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SECTION I

1I Number Theory
Let s = σ + it with σ, t ∈ R. Define the Riemann zeta function ζ(s) for σ > 1.

Show that for σ > 1,

ζ(s) =
∏

p

(1− p−s)−1 ,

where the product is taken over all primes. Deduce that there are infinitely many primes.

2F Topics in Analysis
State the Baire Category Theorem. A set X ⊆ R is said to be a Gδ-set if it is the

intersection of countably many open sets. Show that the set Q of rationals is not a Gδ-set.

[You may assume that the rationals are countable and that R is complete.]

3G Geometry and Groups

Let ∆1,∆2 be two disjoint closed discs in the Riemann sphere with bounding

circles Γ1,Γ2 respectively. Let Jk be inversion in the circle Γk and let T be the Möbius

transformation J2 ◦ J1.
Show that, if w /∈ ∆1, then T (w) ∈ ∆2 and so T n(w) ∈ ∆2 for n = 1, 2, 3, . . ..

Deduce that T has a fixed point in ∆2 and a second in ∆1.

Deduce that there is a Möbius transformation A with

A(∆1) = {z : |z| 6 1} and A(∆2) = {z : |z| > R}

for some R > 1.

4H Coding and Cryptography
Describe how a stream cipher works. What is a one-time pad?

A one-time pad is used to send the message x1x2x3x4x5x6y7 which is encoded as
0101011. In error, it is reused to send the message y0x1x2x3x4x5x6 which is encoded as
0100010. Show that there are two possibilities for the substring x1x2x3x4x5x6, and find
them.

Part II, Paper 4
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5J Statistical Modelling
The output X of a process depends on the levels of two adjustable variables: A, a

factor with four levels, and B, a factor with two levels. For each combination of a level of
A and a level of B, nine independent values of X are observed.

Explain and interpret the R commands and (abbreviated) output below. In
particular, describe the model being fitted, and describe and comment on the hypothesis
tests performed under the summary and anova commands.

> fit1 <- lm(x ˜ a+b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5445 0.2449 10.39 6.66e-16 ***

a2 -5.6704 0.4859 -11.67 < 2e-16 ***

a3 4.3254 0.3480 12.43 < 2e-16 ***

a4 -0.5003 0.3734 -1.34 0.0923

b2 -3.5689 0.2275 -15.69 < 2e-16 ***

> anova(fit1)

Response: x

Df Sum Sq mean Sq F value Pr(>F)

a 3 71.51 23.84 17.79 1.34e-8 ***

b 1 105.11 105.11 78.44 6.91e-13 ***

Residuals 67 89.56 1.34

6A Mathematical Biology
A model of two populations competing for resources takes the form

dn1

dt
= r1n1(1− n1 − a12n2) ,

dn2

dt
= r2n2(1− n2 − a21n1) ,

where all parameters are positive. Give a brief biological interpretation of a12, a21, r1 and
r2. Briefly describe the dynamics of each population in the absence of the other.

Give conditions for there to exist a steady-state solution with both populations
present (that is, n1 > 0 and n2 > 0), and give conditions for this solution to be stable.

In the case where there exists a solution with both populations present but the
solution is not stable, what is the likely long-term outcome for the biological system?
Explain your answer with the aid of a phase diagram in the (n1, n2) plane.
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7C Dynamical Systems
Consider the system

ẋ = y + ax+ bx3 ,

ẏ = −x .

What is the Poincaré index of the single fixed point? If there is a closed orbit, why must
it enclose the origin?

By writing ẋ = ∂H/∂y + g(x) and ẏ = −∂H/∂x for suitable functions H(x, y) and
g(x), show that if there is a closed orbit C then

∮

C
(ax+ bx3)x dt = 0 .

Deduce that there is no closed orbit when ab > 0.

If ab < 0 and a and b are both O(ǫ), where ǫ is a small parameter, then there is a
single closed orbit that is to within O(ǫ) a circle of radius R centred on the origin. Deduce
a relation between a, b and R.

8E Further Complex Methods
Let the function f(z) be analytic in the upper half-plane and such that |f(z)| → 0

as |z| → ∞. Show that

P
∫ ∞

−∞

f(x)

x
dx = iπf(0) ,

where P denotes the Cauchy principal value.

