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Paper 3, Section I

2F Analysis II
Let U ⊂ Rn be an open set and let f : U → R be a differentiable function on U

such that ‖ Df |x ‖6 M for some constant M and all x ∈ U , where ‖ Df |x ‖ denotes the
operator norm of the linear map Df |x. Let [a, b] = {ta+ (1− t)b : 0 6 t 6 1} (a, b,∈ Rn)
be a straight-line segment contained in U . Prove that |f(b) − f(a)| 6 M‖b − a‖, where
‖ · ‖ denotes the Euclidean norm on Rn.

Prove that if U is an open ball and Df |x= 0 for each x ∈ U , then f is constant
on U .

Paper 4, Section I

3F Analysis II
Define a contraction mapping and state the contraction mapping theorem.

Let C[0, 1] be the space of continuous real-valued functions on [0, 1] endowed with
the uniform norm. Show that the map A : C[0, 1] → C[0, 1] defined by

Af(x) =

∫ x

0
f(t)dt

is not a contraction mapping, but that A ◦ A is.

Paper 2, Section I

3F Analysis II
Define what is meant by a uniformly continuous function on a set E ⊂ R.

If f and g are uniformly continuous functions on R, is the (pointwise) product fg
necessarily uniformly continuous on R?

Is a uniformly continuous function on (0, 1) necessarily bounded?

Is cos(1/x) uniformly continuous on (0, 1)?

Justify your answers.
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Paper 1, Section II

11F Analysis II
Define what it means for two norms on a real vector space V to be Lipschitz

equivalent. Show that if two norms on V are Lipschitz equivalent and F ⊂ V , then
F is closed in one norm if and only if F is closed in the other norm.

Show that if V is finite-dimensional, then any two norms on V are Lipschitz
equivalent.

Show that ‖f‖1 =
∫ 1
0 |f(x)|dx is a norm on the space C[0, 1] of continuous real-

valued functions on [0, 1]. Is the set S = {f ∈ C[0, 1] : f(1/2) = 0} closed in the norm
‖ · ‖1?

Determine whether or not the norm ‖ · ‖1 is Lipschitz equivalent to the uniform
norm ‖ · ‖∞ on C[0, 1].

[You may assume the Bolzano–Weierstrass theorem for sequences in Rn.]

Paper 4, Section II

12F Analysis II
Let U ⊂ R2 be an open set. Define what it means for a function f : U → R to be

differentiable at a point (x0, y0) ∈ U .

Prove that if the partial derivatives D1f and D2f exist on U and are continuous at
(x0, y0), then f is differentiable at (x0, y0).

If f is differentiable on U must D1f , D2f be continuous at (x0, y0)? Give a proof
or counterexample as appropriate.

The function h : R2 → R is defined by

h(x, y) = xy sin(1/x) for x 6= 0, h(0, y) = 0.

Determine all the points (x, y) at which h is differentiable.
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Paper 3, Section II

12F Analysis II
Let fn, n = 1, 2, . . ., be continuous functions on an open interval (a, b). Prove that

if the sequence (fn) converges to f uniformly on (a, b) then the function f is continuous
on (a, b).

If instead (fn) is only known to converge pointwise to f and f is continuous, must
(fn) be uniformly convergent? Justify your answer.

Suppose that a function f has a continuous derivative on (a, b) and let

gn(x) = n

(
f(x+

1

n
)− f(x)

)
.

Stating clearly any standard results that you require, show that the functions gn converge
uniformly to f ′ on each interval [α, β] ⊂ (a, b).

Paper 2, Section II

12F Analysis II
Let X, Y be subsets of Rn and define X + Y = {x + y : x ∈ X, y ∈ Y }. For

each of the following statements give a proof or a counterexample (with justification) as
appropriate.

(i) If each of X, Y is bounded and closed, then X + Y is bounded and closed.

(ii) If X is bounded and closed and Y is closed, then X + Y is closed.

(iii) If X, Y are both closed, then X + Y is closed.

(iv) If X is open and Y is closed, then X + Y is open.

[The Bolzano–Weierstrass theorem in Rn may be assumed without proof.]
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Paper 4, Section I

4G Complex Analysis

Let f be an entire function. State Cauchy’s Integral Formula, relating the nth

derivative of f at a point z with the values of f on a circle around z.

State Liouville’s Theorem, and deduce it from Cauchy’s Integral Formula.

Let f be an entire function, and suppose that for some k we have that |f(z)| 6 |z|k
for all z. Prove that f is a polynomial.

Paper 3, Section II

13G Complex Analysis

State the Residue Theorem precisely.

Let D be a star-domain, and let γ be a closed path in D. Suppose that f is a

holomorphic function on D, having no zeros on γ. Let N be the number of zeros of f

inside γ, counted with multiplicity (i.e. order of zero and winding number). Show that

N =
1

2πi

∫

γ

f ′(z)
f(z)

dz .

[The Residue Theorem may be used without proof.]

Now suppose that g is another holomorphic function on D, also having no zeros on

γ and with |g(z)| < |f(z)| on γ. Explain why, for any 0 6 t 6 1, the expression

I(t) =

∫

γ

f ′(z) + tg′(z)
f(z) + tg(z)

dz

is well-defined. By considering the behaviour of the function I(t) as t varies, deduce

Rouché’s Theorem.

For each n, let pn be the polynomial
∑n

k=0
zk

k! . Show that, as n tends to infinity,

the smallest modulus of the roots of pn also tends to infinity.

[You may assume any results on convergence of power series, provided that they are

stated clearly.]
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Paper 1, Section I

2B Complex Analysis or Complex Methods
Let f(z) be an analytic/holomorphic function defined on an open set D, and let

z0 ∈ D be a point such that f ′(z0) 6= 0. Show that the transformation w = f(z) preserves
the angle between smooth curves intersecting at z0. Find such a transformation w = f(z)
that maps the second quadrant of the unit disc (i.e. |z| < 1, π/2 < arg(z) < π) to the
region in the first quadrant of the complex plane where |w| > 1 (i.e. the region in the first
quadrant outside the unit circle).

Paper 1, Section II

13B Complex Analysis or Complex Methods
By choice of a suitable contour show that for a > b > 0

∫ 2π

0

sin2 θdθ

a+ b cos θ
=

2π

b2

[
a−

√
a2 − b2

]
.

Hence evaluate

∫ 1

0

(1− x2)1/2x2dx

1 + x2

using the substitution x = cos(θ/2).

Paper 2, Section II

13B Complex Analysis or Complex Methods
By considering a rectangular contour, show that for 0 < a < 1 we have

∫ ∞

−∞

eax

ex + 1
dx =

π

sinπa
.

Hence evaluate
∫ ∞

0

dt

t5/6(1 + t)
.
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Paper 3, Section I

4B Complex Methods
Find the most general cubic form

u(x, y) = ax3 + bx2y + cxy2 + dy3

which satisfies Laplace’s equation, where a, b, c and d are all real. Hence find an analytic
function f(z) = f(x+ iy) which has such a u as its real part.

Paper 4, Section II

14B Complex Methods
Find the Laplace transforms of tn for n a positive integer and H(t− a) where a > 0

and H(t) is the Heaviside step function.

