )(P − P0) = 0, and hence prove that the numerator and denominator of
F are independent under either hypothesis.

Show that

Eβ,σ2(F ) =
(n − p)(τ2 + 1)

n− p− 2
,

where τ2 =
‖(P − P0)Xβ‖2

(p− p0)σ2
.

[In this question you may use the following facts without proof: P − P0 is an or-
thogonal projection with rank p − p0; any n × n orthogonal projection matrix Π satisfies
‖Πε‖2 ∼ σ2χ2

ν , where ν = rank(Π); and if Z ∼ χ2
ν then E(Z−1) = (ν − 2)−1 when ν > 2.]
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Paper 4, Section II

34E Statistical Physics
The Dieterici equation of state of a gas is

P =
kBT

v − b
exp

(
− a

kBTv

)
,

where P is the pressure, v = V/N is the volume divided by the number of particles, T is
the temperature, and kB is the Boltzmann constant. Provide a physical interpretation for
the constants a and b.

Briefly explain how the Dieterici equation captures the liquid–gas phase transition.
What is the maximum temperature at which such a phase transition can occur?

The Gibbs free energy is given by

G = E + PV − TS ,

where E is the energy and S is the entropy. Explain why the Gibbs free energy is
proportional to the number of particles in the system.

On either side of a first-order phase transition the Gibbs free energies are equal.
Use this fact to derive the Clausius–Clapeyron equation for a line along which there is a
first-order liquid–gas phase transition,

dP

dT
=

L

T (Vgas − Vliquid)
, (∗)

where L is the latent heat which you should define.

Assume that the volume of liquid is negligible compared to the volume of gas and
that the latent heat is constant. Further assume that the gas can be well approximated
by the ideal gas law. Solve (∗) to obtain an equation for the phase-transition line in the
(P, T ) plane.
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Paper 3, Section II

35E Statistical Physics
In the grand canonical ensemble, at temperature T and chemical potential µ, what

is the probability of finding a system in a state with energy E and particle number N?

A particle with spin degeneracy gs and mass m moves in d > 2 spatial dimensions
with dispersion relation E = ~2k2/2m. Compute the density of states g(E). [You may
denote the area of a unit (d− 1)-dimensional sphere as Sd−1.]

Treating the particles as non-interacting fermions, determine the energy E of a gas
in terms of the pressure P and volume V .

Derive an expression for the Fermi energy in terms of the number density of particles.
Compute the degeneracy pressure at zero temperature in terms of the number of particles
and the Fermi energy.

Show that at high temperatures the gas obeys the ideal gas law (up to small
corrections which you need not compute).

Paper 2, Section II

35E Statistical Physics
Briefly describe the microcanonical, canonical and grand canonical ensembles. Why

do they agree in the thermodynamic limit?

A harmonic oscillator in one spatial dimension has Hamiltonian

H =
p2

2m
+

m

2
ω2x2.

Here p and x are the momentum and position of the oscillator, m is its mass and ω its
frequency. The harmonic oscillator is placed in contact with a heat bath at temperature
T . What is the relevant ensemble?

Treating the harmonic oscillator classically, compute the mean energy 〈E〉, the
energy fluctuation ∆E2 and the heat capacity C.

Treating the harmonic oscillator quantum mechanically, compute the mean energy
〈E〉, the energy fluctuation ∆E2 and the heat capacity C.

In what limit of temperature do the classical and quantum results agree? Explain
why they differ away from this limit. Describe an experiment for which this difference has
implications.
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Paper 1, Section II

35E Statistical Physics
Write down the equation of state and the internal energy of a monatomic ideal gas.

Describe the meaning of an adiabatic process. Derive the equation for an adiabatic
process in the pressure–volume (P, V ) plane for a monatomic ideal gas.

Briefly describe the Carnot cycle. Sketch the Carnot cycle in the (P, V ) plane and
in the temperature–entropy (T, S) plane.

The Diesel cycle is an idealised version of the process realised in the Diesel engine.
It consists of the following four reversible steps:

A → B: Adiabatic compression
B → C: Expansion at constant pressure
C → D: Adiabatic expansion
D → A: Cooling at constant volume.

Sketch the Diesel cycle for a monatomic gas in the (P, V ) plane and the (T, S) plane.
Determine the equations for the curves B → C and D → A in the (T, S) plane.