Use the Cauchy integral theorem to show that

P
∫ ∞

−∞

u(x, 0)

x− t
dx = −πv(t, 0) , P

∫ ∞

−∞

v(x, 0)

x− t
dx = πu(t, 0) ,

where u(x, y) and v(x, y) are the real and imaginary parts of f(z).

Part II, Paper 4



5

9B Classical Dynamics
The Lagrangian for a heavy symmetric top of mass M , pinned at point O which is

a distance l from the centre of mass, is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ.

(i) Starting with the fixed space frame (ẽ1, ẽ2, ẽ3) and choosing O at its origin, sketch
the top with embedded body frame axis e3 being the symmetry axis. Clearly identify
the Euler angles (θ, φ, ψ).

(ii) Obtain the momenta pθ, pφ and pψ and the Hamiltonian H(θ, φ, ψ, pθ, pφ, pψ). Derive
Hamilton’s equations. Identify the three conserved quantities.

10D Cosmology
List the relativistic species of bosons and fermions from the standard model of

particle physics that are present in the early universe when the temperature falls to
1MeV/kB .

Which of the particles above will be interacting when the temperature is above
1MeV/kB and between 1MeV/kB & T & 0.51MeV/kB , respectively?

Explain what happens to the populations of particles present when the temperature
falls to 0.51MeV/kB .

The entropy density of fermion and boson species with temperature T is s ∝ gsT
3,

where gs is the number of relativistic spin degrees of freedom, that is,

gs =
∑

bosons

gi +
7

8

∑

fermions

gi .

Show that when the temperature of the universe falls below 0.51MeV/kB the ratio
of the neutrino and photon temperatures will be given by

Tν

Tγ
=

(
4

11

)1/3

.
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SECTION II

11I Number Theory
(i) What is meant by the continued fraction expansion of a real number θ? Suppose

that θ has continued fraction [a0, a1, a2, . . . ]. Define the convergents pn/qn to θ and give
the recurrence relations satisfied by the pn and qn. Show that the convergents pn/qn do
indeed converge to θ.

[You need not justify the basic order properties of finite continued fractions.]

(ii) Find two solutions in strictly positive integers to each of the equations

x2 − 10y2 = 1 and x2 − 11y2 = 1 .

12G Geometry and Groups

Define the limit set for a Kleinian group. If your definition of the limit set requires

an arbitrary choice of a base point, you should prove that the limit set does not depend

on this choice.

Let ∆1,∆2,∆3,∆4 be the four discs {z ∈ C : |z − c| 6 1} where c is the point

1+i, 1−i,−1−i,−1+i respectively. Show that there is a parabolic Möbius transformation

A that maps the interior of ∆1 onto the exterior of ∆2 and fixes the point where ∆1 and

∆2 touch. Show further that we can choose A so that it maps the unit disc onto itself.

Let B be the similar parabolic transformation that maps the interior of ∆3 onto the

exterior of ∆4, fixes the point where ∆3 and ∆4 touch, and maps the unit disc onto itself.

Explain why the group generated by A and B is a Kleinian group G. Find the limit set

for the group G and justify your answer.

Part II, Paper 4
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13J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0.

A random variable Y is said to have an inverse Gaussian distribution, with
parameters φ and λ (both positive), if its density function is

f(y;φ, λ) =

√
λ√

2πy3
e
√
λφ exp

{
−1

2

(
λ

y
+ φy

)}
(y > 0).

Show that the family of all inverse Gaussian distributions for Y is of exponential dispersion
family form. Deduce directly the corresponding expressions for E(Y ) and Var(Y ) in terms
of φ and λ. What are the corresponding canonical link function and variance function?

Consider a generalized linear model, M , for independent variables Yi (i = 1, . . . , n),
whose random component is defined by the inverse Gaussian distribution with link function
g(µ) = log(µ): thus g(µi) = xTi β, where β = (β1, . . . , βp)

T is the vector of unknown
regression coefficients and xi = (xi1, . . . , xip)

T is the vector of known values of the
explanatory variables for the ith observation. The vectors xi (i = 1, . . . , n) are linearly
independent. Assuming that the dispersion parameter is known, obtain expressions for
the score function and Fisher information matrix for β. Explain how these can be used to
compute the maximum likelihood estimate β̂ of β.
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14C Dynamical Systems
Consider the dynamical system

ẋ = (x+ y + a)(x− y + a) ,

ẏ = y − x2 − b ,

where a > 0.