Consider a semi-infinite string which is initially at rest and is fixed at one end. The
string can support wave-like motions, and for t > 0 it is allowed to fall under gravity.
Therefore the deflection y(x, t) from its initial location satisfies

∂2

∂t2
y = c2

∂2

∂x2
y + g for x > 0, t > 0

with

y(0, t) = y(x, 0) =
∂

∂t
y(x, 0) = 0 and y(x, t) → gt2

2
as x → ∞,

where g is a constant. Use Laplace transforms to find y(x, t).

[The convolution theorem for Laplace transforms may be quoted without proof.]
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Paper 2, Section I

6A Electromagnetism
Starting from Maxwell’s equations, deduce that

dΦ

dt
= −E ,

for a moving circuit C, where Φ is the flux of B through the circuit and where the
electromotive force E is defined to be

E =

∮

C
(E + v×B) · dr

where v = v(r) denotes the velocity of a point r on C.

[Hint: Consider the closed surface consisting of the surface S(t) bounded by C(t),
the surface S(t + δt) bounded by C(t + δt) and the surface S′ stretching from C(t) to
C(t+ δt). Show that the flux of B through S′ is −δt

∮
C B · (v × dr) .]

Paper 4, Section I

7A Electromagnetism
A continuous wire of resistance R is wound around a very long right circular cylinder

of radius a, and length l (long enough so that end effects can be ignored). There are N ≫ 1
turns of wire per unit length, wound in a spiral of very small pitch. Initially, the magnetic
field B is 0.

Both ends of the coil are attached to a battery of electromotance E0 at t = 0, which
induces a current I(t). Use Ampère’s law to derive B inside and outside the cylinder
when the displacement current may be neglected. Write the self-inductance of the coil L
in terms of the quantities given above. Using Ohm’s law and Faraday’s law of induction,
find I(t) explicitly in terms of E0, R, L and t.
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Paper 1, Section II

16A Electromagnetism
The region z < 0 is occupied by an ideal earthed conductor and a point charge q

with mass m is held above it at (0, 0, d).

(i) What are the boundary conditions satisfied by the electric field E on the surface
of the conductor?

(ii) Consider now a system without the conductor mentioned above. A point charge
q with mass m is held at (0, 0, d), and one of charge −q is held at (0, 0, −d). Show
that the boundary condition on E at z = 0 is identical to the answer to (i). Explain why
this represents the electric field due to the charge at (0, 0, d) under the influence of the
conducting boundary.

(iii) The original point charge in (i) is released with zero initial velocity. Find the
time taken for the point charge to reach the plane (ignoring gravity).

[You may assume that the force on the point charge is equal to md2x/dt2, where x
is the position vector of the charge, and t is time.]

Paper 3, Section II

17A Electromagnetism
(i) Consider charges −q at ±d and 2q at (0, 0, 0). Write down the electric potential.

(ii) Take d = (0, 0, d). A quadrupole is defined in the limit that q → ∞, d → 0
such that qd2 tends to a constant p. Find the quadrupole’s potential, showing that it is
of the form

φ(r) = A
(r2 + CzD)

rB
,

where r = |r|. Determine the constants A, B, C and D.

(iii) The quadrupole is fixed at the origin. At time t = 0 a particle of charge
−Q (Q has the same sign as q) and mass m is at (1, 0, 0) travelling with velocity
dr/dt = (−κ, 0, 0), where

κ =

√
Qp

2πǫ0 m
.

Neglecting gravity, find the time taken for the particle to reach the quadrupole in terms
of κ, given that the force on the particle is equal to md2r/dt2.
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Paper 2, Section II

18A Electromagnetism
What is the relationship between the electric field E and the charge per unit area

σ on the surface of a perfect conductor?

Consider a charge distribution ρ(r) distributed with potential φ(r) over a finite
volume V within which there is a set of perfect conductors with charges Qi, each at a
potential φi (normalised such that the potential at infinity is zero). Using Maxwell’s
equations and the divergence theorem, derive a relationship between the electrostatic
energy W and a volume integral of an explicit function of the electric field E, where

W =
1

2

∫

V
ρφ dτ +

1

2

∑

i

Qiφi .

Consider N concentric perfectly conducting spherical shells. Shell n has radius rn
(where rn > rn−1) and charge q for n = 1, and charge 2(−1)(n+1)q for n > 1. Show that

W ∝ 1

r1
,

and determine the constant of proportionality.
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Paper 1, Section I

5B Fluid Dynamics
Constant density viscous fluid with dynamic viscosity µ flows in a two-dimensional

horizontal channel of depth h. There is a constant pressure gradient G > 0 in the horizontal
x−direction. The upper horizontal boundary at y = h is driven at constant horizontal
speed U > 0, with the lower boundary being held at rest. Show that the steady fluid
velocity u in the x−direction is

u =
−G

2µ
y(h− y) +

Uy

h
.

Show that it is possible to have du/dy < 0 at some point in the flow for sufficiently large
pressure gradient. Derive a relationship between G and U so that there is no net volume
flux along the channel. For the flow with no net volume flux, sketch the velocity profile.

Paper 2, Section I

7B Fluid Dynamics
Consider the steady two-dimensional fluid velocity field

u =

(
u
v

)
=

(
ǫ −γ
γ −ǫ

)(
x
y

)
,

where ǫ > 0 and γ > 0. Show that the fluid is incompressible. The streamfunction ψ is
defined by u = ∇×Ψ, where Ψ = (0, 0, ψ). Show that ψ is given by

ψ = ǫxy − γ

2
(x2 + y2).

Hence show that the streamlines are defined by

(ǫ− γ)(x+ y)2 − (ǫ+ γ)(x− y)2 = C,

for C a constant. For each of the three cases below, sketch the streamlines and briefly
describe the flow.

(i) ǫ = 1, γ = 0,

(ii) ǫ = 0, γ = 1,

(iii) ǫ = 1, γ = 1.
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Paper 1, Section II

17B Fluid Dynamics
Consider the purely two-dimensional steady flow of an inviscid incompressible

constant density fluid in the absence of body forces. For velocity u, the vorticity is
∇× u = ω = (0, 0, ω). Show that

u× ω = ∇
[
p

ρ
+

1

2
|u|2

]
,

where p is the pressure and ρ is the fluid density. Hence show that, if ω is a constant in
both space and time,

1

2
|u|2 + ω ψ +

p

ρ
= C,

where C is a constant and ψ is the streamfunction. Here, ψ is defined by u = ∇ × Ψ,
where Ψ = (0, 0, ψ).

Fluid in the annular region a < r < 2a has constant (in both space and time)
vorticity ω. The streamlines are concentric circles, with the fluid speed zero on r = 2a
and V > 0 on r = a. Calculate the velocity field, and hence show that

ω =
−2V

3a
.

Deduce that the pressure difference between the outer and inner edges of the annular
region is

∆p =

(
15− 16 ln 2

18

)
ρV 2.