The efficiency η of the cycle is defined as

η = 1− Qout

Qin
,

where Qin is the heat entering the gas in step B → C and Qout is the heat leaving the gas
in step D → A. Calculate η as a function of the temperatures at points A, B, C and D.
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Paper 4, Section II

29K Stochastic Financial Models
Write down the Black–Scholes partial differential equation (PDE), and explain

briefly its relevance to option pricing.

Show how a change of variables reduces the Black–Scholes PDE to the heat equation:

∂f

∂t
+

1

2

∂2f

∂x2
= 0 for all (t, x) ∈ [0, T )× R,

f(T, x) = ϕ(x) for all x ∈ R,

where ϕ is a given boundary function.

Consider the following numerical scheme for solving the heat equation on the equally
spaced grid (tn, xk) ∈ [0, T ]×R where tn = n∆t and xk = k∆x, n = 0, 1, . . . , N and k ∈ Z,
and ∆t = T/N . We approximate f(tn, xk) by fn

k where

0 =
fn+1 − fn

∆t
+ θLfn+1 + (1− θ)Lfn, fN

k = ϕ(xk), (∗)

and θ ∈ [0, 1] is a constant and the operator L is the matrix with non-zero entries

Lkk = − 1

(∆x)2
and Lk,k+1 = Lk,k−1 =

1

2(∆x)2
. By considering what happens when

ϕ(x) = exp(iωx), show that the finite-difference scheme (∗) is stable if and only if

1 > λ(2θ − 1),

where λ ≡ ∆t/(∆x)2. For what values of θ is the scheme (∗) unconditionally stable?

Paper 3, Section II

29K Stochastic Financial Models
Derive the Black–Scholes formula C(S0,K, r, T, σ) for the time-0 price of a European

call option with expiry T and strike K written on an asset with volatility σ and time-0
price S0, and where r is the riskless rate of interest. Explain what is meant by the delta
hedge for this option, and determine it explicitly.

In terms of the Black–Scholes call option price formula C, find the time-0 price of
a forward-starting option, which pays (ST − λSt)

+ at time T , where 0 < t < T and λ > 0
are given. Find the price of an option which pays max{ST , λSt} at time T . How would
this option be hedged?
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Paper 1, Section II

29K Stochastic Financial Models
Suppose that S̄t ≡ (S0

t , . . . , S
d
t )

T denotes the vector of prices of d+1 assets at times
t = 0, 1, . . ., and that θ̄t ≡ (θ0t , . . . , θ

d
t )

T denotes the vector of the numbers of the d + 1
different assets held by an investor from time t− 1 to time t. Assuming that asset 0 is a
bank account paying zero interest, that is, S0

t = 1 for all t > 0, explain what is meant by
the statement that the portfolio process (θ̄t)t>0 is self-financing. If the portfolio process
is self-financing, prove that for any t > 0

θ̄t · S̄t − θ̄0 · S̄0 =
t∑

j=1

θj ·∆Sj,

where Sj ≡ (S1
j , . . . , S

d
j )

T , ∆Sj = Sj − Sj−1, and θj ≡ (θ1j , . . . , θ
d
j )

T .

Suppose now that the ∆St are independent with common N(0, V ) distribution. Let

F (z) = inf E


∑

t>1

(1− β)βt



(θ̄t · S̄t − θ̄0 · S̄0)

2 +
t∑

j=1

|∆θj |2




∣∣∣∣ θ0 = z


 ,

where β ∈ (0, 1) and the infimum is taken over all self-financing portfolio processes (θ̄t)t>0

with θ00 = 0. Explain why F should satisfy the equation

F (z) = β inf
y

[
y · V y + |y − z|2 + F (y)

]
. (∗)

If Q is a positive-definite symmetric matrix satisfying the equation

Q = β(V + I +Q)−1(V +Q),

show that (∗) has a solution of the form F (z) = z ·Qz.
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Paper 2, Section II

30K Stochastic Financial Models
An agent has expected-utility preferences over his possible wealth at time 1; that

is, the wealth Z is preferred to wealth Z ′ if and only if E U(Z) > E U(Z ′), where the
function U : R → R is strictly concave and twice continuously differentiable. The agent
can trade in a market, with the time-1 value of his portfolio lying in an affine space A
of random variables. Assuming cash can be held between time 0 and time 1, define the
agent’s time-0 utility indifference price π(Y ) for a contingent claim with time-1 value Y .
Assuming any regularity conditions you may require, prove that the map Y 7→ π(Y ) is
concave.