Find the fixed points of the dynamical system. Show that for any fixed value of a
there exist three values b1 > b2 > b3 of b where a bifurcation occurs. Show that b2 = b3
when a = 1/2.

In the remainder of this question set a = 1/2.

(i) Being careful to explain your reasoning, show that the extended centre manifold
for the bifurcation at b = b1 can be written in the form X = αY + βµ + p(Y, µ),
where X and Y denote the departures from the values of x and y at the fixed point,
b = b1 + µ, α and β are suitable constants (to be determined) and p is quadratic to
leading order. Derive a suitable approximate form for p, and deduce the nature of
the bifurcation and the stability of the different branches of the steady state solution
near the bifurcation.

(ii) Repeat the calculations of part (i) for the bifurcation at b = b2.

(iii) Sketch the x values of the fixed points as functions of b, indicating the nature of the
bifurcations and where each branch is stable.

Part II, Paper 4
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15B Classical Dynamics
The motion of a particle of charge q and mass m in an electromagnetic field with

scalar potential φ(r, t) and vector potential A(r, t) is characterized by the Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A) .

(i) Write down the Hamiltonian of the particle.

(ii) Write down Hamilton’s equations of motion for the particle.

(iii) Show that Hamilton’s equations are invariant under the gauge transformation

φ → φ− ∂Λ

∂t
, A → A+∇Λ,

for an arbitrary function Λ(r, t).

(iv) The particle moves in the presence of a field such that φ = 0 andA = (−1
2yB, 12xB, 0),

where (x, y, z) are Cartesian coordinates and B is a constant.

(a) Find a gauge transformation such that only one component of A(x, y, z) remains
non-zero.

(b) Determine the motion of the particle.

(v) Now assume that B varies very slowly with time on a time-scale much longer than
(qB/m)−1. Find the quantity which remains approximately constant throughout the
motion.
[You may use the expression for the action variable I = 1

2π

∮
pidqi. ]

16G Logic and Set Theory
State the Axiom of Foundation and the Principle of ∈-Induction, and show that

they are equivalent in the presence of the other axioms of ZF set theory. [You may assume
the existence of transitive closures.]

Given a model (V,∈) for all the axioms of ZF except Foundation, show how to define
a transitive class R which, with the restriction of the given relation ∈, is a model of ZF.

Given a model (V,∈) of ZF, indicate briefly how one may modify the relation ∈ so
that the resulting structure (V,∈′) fails to satisfy Foundation, but satisfies all the other
axioms of ZF. [You need not verify that all the other axioms hold in (V,∈′).]
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17F Graph Theory

Define the maximum degree ∆(G) and the chromatic index χ′(G) of the graph G.

State and prove Vizing’s theorem relating ∆(G) and χ′(G).

Let G be a connected graph such that χ′(G) = ∆(G) + 1 but, for every subgraph

H of G, χ′(H) = ∆(H) holds. Show that G is a circuit of odd length.

18I Galois Theory
(i) Let ζN = e2πi/N ∈ C for N > 1. For the cases N = 11, 13, is it possible to express

ζN , starting with integers and using rational functions and (possibly nested) radicals? If
it is possible, briefly explain how this is done, assuming standard facts in Galois Theory.

(ii) Let F = C(X,Y,Z) be the rational function field in three variables over C, and
for integers a, b, c > 1 let K = C(Xa, Y b, Zc) be the subfield of F consisting of all rational
functions in Xa, Y b, Zc with coefficients in C. Show that F/K is Galois, and determine
its Galois group. [Hint: For α, β, γ ∈ C×, the map (X,Y,Z) 7−→ (αX, βY, γZ) is an
automorphism of F .]

19G Representation Theory
State and prove Burnside’s paqb-theorem.

20H Number Fields
State Dedekind’s criterion. Use it to factor the primes up to 5 in the ring of integers

OK of K = Q(
√
65). Show that every ideal in OK of norm 10 is principal, and compute

the class group of K.

21G Algebraic Topology

(i) State, but do not prove, the Lefschetz fixed point theorem.

