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SECTION I

1E Linear Algebra
What is a quadratic form on a finite dimensional real vector space V ? What does it

mean for two quadratic forms to be isomorphic (i.e. congruent)? State Sylvester’s law of
inertia and explain the definition of the quantities which appear in it. Find the signature
of the quadratic form on R3 given by q(v) = vTAv, where

A =



−2 1 6
1 −1 −3
6 −3 1


 .

2G Groups, Rings and Modules
Let p be a prime number, and G be a non-trivial finite group whose order is a power

of p. Show that the size of every conjugacy class in G is a power of p. Deduce that the
centre Z of G has order at least p.

3F Analysis II
State and prove the chain rule for differentiable mappings F : Rn → Rm and

G : Rm → Rk.

Suppose now F : R2 → R2 has image lying on the unit circle in R2. Prove that the
determinant det(DF |x) vanishes for every x ∈ R2.

4E Complex Analysis
State Rouché’s theorem. How many roots of the polynomial z8 + 3z7 + 6z2 + 1 are

contained in the annulus 1 < |z| < 2?
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5C Methods
Show that the general solution of the wave equation

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0

can be written in the form

y(x, t) = f(ct− x) + g(ct + x) .

For the boundary conditions

y(0, t) = y(L, t) = 0, t > 0 ,

find the relation between f and g and show that they are 2L-periodic. Hence show that

E(t) =
1

2

∫ L

0

(
1

c2

(
∂y

∂t

)2

+

(
∂y

∂x

)2
)
dx

is independent of t.

6B Quantum Mechanics
The components of the three-dimensional angular momentum operator L̂ are defined

as follows:

L̂x = −i~
(
y
∂

∂z
− z

∂

∂y

)
L̂y = −i~

(
z
∂

∂x
− x

∂

∂z

)
L̂z = −i~

(
x
∂

∂y
− y

∂

∂x

)
.

Given that the wavefunction
ψ = (f(x) + iy)z

is an eigenfunction of L̂z, find all possible values of f(x) and the corresponding eigenvalues
of ψ. Letting f(x) = x, show that ψ is an eigenfunction of L̂2 and calculate the
corresponding eigenvalue.

Part IB, Paper 4 [TURN OVER



4

7D Electromagnetism
The infinite plane z = 0 is earthed and the infinite plane z = d carries a charge of σ

per unit area. Find the electrostatic potential between the planes.

Show that the electrostatic energy per unit area (of the planes z = constant) between
the planes can be written as either 1

2σ
2d/ǫ0 or 1

2ǫ0V
2/d, where V is the potential at z = d.

The distance between the planes is now increased by αd, where α is small. Show that
the change in the energy per unit area is 1

2σV α if the upper plane (z = d) is electrically
isolated, and is approximately −1

2σV α if instead the potential on the upper plane is
maintained at V . Explain briefly how this difference can be accounted for.

8C Numerical Analysis
For a continuous function f , and k + 1 distinct points {x0, x1, . . . , xk}, define the

divided difference f [x0, . . . , xk] of order k.

Given n+ 1 points {x0, x1, . . . , xn}, let pn ∈ Pn be the polynomial of degree n that
interpolates f at these points. Prove that pn can be written in the Newton form

pn(x) = f(x0) +
n∑

k=1

f [x0, . . . , xk]
k−1∏

i=0

(x− xi) .

9H Markov Chains
Suppose P is the transition matrix of an irreducible recurrent Markov chain with

state space I. Show that if x is an invariant measure and xk > 0 for some k ∈ I, then
xj > 0 for all j ∈ I.

Let

γkj = pkj +

∞∑

t=1

∑

i1 6=k,...,it 6=k

pkitpitit−1 · · · pi1j.

Give a meaning to γkj and explain why γkk = 1.

Suppose x is an invariant measure with xk = 1. Prove that xj > γkj for all j.
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SECTION II

10E Linear Algebra
What does it mean for an n × n matrix to be in Jordan form? Show that if

A ∈ Mn×n(C) is in Jordan form, there is a sequence (Am) of diagonalizable n×n matrices
which converges to A, in the sense that the (ij)th component of Am converges to the (ij)th
component of A for all i and j. [Hint: A matrix with distinct eigenvalues is diagonalizable.]
Deduce that the same statement holds for all A ∈ Mn×n(C).

Let V = M2×2(C). Given A ∈ V , define a linear map TA : V → V by
TA(B) = AB+BA. Express the characteristic polynomial of TA in terms of the trace and
determinant of A. [Hint: First consider the case where A is diagonalizable.]

11G Groups, Rings and Modules
Let R be an integral domain, and M be a finitely generated R-module.

(i) Let S be a finite subset of M which generates M as an R-module. Let T be a
maximal linearly independent subset of S, and let N be the R-submodule of M generated
by T . Show that there exists a non-zero r ∈ R such that rx ∈ N for every x ∈ M .

(ii) Now assume M is torsion-free, i.e. rx = 0 for r ∈ R and x ∈ M implies r = 0 or
x = 0. By considering the map M → N mapping x to rx for r as in (i), show that every
torsion-free finitely generated R-module is isomorphic to an R-submodule of a finitely
generated free R-module.

12F Analysis II
State the contraction mapping theorem.

A metric space (X, d) is bounded if {d(x, y) |x, y ∈ X} is a bounded subset of R.
Suppose (X, d) is complete and bounded. Let Maps(X,X) denote the set of continuous
maps from X to itself. For f, g ∈ Maps(X,X), let

δ(f, g) = sup
x∈X

d(f(x), g(x)).