Comment briefly on the limit limλ→0 π(λY )/λ.

Consider a market with two claims with time-1 values X and Y . Their joint
distribution is (

X
Y

)
∼ N

((
µX

µY

)
,

(
VXX VXY

VY X VY Y

))
.

At time 0, arbitrary quantities of the claim X can be bought at price p, but Y is not
marketed. Derive an explicit expression for π(Y ) in the case where

U(x) = − exp(−γx),

where γ > 0 is a given constant.
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Paper 4, Section I

2G Topics in Analysis
State Liouville’s theorem on approximation of algebraic numbers by rationals.

Prove that the number

∞∑

n=0

1

2nn is transcendental.

Paper 3, Section I

2G Topics in Analysis
State Runge’s theorem about uniform approximation of holomorphic functions by

polynomials.

Let R+ ⊂ C be the subset of non-negative real numbers and let

∆ = {z ∈ C : |z| < 1}.

Prove that there is a sequence of complex polynomials which converges to the function
1/z uniformly on each compact subset of ∆ \R+.

Paper 2, Section I

2G Topics in Analysis
State Chebyshev’s equal ripple criterion.

Let

h(t) =

n∏

ℓ=1

(
t− cos

(2ℓ− 1)π

2n

)
.

Show that if q(t) =
∑n

j=0 ajt
j where a0, . . . , an are real constants with |an| > 1, then

sup
t∈[−1,1]

|h(t)| 6 sup
t∈[−1,1]

|q(t)|.

Paper 1, Section I

2G Topics in Analysis
(i) State Brouwer’s fixed point theorem in the plane and an equivalent theorem

concerning mapping a triangle T to its boundary ∂T .

(ii) Let A be a 3× 3 matrix with positive real entries. Use the theorems you stated
in (i) to prove that A has an eigenvector with positive entries.
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Paper 2, Section II

11G Topics in Analysis
Let γ : [0, 1] → C be a continuous map never taking the value 0 and satisfying

γ(0) = γ(1). Define the degree (or winding number) w(γ; 0) of γ about 0. Prove the
following:

(i) w(1/γ; 0) = w(γ−; 0), where γ−(t) = γ(1− t).

(ii) If σ : [0, 1] → C is continuous, σ(0) = σ(1) and |σ(t)| < |γ(t)| for each 0 6 t 6 1,
then w(γ + σ; 0) = w(γ; 0).

(iii) If γm : [0, 1] → C, m = 1, 2, . . ., are continuous maps with γm(0) = γm(1), which
converge to γ uniformly on [0, 1] as m → ∞, then w(γm; 0) = w(γ; 0) for sufficiently
large m.

Let α : [0, 1] → C \ {0} be a continuous map such that α(0) = α(1) and |α(t) − e2πit| 6 1
for each t ∈ [0, 1]. Deduce from the results of (ii) and (iii) that w(α; 0) = 1.

[You may not use homotopy invariance of the winding number without proof.]

Paper 3, Section II

12G Topics in Analysis
Define what is meant by a nowhere dense set in a metric space. State a version of

the Baire Category Theorem. Show that any complete non-empty metric space without
isolated points is uncountable.

Let A be the set of real numbers whose decimal expansion does not use the digit 6.
(A terminating decimal representation is used when it exists.) Show that there exists a
real number which cannot be written as a+ q with a ∈ A and q ∈ Q.
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Paper 4, Section II

38C Waves
A one-dimensional shock wave propagates at a constant speed along a tube aligned

with the x-axis and containing a perfect gas. In the reference frame where the shock is at
rest at x = 0, the gas has speed U0, density ρ0 and pressure p0 in the region x < 0 and
speed U1, density ρ1 and pressure p1 in the region x > 0.

Write down equations of conservation of mass, momentum and energy across the
shock. Show that

γ

γ − 1

(
p1
ρ1

− p0
ρ0

)
=

p1 − p0
2

(
1

ρ1
+

1

ρ0

)
,

where γ is the ratio of specific heats.

From now on, assume γ = 2 and let P = p1/p0. Show that 1
3 < ρ1/ρ0 < 3.

The increase in entropy from x < 0 to x > 0 is given by ∆S = CV log(p1ρ
2
0/p0ρ

2
1),

where CV is a positive constant. Show that ∆S is a monotonic function of P .