(ii) Show that if n is even, then for every map f : Sn → Sn there is a point x ∈ Sn such
that f(x) = ±x. Is this true if n is odd? [Standard results on the homology groups
for the n-sphere may be assumed without proof, provided they are stated clearly.]
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22F Linear Analysis
Let T : X → X be a bounded linear operator on a complex Banach space X. Define

the spectrum σ(T ) of T . What is an approximate eigenvalue of T ? What does it mean to
say that T is compact?

Assume now that T is compact. Show that if λ is in the boundary of σ(T ) and
λ 6= 0, then λ is an eigenvalue of T . [You may use without proof the result that every λ
in the boundary of σ(T ) is an approximate eigenvalue of T .]

Let T : H → H be a compact Hermitian operator on a complex Hilbert space H.
Prove the following:

(a) If λ ∈ σ(T ) and λ 6= 0, then λ is an eigenvalue of T .

(b) σ(T ) is countable.

23H Algebraic Geometry
Let C be a nonsingular projective curve, and D a divisor on C of degree d.

(i) State the Riemann–Roch theorem for D, giving a brief explanation of each term.
Deduce that if d > 2g − 2 then ℓ(D) = 1− g + d.

(ii) Show that, for every P ∈ C,

ℓ(D − P ) > ℓ(D)− 1.

Deduce that ℓ(D) 6 1 + d. Show also that if ℓ(D) > 1, then ℓ(D − P ) = ℓ(D) − 1 for all
but finitely many P ∈ C.

(iii) Deduce that for every d > g − 1 there exists a divisor D of degree d with
ℓ(D) = 1− g + d.
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24H Differential Geometry

Define what is meant by the geodesic curvature kg of a regular curve α : I → S

parametrized by arc length on a smooth oriented surface S ⊂ R3. If S is the unit sphere

in R3 and α : I → S is a parametrized geodesic circle of radius φ, with 0 < φ < π/2,

justify the fact that |kg| = cotφ.

State the general form of the Gauss–Bonnet theorem with boundary on an oriented

surface S, explaining briefly the terms which occur.

Let S ⊂ R3 now denote the circular cone given by z > 0 and x2 + y2 = z2 tan2 φ,

for a fixed choice of φ with 0 < φ < π/2, and with a fixed choice of orientation. Let

α : I → S be a simple closed piecewise regular curve on S, with (signed) exterior angles

θ1, . . . , θN at the vertices (that is, θi is the angle between limits of tangent directions, with

sign determined by the orientation). Suppose furthermore that the smooth segments of α

are geodesic curves. What possible values can θ1 + · · ·+ θN take? Justify your answer.

[You may assume that a simple closed curve in R2 bounds a region which is homeomorphic

to a disc. Given another simple closed curve in the interior of this region, you may assume

that the two curves bound a region which is homeomorphic to an annulus.]

25K Probability and Measure
State Birkhoff’s almost-everywhere ergodic theorem.

Let (Xn : n ∈ N) be a sequence of independent random variables such that

P(Xn = 0) = P(Xn = 1) = 1/2 .

Define for k ∈ N

Yk =
∞∑

n=1

Xk+n−1/2
n .

What is the distribution of Yk? Show that the random variables Y1 and Y2 are not
independent.

Set Sn = Y1 + · · · + Yn. Show that Sn/n converges as n → ∞ almost surely and
determine the limit. [You may use without proof any standard theorem provided you state
it clearly.]

Part II, Paper 4
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26J Applied Probability
(i) Define an M/M/1 queue. Justifying briefly your answer, specify when this queue

has a stationary distribution, and identify that distribution. State and prove Burke’s
theorem for this queue.

(ii) Let (L1(t), . . . , LN (t), t > 0) denote a Jackson network of N queues, where the
entrance and service rates for queue i are respectively λi and µi, and each customer leaving
queue i moves to queue j with probability pij after service. We assume

∑
j pij < 1 for

each i = 1, . . . , N ; with probability 1−∑
j pij a customer leaving queue i departs from the

system. State Jackson’s theorem for this network. [You are not required to prove it.] Are
the processes (L1(t), . . . , LN (t), t > 0) independent at equilibrium? Justify your answer.