[Hint: Note that in cylindrical polar coordinates (r, φ, z), the curl of a vector field

A(r, φ) = [a(r, φ), b(r, φ), c(r, φ)] is

∇×A =

[
1

r

∂c

∂φ
,−∂c

∂r
,
1

r

(
∂(rb)

∂r
− ∂a

∂φ

)]
. ]

Part IB, 2014 List of Questions



13

Paper 4, Section II

18B Fluid Dynamics
Consider a layer of fluid of constant density ρ and equilibrium depth h0 in a rotating

frame of reference, rotating at constant angular velocity Ω about the vertical z-axis. The
equations of motion are

∂u

∂t
− fv = −1

ρ

∂p

∂x
,

∂v

∂t
+ fu = −1

ρ

∂p

∂y
,

0 = −∂p

∂z
− ρg,

where p is the fluid pressure, u and v are the fluid velocities in the x-direction and y-
direction respectively, f = 2Ω, and g is the constant acceleration due to gravity. You may
also assume that the horizontal extent of the layer is sufficiently large so that the layer
may be considered to be shallow, such that vertical velocities may be neglected.

By considering mass conservation, show that the depth h(x, y, t) of the layer satisfies

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0.

Now assume that h = h0 + η(x, y, t), where |η| ≪ h0. Show that the (linearised) potential
vorticity Q = Qẑ, defined by

Q = ζ − η
f

h0
, where ζ =

∂v

∂x
− ∂u

∂y

and ẑ is the unit vector in the vertical z-direction, is a constant in time, i.e. Q = Q0(x, y).

When Q0 = 0 everywhere, establish that the surface perturbation η satisfies

∂2η

∂t2
− gh0

(
∂2η

∂x2
+

∂2η

∂y2

)
+ f2η = 0,

and show that this equation has wave-like solutions η = η0 cos[k(x− ct)] when c and k are
related through a dispersion relation to be determined. Show that, to leading order, the
trajectories of fluid particles for these waves are ellipses. Assuming that η0 > 0, k > 0,
c > 0 and f > 0, sketch the fluid velocity when k(x− ct) = nπ/2 for n = 0, 1, 2, 3.
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Paper 3, Section II

18B Fluid Dynamics
A bubble of gas occupies the spherical region r 6 R(t), and an incompressible

irrotational liquid of constant density ρ occupies the outer region r > R, such that as
r → ∞ the liquid is at rest with constant pressure p∞. Briefly explain why it is appropriate
to use a velocity potential φ(r, t) to describe the liquid velocity u.

By applying continuity of velocity across the gas-liquid interface, show that the
liquid pressure (for r > R) satisfies

p

ρ
+

1

2

(
R2Ṙ

r2

)2

− 1

r

d

dt

(
R2Ṙ

)
=

p∞
ρ

, where Ṙ =
dR

dt
.

Show that the excess pressure ps − p∞ at the bubble surface r = R is

ps − p∞ =
ρ

2

(
3Ṙ2 + 2RR̈

)
, where R̈ =

d2R

dt2
,

and hence that

ps − p∞ =
ρ

2R2

d

dR

(
R3Ṙ2

)
.

The pressure pg(t) inside the gas bubble satisfies the equation of state

pgV
4/3 = C,

where C is a constant, and V (t) is the bubble volume. At time t = 0 the bubble is at rest
with radius R = a. If the bubble then expands and comes to rest at R = 2a, determine
the required gas pressure p0 at t = 0 in terms of p∞.

[You may assume that there is contact between liquid and gas for all time, that all motion
is spherically symmetric about the origin r = 0, and that there is no body force. You may
also assume Bernoulli’s integral of the equation of motion to determine the liquid pressure
p:

p

ρ
+

∂φ

∂t
+

1

2
|∇φ|2 = A(t),

where φ(r, t) is the velocity potential.]
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Paper 1, Section I

3F Geometry
Determine the second fundamental form of a surface in R3 defined by the parametri-

sation
σ(u, v) =

(
(a+ b cos u) cos v, (a+ b cos u) sin v, b sinu

)
,

for 0 < u < 2π, 0 < v < 2π, with some fixed a > b > 0. Show that the Gaussian curvature
K(u, v) of this surface takes both positive and negative values.

Paper 3, Section I

5F Geometry
Let f(x) = Ax+b be an isometry Rn → Rn, where A is an n×n matrix and b ∈ Rn.

What are the possible values of detA?

Let I denote the n × n identity matrix. Show that if n = 2 and detA > 0, but
A 6= I, then f has a fixed point. Must f have a fixed point if n = 3 and detA > 0, but
A 6= I? Justify your answer.

Paper 3, Section II

14F Geometry
Let T be a decomposition of the two-dimensional sphere into polygonal domains,

with every polygon having at least three edges. Let V , E, and F denote the numbers of
vertices, edges and faces of T , respectively. State Euler’s formula. Prove that 2E > 3F .

Suppose that at least three edges meet at every vertex of T . Let Fn be the number
of faces of T that have exactly n edges (n > 3) and let Vm be the number of vertices at
which exactly m edges meet (m > 3). Is it possible for T to have V3 = F3 = 0? Justify
your answer.

By expressing 6F − ∑
n nFn in terms of the Vj, or otherwise, show that T has at

least four faces that are triangles, quadrilaterals and/or pentagons.
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Paper 2, Section II

14F Geometry
Let H = {x + iy : x, y ∈ R, y > 0} ⊂ C be the upper half-plane with a hyperbolic

metric g = dx2+dy2

y2
. Prove that every hyperbolic circle C in H is also a Euclidean circle.

Is the centre of C as a hyperbolic circle always the same point as the centre of C as a
Euclidean circle? Give a proof or counterexample as appropriate.

Let ABC and A′B′C ′ be two hyperbolic triangles and denote the hyperbolic lengths
of their sides by a, b, c and a′, b′, c′, respectively. Show that if a = a′, b = b′ and c = c′, then
there is a hyperbolic isometry taking ABC to A′B′C ′. Is there always such an isometry if
instead the triangles have one angle the same and a = a′, b = b′? Justify your answer.

[Standard results on hyperbolic isometries may be assumed, provided they are
clearly stated.]

Paper 4, Section II

15F Geometry
Define an embedded parametrised surface in R3. What is the Riemannian metric

induced by a parametrisation? State, in terms of the Riemannian metric, the equations
defining a geodesic curve γ : (0, 1) → S, assuming that γ is parametrised by arc-length.

Let S be a conical surface

S = {(x, y, z) ∈ R3 : 3(x2 + y2) = z2, z > 0}.

Using an appropriate smooth parametrisation, or otherwise, prove that S is locally
isometric to the Euclidean plane. Show that any two points on S can be joined by a
geodesic. Is this geodesic always unique (up to a reparametrisation)? Justify your answer.

[The expression for the Euclidean metric in polar coordinates on R2 may be used
without proof.]
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Paper 3, Section I

1E Groups, Rings and Modules
State and prove Hilbert’s Basis Theorem.

Paper 4, Section I

2E Groups, Rings and Modules
Let G be the abelian group generated by elements a, b and c subject to the relations:

3a + 6b + 3c = 0, 9b + 9c = 0 and −3a + 3b + 6c = 0. Express G as a product of cyclic
groups. Hence determine the number of elements of G of order 3.

Paper 2, Section I

2E Groups, Rings and Modules
List the conjugacy classes of A6 and determine their sizes. Hence prove that A6 is

simple.

Paper 1, Section II

10E Groups, Rings and Modules
Let G be a finite group and p a prime divisor of the order of G. Give the definition

of a Sylow p-subgroup of G, and state Sylow’s theorems.

Let p and q be distinct primes. Prove that a group of order p2q is not simple.