If ∆S > 0, deduce that P > 1, ρ1/ρ0 > 1, (U0/c0)
2 > 1 and (U1/c1)

2 < 1, where
c0 and c1 are the sound speeds in x < 0 and x > 0, respectively. Given that ∆S must
have the same sign as U0 and U1, interpret these inequalities physically in terms of the
properties of the flow upstream and downstream of the shock.
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Paper 2, Section II

38C Waves
The function φ(x, t) satisfies the equation

∂2φ

∂t2
− ∂2φ

∂x2
=

∂4φ

∂x2∂t2
.

Derive the dispersion relation, and sketch graphs of frequency, phase velocity and group
velocity as functions of the wavenumber. In the case of a localised initial disturbance, will
it be the shortest or the longest waves that are to be found at the front of a dispersing
wave packet? Do the wave crests move faster or slower than the wave packet?

Give the solution to the initial-value problem for which at t = 0

φ =

∫ ∞

−∞
A(k)eikx dk and

∂φ

∂t
= 0 ,

and φ(x, 0) is real. Use the method of stationary phase to obtain an approximation for
φ(V t, t) for fixed 0 < V < 1 and large t. If, in addition, φ(x, 0) = φ(−x, 0), deduce an
approximation for the sequence of times at which φ(V t, t) = 0.

You are given that φ(t, t) decreases like t−1/4 for large t. Give a brief physical
explanation why this rate of decay is slower than for 0 < V < 1. What can be said about
φ(V t, t) for large t if V > 1? [Detailed calculation is not required in these cases.]

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]
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Paper 3, Section II

39C Waves
The equations describing small-amplitude motions in a stably stratified, incompress-

ible, inviscid fluid are

∂ρ̃

∂t
+ w

dρ0
dz

= 0 , ρ0
∂u

∂t
= ρ̃g −∇p̃ , ∇ · u = 0 ,

where ρ0(z) is the background stratification, ρ̃(x, t) and p̃(x, t) are the perturbations about
an undisturbed hydrostatic state, u(x, t) = (u, v, w) is the velocity, and g = (0, 0,−g).

Show that [
∂2

∂t2
∇2 +N2

(
∇2 − ∂2

∂z2

)]
w = 0 ,

stating any approximation made, and define the Brunt–Väisälä frequency N .

Deduce the dispersion relation for plane harmonic waves with wavevector k =
(k, 0,m). Calculate the group velocity and verify that it is perpendicular to k.

Such a stably stratified fluid with a uniform value of N occupies the region
z > h(x, t) above a moving lower boundary z = h(x, t). Find the velocity field w(x, z, t)
generated by the boundary motion for the case h = ǫ sin[k(x − Ut)], where 0 < ǫk ≪ 1
and U > 0 is a constant.

For the case k2 < N2/U2, sketch the orientation of the wave crests, the direction of
propagation of the crests, and the direction of the group velocity.
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Paper 1, Section II

39C Waves
State the equations that relate strain to displacement and stress to strain in a

uniform, linear, isotropic elastic solid with Lamé moduli λ and µ. In the absence of body
forces, the Cauchy momentum equation for the infinitesimal displacements u(x, t) is

ρ
∂2u

∂t2
= ∇ · σ ,

where ρ is the density and σ the stress tensor. Show that both the dilatation ∇ · u and
the rotation ∇ ∧ u satisfy wave equations, and find the wave-speeds cP and cS .

A plane harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle on the planar interface z = 0 between two elastic solids
with different densities and elastic moduli. Show in a diagram the directions of all the
reflected and transmitted waves, labelled with their polarisations, assuming that none of
these waves are evanescent. State the boundary conditions on components of u and σ
that would, in principle, determine the amplitudes.

Now consider a plane harmonic P-wave of unit amplitude incident with k =
k(sin θ, 0, cos θ) on the interface z = 0 between two elastic (and inviscid) liquids with
wave-speed cP and modulus λ in z < 0 and wave-speed c′P and modulus λ′ in z > 0.
Obtain solutions for the reflected and transmitted waves. Show that the amplitude of the
reflected wave is zero if

sin2 θ =
Z ′2 − Z2

Z ′2 − (c′PZ/cP )
2
,

where Z = λ/cP and Z ′ = λ′/c′P .
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