(iii) Let Di(t) be the process of final departures from queue i. Show that, at
equilibrium, (L1(t), . . . , LN (t)) is independent of (Di(s), 1 6 i 6 N, 0 6 s 6 t). Show
that, for each fixed i = 1, . . . , N , (Di(t), t > 0) is a Poisson process, and specify its rate.
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27K Principles of Statistics
Assuming only the existence and properties of the univariate normal distribution,

define Np(µ,Σ), the multivariate normal distribution with mean (row-)vector µ and
dispersion matrix Σ; and Wp(ν; Σ), the Wishart distribution on integer ν > 1 degrees
of freedom and with scale parameter Σ. Show that, if X ∼ Np(µ,Σ), S ∼ Wp(ν; Σ), and

b (1 × q), A (p × q) are fixed, then b +XA ∼ Nq(b + µA,Φ), ATSA ∼ Wp(ν; Φ), where

Φ = ATΣA.

The random (n × p) matrix X has rows that are independently distributed as
Np(M,Σ), where both parameters M and Σ are unknown. Let X := n−11TX, where
1 is the (n × 1) vector of 1s; and Sc := XTΠX, with Π := In − n−111T. State the joint
distribution of X and Sc given the parameters.

Now suppose n > p and Σ is positive definite. Hotelling’s T 2 is defined as

T 2 := n(X −M)
(
S
c)−1

(X −M)T

where S
c
:= Sc/ν with ν := (n − 1). Show that, for any values of M and Σ,

(
ν − p+ 1

νp

)
T 2 ∼ F p

ν−p+1 ,

the F distribution on p and ν − p+ 1 degrees of freedom.

[You may assume that:

1. If S ∼ Wp(ν; Σ) and a is a fixed (p × 1) vector, then

aTΣ−1a

aTS−1a
∼ χ2

ν−p+1.

2. If V ∼ χ2
p, W ∼ χ2

λ are independent, then

V/p

W/λ
∼ F p

λ . ]
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28K Optimization and Control
Given r, ρ, µ, T , all positive, it is desired to choose u(t) > 0 to maximize

µx(T ) +

∫ T

0
e−ρt log u(t) dt

subject to ẋ(t) = rx(t)− u(t), x(0) = 10.

Explain what Pontryagin’s maximum principle guarantees about a solution to this
problem.

Show that no matter whether x(T ) is constrained or unconstrained there is a
constant α such that the optimal control is of the form u(t) = αe−(ρ−r)t. Find an expression
for α under the constraint x(T ) = 5.

Show that if x(T ) is unconstrained then α = (1/µ)e−rT .

29J Stochastic Financial Models
Let St := (S1

t , S
2
t , . . . , S

n
t )

T denote the time-t prices of n risky assets in which an
agent may invest, t = 0, 1. He may also invest his money in a bank account, which
will return interest at rate r > 0. At time 0, he knows S0 and r, and he knows that
S1 ∼ N(µ, V ). If he chooses at time 0 to invest cash value θi in risky asset i, express his
wealth w1 at time 1 in terms of his initial wealth w0 > 0, the choices θ := (θ1, . . . , θn)

T,
the value of S1, and r.

Suppose that his goal is to minimize the variance of w1 subject to the requirement
that the mean E(w1) should be at least m, where m > (1 + r)w0 is given. What portfolio
θ should he choose to achieve this?

Suppose instead that his goal is to minimize E(w2
1) subject to the same constraint.

Show that his optimal portfolio is unchanged.
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30C Partial Differential Equations
(i) Show that an arbitrary C2 solution of the one-dimensional wave equation

utt − uxx = 0 can be written in the form u = F (x− t) +G(x+ t).

Hence, deduce the formula for the solution at arbitrary t > 0 of the Cauchy problem

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (∗)

where u0, u1 are arbitrary Schwartz functions.

Deduce from this formula a theorem on finite propagation speed for the one-
dimensional wave equation.

(ii) Define the Fourier transform of a tempered distribution. Compute the Fourier
transform of the tempered distribution Tt ∈ S ′(R) defined for all t > 0 by the function

Tt(y) =

{
1
2 if |y| 6 t,

0 if |y| > t,

that is, 〈Tt , f 〉 = 1
2

∫ +t
−t f(y) dy for all f ∈ S(R). By considering the Fourier transform

in x, deduce from this the formula for the solution of (∗) that you obtained in part (i) in
the case u0 = 0.

31B Asymptotic Methods
Show that the equation

d2y

dx2
+

2

x

dy

dx
+

(
1

x2
− 1

)
y = 0

has an irregular singular point at infinity. Using the Liouville–Green method, show that
one solution has the asymptotic expansion

y(x) ∼ 1

x
ex

(
1 +

1

2x
+ . . .