Let G be a finite group, H a normal subgroup of G and P a Sylow p-subgroup of
H. Let NG(P ) denote the normaliser of P in G. Prove that if g ∈ G then there exist
k ∈ NG(P ) and h ∈ H such that g = kh.
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Paper 4, Section II

11E Groups, Rings and Modules
(a) Consider the four following types of rings: Principal Ideal Domains, Integral

Domains, Fields, and Unique Factorisation Domains. Arrange them in the form A =⇒
B =⇒ C =⇒ D (where A =⇒ B means if a ring is of type A then it is of type B).

Prove that these implications hold. [You may assume that irreducibles in a Principal
Ideal Domain are prime.] Provide examples, with brief justification, to show that these
implications cannot be reversed.

(b) Let R be a ring with ideals I and J satisfying I ⊆ J . Define K to be the set
{r ∈ R : rJ ⊆ I}. Prove that K is an ideal of R. If J and K are principal, prove that I
is principal.

Paper 3, Section II

11E Groups, Rings and Modules
Let R be a ring, M an R-module and S = {m1, . . . ,mk} a subset of M . Define

what it means to say S spans M . Define what it means to say S is an independent set.

We say S is a basis for M if S spans M and S is an independent set. Prove that
the following two statements are equivalent.

1. S is a basis for M .

2. Every element of M is uniquely expressible in the form r1m1 + · · ·+ rkmk for some
r1, . . . , rk ∈ R.

We say S generates M freely if S spans M and any map Φ : S → N , where N is an
R-module, can be extended to an R-module homomorphism Θ : M → N . Prove that S
generates M freely if and only if S is a basis for M .

Let M be an R-module. Are the following statements true or false? Give reasons.

(i) If S spans M then S necessarily contains an independent spanning set for M .

(ii) If S is an independent subset of M then S can always be extended to a basis for M .
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Paper 2, Section II

11E Groups, Rings and Modules
Prove that every finite integral domain is a field.

Let F be a field and f an irreducible polynomial in the polynomial ring F [X]. Prove
that F [X]/(f) is a field, where (f) denotes the ideal generated by f .

Hence construct a field of 4 elements, and write down its multiplication table.

Construct a field of order 9.
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Paper 4, Section I

1G Linear Algebra

Let V denote the vector space of all real polynomials of degree at most 2. Show

that

(f, g) =

∫ 1

−1
f(x)g(x) dx

defines an inner product on V .

Find an orthonormal basis for V .

Paper 2, Section I

1G Linear Algebra

State and prove the Rank–Nullity Theorem.

Let α be a linear map from R5 to R3. What are the possible dimensions of the kernel

of α? Justify your answer.

Paper 1, Section I

1G Linear Algebra

State and prove the Steinitz Exchange Lemma. Use it to prove that, in a finite-

dimensional vector space: any two bases have the same size, and every linearly independent

set extends to a basis.

Let e1, . . . , en be the standard basis for Rn. Is e1 + e2, e2 + e3, e3 + e1 a basis for

R3? Is e1 + e2, e2 + e3, e3 + e4, e4 + e1 a basis for R4? Justify your answers.
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9G Linear Algebra

Let V be an n-dimensional real vector space, and let T be an endomorphism of V .

We say that T acts on a subspace W if T (W ) ⊂ W .

(i) For any x ∈ V , show that T acts on the linear span of {x, T (x), T 2(x), . . . , T n−1(x)}.
(ii) If {x, T (x), T 2(x), . . . , T n−1(x)} spans V , show directly (i.e. without using the Cayley–

Hamilton Theorem) that T satisfies its own characteristic equation.

(iii) Suppose that T acts on a subspace W with W 6= {0} and W 6= V . Let e1, . . . , ek be a

basis for W , and extend to a basis e1, . . . , en for V . Describe the matrix of T with respect

to this basis.

(iv) Using (i), (ii) and (iii) and induction, give a proof of the Cayley–Hamilton Theorem.

[Simple properties of determinants may be assumed without proof.]

Paper 4, Section II

10G Linear Algebra

Let V be a real vector space. What is the dual V ∗ of V ? If e1, . . . , en is a basis for

V , define the dual basis e∗1, . . . , e
∗
n for V ∗, and show that it is indeed a basis for V ∗.

[No result about dimensions of dual spaces may be assumed.]

For a subspace U of V , what is the annihilator of U? If V is n-dimensional, how

does the dimension of the annihilator of U relate to the dimension of U?

Let α : V → W be a linear map between finite-dimensional real vector spaces.

What is the dual map α∗? Explain why the rank of α∗ is equal to the rank of α. Prove

that the kernel of α∗ is the annihilator of the image of α, and also that the image of α∗ is

the annihilator of the kernel of α.

[Results about the matrices representing a map and its dual may be used without

proof, provided they are stated clearly.]

Now let V be the vector space of all real polynomials, and define elements L0, L1, . . .

of V ∗ by setting Li(p) to be the coefficient of Xi in p (for each p ∈ V ). Do the Li form a

basis for V ∗?
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10G Linear Algebra

Let q be a nonsingular quadratic form on a finite-dimensional real vector space V .

Prove that we may write V = P
⊕

N , where the restriction of q to P is positive definite,

the restriction of q to N is negative definite, and q(x+ y) = q(x) + q(y) for all x ∈ P and

y ∈ N . [No result on diagonalisability may be assumed.]

Show that the dimensions of P and N are independent of the choice of P and N .

Give an example to show that P and N are not themselves uniquely defined.

Find such a decomposition V = P
⊕

N when V = R3 and q is the quadratic form

q((x, y, z)) = x2 + 2y2 − 2xy − 2xz .

Paper 2, Section II

10G Linear Algebra

Define the determinant of an n × n complex matrix A. Explain, with justification,

how the determinant of A changes when we perform row and column operations on A.

Let A,B,C be complex n× n matrices. Prove the following statements.

(i) det

(
A C

0 B

)
= detA detB .

(ii) det

(
A −B

B A

)
= det(A+ iB) det(A− iB) .
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9H Markov Chains
Let (Xn : n > 0) be a homogeneous Markov chain with state space S and transition

matrix P = (pi,j : i, j ∈ S).

(a) Let Wn = X2n, n = 0, 1, 2, . . .. Show that (Wn : n > 0) is a Markov chain and give
its transition matrix. If λi = P(X0 = i), i ∈ S, find P(W1 = 0) in terms of the λi

and the pi,j.

[Results from the course may be quoted without proof, provided they are clearly
stated.]

(b) Suppose that S = {−1, 0, 1}, p0,1 = p−1,−1 = 0 and p−1,0 6= p1,0. Let Yn = |Xn|,
n = 0, 1, 2, . . .. In terms of the pi,j, find

(i) P(Yn+1 = 0 | Yn = 1, Yn−1 = 0) and

(ii) P(Yn+1 = 0 | Yn = 1, Yn−1 = 1, Yn−2 = 0).

What can you conclude about whether or not (Yn : n > 0) is a Markov chain?
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9H Markov Chains
Let (Xn : n > 0) be a homogeneous Markov chain with state space S. For i, j in S

let pi,j(n) denote the n-step transition probability P(Xn = j | X0 = i).

(i) Express the (m + n)-step transition probability pi,j(m + n) in terms of the n-step
and m-step transition probabilities.