Prove that (Maps(X,X), δ) is a complete metric space. Is the subspace C ⊂ Maps(X,X)
of contraction mappings a complete subspace?

Let τ : C → X be the map which associates to any contraction its fixed point. Prove
that τ is continuous.
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13G Metric and Topological Spaces
Let X be a topological space. A connected component of X means an equivalence

class with respect to the equivalence relation on X defined as:

x ∼ y ⇐⇒ x, y belong to some connected subspace of X.

(i) Show that every connected component is a connected and closed subset of X.

(ii) If X,Y are topological spaces and X × Y is the product space, show that every
connected component of X × Y is a direct product of connected components of X and Y .

14D Complex Methods
Let C1 and C2 be the circles x2 + y2 = 1 and 5x2 − 4x+ 5y2 = 0, respectively, and

let D be the (finite) region between the circles. Use the conformal mapping

w =
z − 2

2z − 1

to solve the following problem:

∇2φ = 0 in D with φ = 1 on C1 and φ = 2 on C2.

15F Geometry
Let η be a smooth curve in the xz-plane η(s) = (f(s), 0, g(s)), with f(s) > 0 for

every s ∈ R and f ′(s)2 + g′(s)2 = 1. Let S be the surface obtained by rotating η around
the z-axis. Find the first fundamental form of S.

State the equations for a curve γ : (a, b) → S parametrised by arc-length to be a
geodesic.

A parallel on S is the closed circle swept out by rotating a single point of η. Prove
that for every n ∈ Z>0 there is some η for which exactly n parallels are geodesics. Sketch
possible such surfaces S in the cases n = 1 and n = 2.

If every parallel is a geodesic, what can you deduce about S ? Briefly justify your
answer.
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16A Variational Principles
Derive the Euler–Lagrange equation for the integral

∫ b

a
f(x, y, y′, y′′) dx

where prime denotes differentiation with respect to x, and both y and y′ are specified at
x = a, b.

Find y(x) that extremises the integral

∫ π

0

(
y +

1

2
y2 − 1

2
y′′2

)
dx

subject to y(0) = −1, y′(0) = 0, y(π) = coshπ and y′(π) = sinhπ.

Show that your solution is a global maximum. You may use the result that

∫ π

0
φ2(x)dx 6

∫ π

0
φ′2(x)dx

for any (suitably differentiable) function φ which satisfies φ(0) = 0 and φ(π) = 0.

17C Methods
Find the inverse Fourier transform G(x) of the function

g(k) = e−a|k|, a > 0, −∞ < k <∞ .

Assuming that appropriate Fourier transforms exist, determine the solution ψ(x, y) of

∇2ψ = 0, −∞ < x <∞, 0 < y < 1,

with the following boundary conditions

ψ(x, 0) = δ(x), ψ(x, 1) =
1

π

1

x2 + 1
.

Here δ(x) is the Dirac delta-function.
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18A Fluid Dynamics
The axisymmetric, irrotational flow generated by a solid sphere of radius a translat-

ing at velocity U in an inviscid, incompressible fluid is represented by a velocity potential
φ(r, θ). Assume the fluid is at rest far away from the sphere. Explain briefly why ∇2φ = 0.

By trying a solution of the form φ(r, θ) = f(r) g(θ), show that

φ = −Ua3 cos θ

2r2

and write down the fluid velocity.

Show that the total kinetic energy of the fluid is kMU2/4 where M is the mass of
the sphere and k is the ratio of the density of the fluid to the density of the sphere.

A heavy sphere (i.e. k < 1) is released from rest in an inviscid fluid. Determine its
speed after it has fallen a distance h in terms of M , k, g and h.

Note, in spherical polars:

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ

∇2φ =
1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
.

19H Statistics
Explain the notion of a sufficient statistic.

Suppose X is a random variable with distribution F taking values in {1, . . . , 6},
with P (X = i) = pi. Let x1, . . . , xn be a sample from F . Suppose ni is the number of
these xj that are equal to i. Use a factorization criterion to explain why (n1, . . . , n6) is
sufficient for θ = (p1, . . . , p6).

Let H0 be the hypothesis that pi = 1/6 for all i. Derive the statistic of the
generalized likelihood ratio test of H0 against the alternative that this is not a good
fit.

Assuming that ni ≈ n/6 when H0 is true and n is large, show that this test can be
approximated by a chi-squared test using a test statistic

T = −n+
6

n

6∑

i=1

n2
i .

Suppose n = 100 and T = 8.12. Would you reject H0? Explain your answer.
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20H Optimization
Given real numbers a and b, consider the problem P of minimizing

f(x) = ax11 + 2x12 + 3x13 + bx21 + 4x22 + x23

subject to xij > 0 and

x11 + x12 + x13 = 5

x21 + x22 + x23 = 5

x11 + x21 = 3

x12 + x22 = 3

x13 + x23 = 4.

List all the basic feasible solutions, writing them as 2× 3 matrices (xij).

Let f(x) =
∑

ij cijxij. Suppose there exist λi, µj such that

λi + µj 6 cij for all i ∈ {1, 2}, j ∈ {1, 2, 3} .

Prove that if x and x′ are both feasible for P and λi + µj = cij whenever xij > 0, then
f(x) 6 f(x′).

Let x∗ be the initial feasible solution that is obtained by formulating P as a
transportation problem and using a greedy method that starts in the upper left of the
matrix (xij). Show that if a+ 2 6 b then x∗ minimizes f .

For what values of a and b is one step of the transportation algorithm sufficient to
pivot from x∗ to a solution that maximizes f?

END OF PAPER
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