)

as x → ∞.
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32E Principles of Quantum Mechanics
(i) The creation and annihilation operators for a harmonic oscillator of angular

frequency ω satisfy the commutation relation [a, a†] = 1. Write down an expression for
the Hamiltonian H and number operator N in terms of a and a†. Explain how the space
of eigenstates |n〉, n = 0, 1, 2, . . ., of H is formed, and deduce the eigenenergies for these
states. Show that

a|n〉 = √
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉 .

(ii) The operator Kr is defined to be

Kr =
(a†)rar

r!
,

for r = 0, 1, 2, . . .. Show that Kr commutes with N . Show that if r 6 n, then

Kr|n〉 =
n!

(n− r)!r!
|n〉 ,

and Kr|n〉 = 0 otherwise. By considering the action of Kr on the state |n〉, deduce that

∞∑

r=0

(−1)rKr = |0〉〈0| .
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33D Applications of Quantum Mechanics
Define the Floquet matrix for a particle moving in a periodic potential in one

dimension and explain how it determines the allowed energy bands of the system.

A potential barrier in one dimension has the form

V (x) =

{
V0(x) , |x| < a/4 ,

0 , |x| > a/4 ,

where V0(x) is a smooth, positive function of x. The reflection and transmission amplitudes
for a particle of wavenumber k > 0, incident from the left, are r(k) and t(k) respectively.
For a particle of wavenumber −k, incident from the right, the corresponding amplitudes
are r′(k) and t′(k) = t(k). In the following, for brevity, we will suppress the k-dependence
of these quantities.

Consider the periodic potential Ṽ , defined by Ṽ (x) = V (x) for |x| < a/2 and
by Ṽ (x + a) = Ṽ (x) elsewhere. Write down two linearly independent solutions of the
corresponding Schrödinger equation in the region −3a/4 < x < −a/4. Using the scattering
data given above, extend these solutions to the region a/4 < x < 3a/4. Hence find the
Floquet matrix of the system in terms of the amplitudes r, r′ and t defined above.

Show that the edges of the allowed energy bands for this potential lie at
E = ~2k2/2m, where

ka = i log
(
t±

√
rr′

)
.
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34A Statistical Physics
A classical particle of mass m moving non-relativistically in two-dimensional space is
enclosed inside a circle of radius R and attached by a spring with constant κ to the centre
of the circle. The particle thus moves in a potential

V (r) =

{
1
2κr

2 for r < R ,

∞ for r > R ,

where r2 = x2 + y2. Let the particle be coupled to a heat reservoir at temperature T .

(i) Which of the ensembles of statistical physics should be used to model the system?

(ii) Calculate the partition function for the particle.

(iii) Calculate the average energy 〈E〉 and the average potential energy 〈V 〉 of the particle.
(iv) What is the average energy in:

(a) the limit 1
2κR

2 ≫ kBT (strong coupling)?

(b) the limit 1
2κR

2 ≪ kBT (weak coupling)?

Compare the two results with the values expected from equipartition of energy.
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35B Electrodynamics
(i) For a time-dependent source, confined within a domain D, show that the time

derivative ḋ of the dipole moment d satisfies

ḋ =

∫

D
d3y (y) ,

where  is the current density.

(ii) The vector potential A(x, t) due to a time-dependent source is given by

A =
1

r
f (t− r/c)k ,

where r = |x| 6= 0, and k is the unit vector in the z direction. Calculate the resulting
magnetic field B(x, t). By considering the magnetic field for small r show that the dipole
moment of the effective source satisfies

µ0

4π
ḋ = f(t)k .

Calculate the asymptotic form of the magnetic field B at very large r.

(iii) Using the equation
∂E

∂t
= c2∇×B ,

calculate E at very large r. Show that E,B and r̂ = x/|x| form a right-handed triad, and
moreover |E| = c|B|. How do |E| and |B| depend on r? What is the significance of this?

(iv) Calculate the power P (θ, φ) emitted per unit solid angle and sketch its
dependence on θ. Show that the emitted radiation is polarised and describe how the
plane of polarisation (that is, the plane in which E and r̂ lie) depends on the direction of
the dipole. Suppose the dipole moment has constant amplitude and constant frequency
and so the radiation is monochromatic with wavelength λ. How does the emitted power
depend on λ?
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36D General Relativity
Consider the metric describing the interior of a star,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

defined for 0 6 r 6 r0 by

eα(r) =
3

2
e−β0 − 1

2
e−β(r) ,

with
e−2β(r) = 1−Ar2 .