(ii) Write i → j if there exists n > 0 such that pi,j(n) > 0, and i ↔ j if i → j and
j → i. Prove that if i ↔ j and i 6= j then either both i and j are recurrent or both
i and j are transient. [You may assume that a state i is recurrent if and only if∑∞

n=0 pi,i(n) = ∞, and otherwise i is transient.]

(iii) A Markov chain has state space {0, 1, 2, 3} and transition matrix




1
2

1
3 0 1

6

0 3
4 0 1

4

1
2

1
2 0 0

1
2 0 0 1

2




,

For each state i, determine whether i is recurrent or transient. [Results from the
course may be quoted without proof, provided they are clearly stated.]
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20H Markov Chains
Consider a homogeneous Markov chain (Xn : n > 0) with state space S and transition
matrix P = (pi,j : i, j ∈ S). For a state i, define the terms aperiodic, positive recurrent
and ergodic.

Let S = {0, 1, 2, . . .} and suppose that for i > 1 we have pi,i−1 = 1 and

p0,0 = 0, p0,j = pqj−1, j = 1, 2, . . . ,

where p = 1− q ∈ (0, 1). Show that this Markov chain is irreducible.

Let T0 = inf{n > 1 : Xn = 0} be the first passage time to 0. Find P(T0 = n | X0 = 0) and
show that state 0 is ergodic.

Find the invariant distribution π for this Markov chain. Write down:

(i) the mean recurrence time for state i, i > 1;

(ii) limn→∞ P(Xn 6= 0 | X0 = 0).

[Results from the course may be quoted without proof, provided they are clearly stated.]

Paper 2, Section II

20H Markov Chains
Let (Xn : n > 0) be a homogeneous Markov chain with state space S and transition

matrix P = (pi,j : i, j ∈ S). For A ⊆ S, let

HA = inf{n > 0 : Xn ∈ A} and hAi = P(HA < ∞ | X0 = i), i ∈ S.

Prove that hA = (hAi : i ∈ S) is the minimal non-negative solution to the equations

hAi =

{
1 for i ∈ A∑

j∈S pi,jh
A
j otherwise.

Three people A, B and C play a series of two-player games. In the first game,
two people play and the third person sits out. Any subsequent game is played between
the winner of the previous game and the person sitting out the previous game. The
overall winner of the series is the first person to win two consecutive games. The players
are evenly matched so that in any game each of the two players has probability 1

2 of
winning the game, independently of all other games. For n = 1, 2, . . ., let Xn be the
ordered pair consisting of the winners of games n and n + 1. Thus the state space is
{AA,AB,AC,BA,BB,BC,CA,CB,CC}, and, for example, X1 = AC if A wins the first
game and C wins the second.

The first game is between A and B. Treating AA, BB and CC as absorbing states,
or otherwise, find the probability of winning the series for each of the three players.
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5D Methods
Consider the ordinary differential equation

d2ψ

dz2
−

[
15k2

4(k|z| + 1)2
− 3kδ(z)

]
ψ = 0 , (†)

where k is a positive constant and δ denotes the Dirac delta function. Physically relevant
solutions for ψ are bounded over the entire range z ∈ R.

(i) Find piecewise bounded solutions to this differential equations in the ranges z > 0 and

z < 0, respectively. [Hint: The equation d2y
dx2 − c

x2 y = 0 for a constant c may be solved
using the Ansatz y = xα.]

(ii) Derive a matching condition at z = 0 by integrating (†) over the interval (−ǫ, ǫ) with
ǫ→ 0 and use this condition together with the requirement that ψ be continuous at z = 0
to determine the solution over the entire range z ∈ R.

Paper 2, Section I

5D Methods
(i) Calculate the Fourier series for the periodic extension on R of the function

f(x) = x(1− x) ,

defined on the interval [0, 1).

(ii) Explain why the Fourier series for the periodic extension of f ′(x) can be obtained by
term-by-term differentiation of the series for f(x).

(iii) Let G(x) be the Fourier series for the periodic extension of f ′(x). Determine the value
of G(0) and explain briefly how it is related to the values of f ′.

Paper 3, Section I

7D Methods
Using the method of characteristics, solve the differential equation

−y
∂u

∂x
+ x

∂u

∂y
= 0 ,

where x, y ∈ R and u = cos y2 on x = 0, y > 0.
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14D Methods
(a) Legendre’s differential equation may be written

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1) y = 0 , y(1) = 1 .

Show that for non-negative integer n, this equation has a solution Pn(x) that is a
polynomial of degree n. Find P0, P1 and P2 explicitly.

(b) Laplace’s equation in spherical coordinates for an axisymmetric function U(r, θ) (i.e. no
φ dependence) is given by

1

r2
∂

∂r

(
r2

∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
= 0 .

Use separation of variables to find the general solution for U(r, θ).

Find the solution U(r, θ) that satisfies the boundary conditions

U(r, θ) → v0 r cos θ as r → ∞ ,

∂U

∂r
= 0 at r = r0 ,

where v0 and r0 are constants.
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15D Methods
Let L be a linear second-order differential operator on the interval [0, π/2]. Consider the
problem

Ly(x) = f(x) ; y(0) = y(π/2) = 0 ,

with f(x) bounded in [0, π/2].

(i) How is a Green’s function for this problem defined?

(ii) How is a solution y(x) for this problem constructed from the Green’s function?

(iii) Describe the continuity and jump conditions used in the construction of the Green’s
function.

(iv) Use the continuity and jump conditions to construct the Green’s function for the
differential equation

d2y

dx2
− dy

dx
+

5

4
y = f(x)

on the interval [0, π/2] with the boundary conditions y(0) = 0, y(π/2)=0 and an arbitrary
bounded function f(x). Use the Green’s function to construct a solution y(x) for the
particular case f(x) = ex/2.
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16D Methods
The Fourier transform f̃ of a function f is defined as

f̃(k) =

∫ ∞

−∞
f(x)e−ikxdx , so that f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikxdk .

A Green’s function G(t, t′, x, x′) for the diffusion equation in one spatial dimension satisfies

∂G

∂t
−D

∂2G

∂x2
= δ(t− t′) δ(x − x′) .

(a) By applying a Fourier transform, show that the Fourier transform G̃ of this Green’s
function and the Green’s function G are

G̃(t, t′, k, x′) = H(t− t′) e−ikx′
e−Dk2(t−t′) ,

G(t, t′, x, x′) =
H(t− t′)√
4πD(t− t′)

e
− (x−x′)2

4D(t−t′) ,

where H is the Heaviside function. [Hint: The Fourier transform F̃ of a Gaussian

F (x) =
1√
4πa

e−
x2

4a , a = const, is given by F̃ (k) = e−ak2 .]

(b) The analogous result for the Green’s function for the diffusion equation in two spatial
dimensions is

G(t, t′, x, x′, y, y′) =
H(t− t′)

4πD(t− t′)
e
− 1

4D(t−t′) [(x−x′)2+(y−y′)2]
.

Use this Green’s function to construct a solution for t > 0 to the diffusion equation

∂Ψ

∂t
−D

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2

)
= p(t) δ(x) δ(y) ,

with the initial condition Ψ(0, x, y) = 0.

Now set

p(t) =

{
p0 = const for 0 6 t 6 t0

0 for t > t0

Find the solution Ψ(t, x, y) for t > t0 in terms of the exponential integral defined by

Ei(−η) = −
∫ ∞

η

e−λ

λ
dλ .

Use the approximation Ei(−η) ≈ ln η + C, valid for η ≪ 1, to simplify this solution
Ψ(t, x, y). Here C ≈ 0.577 is Euler’s constant.
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17D Methods
Let f(x) be a complex-valued function defined on the interval [−L,L] and periodically
extended to x ∈ R.

(i) Express f(x) as a complex Fourier series with coefficients cn, n ∈ Z. How are the
coefficients cn obtained from f(x)?

(ii) State Parseval’s theorem for complex Fourier series.

(iii) Consider the function f(x) = cos(αx) on the interval [−π, π] and periodically extended
to x ∈ R for a complex but non-integer constant α. Calculate the complex Fourier series
of f(x).

(iv) Prove the formula
∞∑

n=1

1

n2 − α2
=

1

2α2
− π

2α tan(απ)
.

(v) Now consider the case where α is a real, non-integer constant. Use Parseval’s theorem
to obtain a formula for ∞∑

n=−∞

1

(n2 − α2)2
.

What value do you obtain for this series for α = 5/2?
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3E Metric and Topological Spaces
Suppose (X, d) is a metric space. Do the following necessarily define a metric on

X? Give proofs or counterexamples.

(i) d1(x, y) = kd(x, y) for some constant k > 0, for all x, y ∈ X.

(ii) d2(x, y) = min{1, d(x, y)} for all x, y ∈ X.

(iii) d3(x, y) = (d(x, y))2 for all x, y ∈ X.

Paper 2, Section I

4E Metric and Topological Spaces
Let X and Y be topological spaces. What does it mean to say that a function

f : X → Y is continuous?

Are the following statements true or false? Give proofs or counterexamples.

(i) Every continuous function f : X → Y is an open map, i.e. if U is open in X
then f(U) is open in Y .

(ii) If f : X → Y is continuous and bijective then f is a homeomorphism.

(iii) If f : X → Y is continuous, open and bijective then f is a homeomorphism.

Paper 1, Section II

12E Metric and Topological Spaces
Define what it means for a topological space to be compact. Define what it means

for a topological space to be Hausdorff.

Prove that a compact subspace of a Hausdorff space is closed. Hence prove that if
C1 and C2 are compact subspaces of a Hausdorff space X then C1 ∩ C2 is compact.

A subset U of R is open in the cocountable topology if U is empty or its complement
in R is countable. Is R Hausdorff in the cocountable topology? Which subsets of R are
compact in the cocountable topology?
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13E Metric and Topological Spaces
Explain what it means for a metric space to be complete.

Let X be a metric space. We say the subsets Ai of X, with i ∈ N, form a descending
sequence in X if A1 ⊃ A2 ⊃ A3 ⊃ · · · .

Prove that the metric space X is complete if and only if any descending sequence
A1 ⊃ A2 ⊃ · · · of non-empty closed subsets of X, such that the diameters of the subsets
Ai converge to zero, has an intersection

⋂∞
i=1Ai that is non-empty.

[Recall that the diameter diam(S) of a set S is the supremum of the set {d(x, y) :
x, y ∈ S}.]

Give examples of
(i) a metric space X, and a descending sequence A1 ⊃ A2 ⊃ · · · of non-empty closed
subsets of X, with diam(Ai) converging to 0 but

⋂∞
i=1 Ai = ∅.

(ii) a descending sequence A1 ⊃ A2 ⊃ · · · of non-empty sets in R with diam(Ai) converging
to 0 but

⋂∞
i=1 Ai = ∅.

(iii) a descending sequence A1 ⊃ A2 ⊃ · · · of non-empty closed sets in R with
⋂∞

i=1Ai = ∅.

Part IB, 2014 List of Questions



33

Paper 1, Section I

6C Numerical Analysis
(i) A general multistep method for the numerical approximation to the scalar

differential equation y′ = f(t, y) is given by

s∑

ℓ=0

ρℓ yn+ℓ = h
s∑

ℓ=0

σℓfn+ℓ, n = 0, 1, . . .

where fn+ℓ = f(tn+ℓ, yn+ℓ). Show that this method is of order p > 1 if and only if

ρ(ez)− zσ(ez) = O(zp+1) as z → 0

where

ρ(w) =

s∑

ℓ=0

ρℓw
ℓ and σ(w) =

s∑

ℓ=0

σℓw
ℓ .

(ii) A particular three-step implicit method is given by

yn+3 + (a− 1)yn+1 − ayn = h

(
fn+3 +

2∑

ℓ=0

σℓfn+ℓ

)
.

where the σℓ are chosen to make the method third order. [The σℓ need not be found.] For
what values of a is the method convergent?

Paper 4, Section I

8C Numerical Analysis
Consider the quadrature given by

∫ π

0
w(x)f(x)dx ≈

ν∑

k=1

bkf(ck)

for ν ∈ N, disjoint ck ∈ (0, π) and w > 0 . Show that it is not possible to make this
quadrature exact for all polynomials of order 2ν.

For the case that ν = 2 and w(x) = sinx, by considering orthogonal polynomials
find suitable bk and ck that make the quadrature exact on cubic polynomials.

[Hint:
∫ π
0 x2 sinx dx = π2 − 4 and

∫ π
0 x3 sinx dx = π3 − 6π.]
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18C Numerical Analysis
Define a Householder transformation H and show that it is an orthogonal matrix.

Briefly explain how these transformations can be used for QR factorisation of an m × n
matrix.

Using Householder transformations, find a QR factorisation of

A =




2 5 4
2 5 1

−2 1 5
2 −1 16


 .

Using this factorisation, find the value of λ for which

Ax =




1 + λ
2
3
4




has a unique solution x ∈ R3.

Paper 3, Section II

19C Numerical Analysis
A Runge–Kutta scheme is given by

k1 = hf(yn), k2 = hf(yn + [(1 − a)k1 + ak2]), yn+1 = yn +
1

2
(k1 + k2)

for the solution of an autonomous differential equation y′ = f(y), where a is a real
parameter. What is the order of the scheme? Identify all values of a for which the
scheme is A-stable. Determine the linear stability domain for this range.
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19C Numerical Analysis
A linear functional acting on f ∈ Ck+1[a, b] is approximated using a linear scheme

L(f). The approximation is exact when f is a polynomial of degree k. The error is given
by λ(f). Starting from the Taylor formula for f(x) with an integral remainder term, show
that the error can be written in the form

λ(f) =
1

k!

∫ b

a
K(θ)f (k+1)(θ)dθ

subject to a condition on λ that you should specify. Give an expression for K(θ).

Find c0, c1 and c3 such that the approximation scheme

f ′′(2) ≈ c0f(0) + c1f(1) + c3f(3)

is exact for all f that are polynomials of degree 2. Assuming f ∈ C3[0, 3], apply the Peano
kernel theorem to the error. Find and sketch K(θ) for k = 2.

Find the minimum values for the constants r and s for which

|λ(f)| 6 r‖f (3)‖1 and |λ(f)| 6 s‖f (3)‖∞

and show explicitly that both error bounds hold for f(x) = x3.
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8H Optimization
State and prove the Lagrangian sufficiency theorem.