Here A = 2M/r30 , where M is the mass of the star, β0 = β(r0), and we have taken units
in which we have set G = c = 1.

(i) The star is made of a perfect fluid with energy-momentum tensor

Tab = (p+ ρ)uaub + p gab .

Here ua is the 4-velocity of the fluid which is at rest, the density ρ is constant throughout
the star (0 6 r 6 r0) and the pressure p = p(r) depends only on the radial coordinate.
Write down the Einstein field equations and show that they may be written as

Rab = 8π(p + ρ)uaub + 4π(ρ − p)gab .

(ii) Using the formulae given below, or otherwise, show that for 0 6 r 6 r0, one has

4π(ρ+ p) =
(α′ + β′)

r
e−2β(r) ,

4π(ρ− p) =

(
β′ − α′

r
− 1

r2

)
e−2β(r) +

1

r2
,

where primes denote differentiation with respect to r. Hence show that

ρ =
3A

8π
, p(r) =

3A

8π

(
e−β(r) − e−β0

3e−β0 − e−β(r)

)
.

[The non-zero components of the Ricci tensor are

R00 = e2α−2β

(
α′′ − α′β′ + α′2 +

2α′

r

)

R11 = −α′′ + α′β′ − α′2 +
2β′

r

R22 = 1 + e−2β
[
(β′ − α′)r − 1

]

R33 = sin2 θR22 .

Note that

α′ =
1

2
Ar eβ−α , β′ = Ar e2β . ]
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37A Fluid Dynamics II
Consider the flow of an incompressible fluid of uniform density ρ and dynamic

viscosity µ. Show that the rate of viscous dissipation per unit volume is given by

Φ = 2µeijeij,

where eij is the strain rate.

Determine expressions for eij and Φ when the flow is irrotational with velocity
potential φ.

In deep water a linearised wave with a surface displacement η = a cos(kx − ωt)
has a velocity potential φ = −(ωa/k)e−kz sin(kx − ωt). Hence determine the rate of the
viscous dissipation, averaged over a wave period 2π/ω, for an irrotational surface wave of
wavenumber k and small amplitude a ≪ 1/k in a fluid with very small viscosity µ ≪ ρω/k2

and great depth H ≫ 1/k.

Calculate the depth-integrated kinetic energy per unit wavelength. Assuming that
the average potential energy is equal to the average kinetic energy, show that the total
wave energy decreases to leading order as e−γt, where γ should be found.

38C Waves
A wave disturbance satisfies the equation

∂2ψ

∂t2
− c2

∂2ψ

∂x2
+ c2ψ = 0 ,

where c is a positive constant. Find the dispersion relation, and write down the solution
to the initial-value problem for which ∂ψ/∂t(x, 0) = 0 for all x, and ψ(x, 0) is given in the
form

ψ(x, 0) =

∫ ∞

−∞
A(k)eikx dk ,

where A(k) is a real function with A(k) = A(−k), so that ψ(x, 0) is real and even.

Use the method of stationary phase to obtain an approximation to ψ(x, t) for large
t, with x/t taking the constant value V , and 0 6 V < c. Explain briefly why your answer
is inappropriate if V > c.

[You are given that

∫ ∞

−∞
exp(iu2) du = π1/2eiπ/4 . ]
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39C Numerical Analysis
Consider the solution of the two-point boundary value problem

(2− sinπx)u′′ + u = 1, −1 6 x 6 1,

with periodic boundary conditions at x = −1 and x = 1. Construct explicitly the
linear algebraic system that arises from the application of a spectral method to the above
equation.

The Fourier coefficients of u are defined by

ûn =
1

2

∫ 1

−1
u(τ)e−iπnτ dτ.

Prove that the computation of the Fourier coefficients for the truncated system with
−N/2 + 1 6 n 6 N/2 (where N is an even and positive integer, and assuming that
ûn = 0 outside this range of n) reduces to the solution of a tridiagonal system of algebraic
equations, which you should specify.

Explain the term convergence with spectral speed and justify its validity for the
derived approximation of u.

END OF PAPER
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