Use the Lagrangian sufficiency theorem to find the minimum of 2x21 + 2x22 + x23
subject to x1 + x2 + x3 = 1 (where x1, x2 and x3 are real).

Paper 2, Section I

9H Optimization
Explain what is meant by a two-player zero-sum game with m × n pay-off matrix

P = (pij), and state the optimal strategies for each player.

Find these optimal strategies when

P =

(
−4 2
2 −4

)
.
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20H Optimization
Consider a network with a single source and a single sink, where all the edge

capacities are finite. Write down the maximum flow problem, and state the max-flow
min-cut theorem.

Describe the Ford–Fulkerson algorithm. If all edge capacities are integers, explain
why, starting from a suitable initial flow, the algorithm is guaranteed to end after a finite
number of iterations.

The graph in the diagram below represents a one-way road network taking traffic
from point A to point B via five roundabouts Ri, i = 1, . . . , 5. The capacity of each road
is shown on the diagram in terms of vehicles per minute. Assuming that all roundabouts
can deal with arbitrary amounts of flow of traffic, find the maximum flow of traffic (in
vehicles per minute) through this network of roads. Show that this flow is indeed optimal.

After a heavy storm, roundabout R2 is flooded and only able to deal with at most
20 vehicles per minute. Find a suitable new network for the situation after the storm.
Apply the Ford–Fulkerson algorithm to the new network, starting with the zero flow and
explaining each step, to determine the maximum flow and the associated flows on each
road.
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Paper 3, Section II

21H Optimization
Use the two-phase simplex method to maximise 2x1 + x2 + x3 subject to the

constraints
x1 + x2 > 1, x1 + x2 + 2x3 6 4, xi > 0 for i = 1, 2, 3.

Derive the dual of this linear programming problem and find the optimal solution
of the dual.
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6A Quantum Mechanics
For some quantum mechanical observable Q, prove that its uncertainty (∆Q)

satisfies
(∆Q)2 = 〈Q2〉 − 〈Q〉2.

A quantum mechanical harmonic oscillator has Hamiltonian

H =
p2

2m
+

mω2x2

2
,

where m > 0. Show that (in a stationary state of energy E)

E > (∆p)2

2m
+

mω2(∆x)2

2
.

Write down the Heisenberg uncertainty relation. Then, use it to show that

E > 1

2
~ω

for our stationary state.

Paper 3, Section I

8A Quantum Mechanics
The wavefunction of a normalised Gaussian wavepacket for a particle of mass m in

one dimension with potential V (x) = 0 is given by

ψ(x, t) = B
√
A(t) exp

(−x2A(t)
2

)
,

where A(0) = 1. Given that ψ(x, t) is a solution of the time-dependent Schrödinger
equation, find the complex-valued function A(t) and the real constant B.

[You may assume that
∫∞
−∞ e−λx2

dx =
√
π/

√
λ.]
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15A Quantum Mechanics
Consider a particle confined in a one-dimensional infinite potential well: V (x) = ∞

for |x| > a and V (x) = 0 for |x| < a. The normalised stationary states are

ψn(x) =




αn sin

(
πn(x+ a)

2a

)
for |x| < a

0 for |x| > a

where n = 1, 2, . . ..

(i) Determine the αn and the stationary states’ energies En.

(ii) A state is prepared within this potential well: ψ(x) ∝ x for 0 < x < a, but
ψ(x) = 0 for x 6 0 or x > a. Find an explicit expansion of ψ(x) in terms of ψn(x).

(iii) If the energy of the state is then immediately measured, show that the

probability that it is greater than ~2π2

ma2
is

4∑

n=0

bn
πn
,

where the bn are integers which you should find.

(iv) By considering the normalisation condition for ψ(x) in terms of the expansion
in ψn(x), show that

π2

3
=

∞∑

p=1

A

p2
+

B

(2p − 1)2

(
1 +

C(−1)p

(2p − 1)π

)2

,

where A, B and C are integers which you should find.

Part IB, 2014 List of Questions [TURN OVER



40

Paper 3, Section II

16A Quantum Mechanics
The Hamiltonian of a two-dimensional isotropic harmonic oscillator is given by

H =
p2x + p2y
2m

+
mω2

2
(x2 + y2) ,

where x and y denote position operators and px and py the corresponding momentum
operators.

State without proof the commutation relations between the operators x, y, px, py.
From these commutation relations, write [x2, px] and [x, p2x] in terms of a single operator.
Now consider the observable

L = xpy − ypx.

Ehrenfest’s theorem states that, for some observable Q with expectation value 〈Q〉,

d〈Q〉
dt

=
1

i~
〈[Q, H]〉+ 〈∂Q

∂t
〉.

Use it to show that the expectation value of L is constant with time.

Given two states

ψ1 = αx exp
(
−β(x2 + y2)

)
and ψ2 = αy exp

(
−β(x2 + y2)

)
,

where α and β are constants, find a normalised linear combination of ψ1 and ψ2 that is an
eigenstate of L, and the corresponding L eigenvalue. [You may assume that α correctly
normalises both ψ1 and ψ2.] If a quantum state is prepared in the linear combination you
have found at time t = 0, what is the expectation value of L at a later time t?
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Paper 2, Section II

17A Quantum Mechanics
For an electron of mass m in a hydrogen atom, the time-independent Schrödinger

equation may be written as

− ~2

2mr2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

2mr2
L2ψ − e2

4πǫ0r
ψ = Eψ.

Consider normalised energy eigenstates of the form

ψlm(r, θ, φ) = R(r)Ylm(θ, φ)

where Ylm are orbital angular momentum eigenstates:

L2Ylm = ~2l(l + 1)Ylm, L3Ylm = ~mYlm,

where l = 1, 2, . . . and m = 0, ±1, ±2, . . . ± l. The Ylm functions are normalised with∫ π
θ=0

∫ 2π
φ=0 |Ylm|2 sin θ dθ dφ = 1.

(i) Write down the resulting equation satisfied by R(r), for fixed l. Show that it has
solutions of the form

R(r) = Arl exp

(
− r

a(l + 1)

)
,

where a is a constant which you should determine. Show that

E = − e2

Dπǫ0a
,

where D is an integer which you should find (in terms of l). Also, show that

|A|2 = 22l+3

aFG!(l + 1)H
,

where F , G and H are integers that you should find in terms of l.

(ii) Given the radius of the proton rp ≪ a, show that the probability of the electron
being found within the proton is approximately

22l+3

C

(rp
a

)2l+3 [
1 +O

(rp
a

)]
,

finding the integer C in terms of l.

[You may assume that
∫∞
0 tle−tdt = l! .]
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Paper 1, Section I

7H Statistics
Consider an estimator θ̂ of an unknown parameter θ, and assume that Eθ

(
θ̂2
)
< ∞

for all θ. Define the bias and mean squared error of θ̂.

Show that the mean squared error of θ̂ is the sum of its variance and the square of
its bias.

Suppose that X1, . . . ,Xn are independent identically distributed random variables
with mean θ and variance θ2, and consider estimators of θ of the form kX̄ where
X̄ = 1

n

∑n
i=1Xi.

(i) Find the value of k that gives an unbiased estimator, and show that the mean
squared error of this unbiased estimator is θ2/n.

(ii) Find the range of values of k for which the mean squared error of kX̄ is smaller
than θ2/n.

Paper 2, Section I

8H Statistics
There are 100 patients taking part in a trial of a new surgical procedure for a

particular medical condition. Of these, 50 patients are randomly selected to receive the
new procedure and the remaining 50 receive the old procedure. Six months later, a doctor
assesses whether or not each patient has fully recovered. The results are shown below:

Fully Not fully
recovered recovered

Old procedure 25 25

New procedure 31 19

The doctor is interested in whether there is a difference in full recovery rates for patients
receiving the two procedures. Carry out an appropriate 5% significance level test, stating
your hypotheses carefully. [You do not need to derive the test.] What conclusion should
be reported to the doctor?

[Hint: Let χ2
k(α) denote the upper 100α percentage point of a χ2

k distribution. Then

χ2
1(0.05) = 3.84, χ2

2(0.05) = 5.99, χ2
3(0.05) = 7.82, χ2

4(0.05) = 9.49.]
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Paper 4, Section II

19H Statistics
Consider a linear model

Y = Xβ + ε, (†)
where X is a known n× p matrix, β is a p× 1 (p < n) vector of unknown parameters and
ε is an n× 1 vector of independent N(0, σ2) random variables with σ2 unknown. Assume
that X has full rank p. Find the least squares estimator β̂ of β and derive its distribution.
Define the residual sum of squares RSS and write down an unbiased estimator σ̂2 of σ2.

Suppose that Vi = a+ bui+ δi and Zi = c+ dwi+ ηi, for i = 1, . . . ,m, where ui and
wi are known with

∑m
i=1 ui =

∑m
i=1 wi = 0, and δ1, . . . , δm, η1, . . . , ηm are independent

N(0, σ2) random variables. Assume that at least two of the ui are distinct and at least
two of the wi are distinct. Show that Y = (V1, . . . , Vm, Z1, . . . , Zm)T (where T denotes
transpose) may be written as in (†) and identify X and β. Find β̂ in terms of the Vi, Zi,
ui and wi. Find the distribution of b̂− d̂ and derive a 95% confidence interval for b− d.

[Hint: You may assume that RSS
σ2 has a χ2

n−p distribution, and that β̂ and the
residual sum of squares are independent. Properties of χ2 distributions may be used without
proof.]
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Paper 1, Section II

19H Statistics
Suppose that X1, X2, and X3 are independent identically distributed Poisson

random variables with expectation θ, so that

P(Xi = x) =
e−θθx

x!
x = 0, 1, . . . ,

and consider testing H0 : θ = 1 against H1 : θ = θ1, where θ1 is a known value greater
than 1. Show that the test with critical region {(x1, x2, x3) :

∑3
i=1 xi > 5} is a likelihood

ratio test of H0 against H1. What is the size of this test? Write down an expression for
its power.

A scientist counts the number of bird territories in n randomly selected sections
of a large park. Let Yi be the number of bird territories in the ith section, and
suppose that Y1, . . . , Yn are independent Poisson random variables with expectations
θ1, . . . , θn respectively. Let ai be the area of the ith section. Suppose that n = 2m,
a1 = · · · = am = a(> 0) and am+1 = · · · = a2m = 2a. Derive the generalised likelihood
ratio Λ for testing

H0 : θi = λai against H1 : θi =

{
λ1 i = 1, . . . ,m
λ2 i = m+ 1, . . . , 2m.

What should the scientist conclude about the number of bird territories if 2 loge(Λ)
is 15.67?

[Hint: Let Fθ(x) be P(W 6 x) where W has a Poisson distribution with expectation θ.
Then

F1(3) = 0.998, F3(5) = 0.916, F3(6) = 0.966, F5(3) = 0.433 .]
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Paper 3, Section II

20H Statistics
Suppose that X1, . . . ,Xn are independent identically distributed random variables

with

P(Xi = x) =

(
k

x

)
θx(1− θ)k−x, x = 0, . . . , k,

where k is known and θ (0 < θ < 1) is an unknown parameter. Find the maximum
likelihood estimator θ̂ of θ.

Statistician 1 has prior density for θ given by π1(θ) = αθα−1, 0 < θ < 1, where
α > 1. Find the posterior distribution for θ after observing data X1 = x1, . . . ,Xn = xn.

Write down the posterior mean θ̂
(B)
1 , and show that

θ̂
(B)
1 = c θ̂ + (1− c)θ̃1,

where θ̃1 depends only on the prior distribution and c is a constant in (0, 1) that is to be
specified.

Statistician 2 has prior density for θ given by π2(θ) = α(1−θ)α−1, 0 < θ < 1. Briefly
describe the prior beliefs that the two statisticians hold about θ. Find the posterior mean

θ̂
(B)
2 and show that θ̂

(B)
2 < θ̂

(B)
1 .

Suppose that α increases (but n, k and the xi remain unchanged). How do the prior
beliefs of the two statisticians change? How does c vary? Explain briefly what happens

to θ̂
(B)
1 and θ̂

(B)
2 .

[Hint: The Beta(α, β) (α > 0, β > 0) distribution has density

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1,

with expectation α
α+β and variance αβ

(α+β+1)(α+β)2
. Here, Γ(α) =

∫∞
0 xα−1e−xdx, α > 0, is

the Gamma function.]
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Paper 1, Section I

4C Variational Principles
Define the Legendre transform f∗(p) of a function f(x) where x ∈ Rn.

Show that for g(x) = λ f(x− x0)− µ,

g∗(p) = λf∗
(p
λ

)
+ pTx0 + µ.

Show that for f(x) = 1
2x

TAx where A is a real, symmetric, invertible matrix with
positive eigenvalues,

f∗(p) = 1
2p

TA−1 p.

Paper 3, Section I

6C Variational Principles
Let f(x, y, z) = xz + yz. Using Lagrange multipliers, find the location(s) and value

of the maximum of f on the intersection of the unit sphere (x2 + y2 + z2 = 1) and the
ellipsoid given by 1

4x
2 + 1

4y
2 + 4z2 = 1.

Paper 2, Section II

15C Variational Principles
Write down the Euler–Lagrange equation for the integral

∫
f(y, y′, x)dx.

An ant is walking on the surface of a sphere, which is parameterised by θ ∈ [0, π] (angle
from top of sphere) and φ ∈ [0, 2π) (azimuthal angle). The sphere is sticky towards the
top and the bottom and so the ant’s speed is proportional to sin θ. Show that the ant’s
fastest route between two points will be of the form

sinh(Aφ+B) = cot θ

for some constants A and B. [A, B need not be determined.]
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Paper 4, Section II

16C Variational Principles
Consider the integral

I =

∫
f(y, y′)dx.

Show that if f satisfies the Euler–Lagrange equation, then

f − y′
∂f

∂y′
= constant.

An axisymmetric soap film y(x) is formed between two circular wires at x = ±l.
The wires both have radius r. Show that the shape that minimises the surface area takes
the form

y(x) = k cosh
x

k
.

Show that there exist two possible k that satisfy the boundary conditions for r/l
sufficiently large.

Show that for these solutions the second variation is given by

δ2I = π

∫ +l

−l

(
kη′2 − 1

k
η2
)
sech2

(x
k

)
dx

where η is an axisymmetric perturbation with η(±l) = 0.
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