MATHEMATICAL TRIPOS Part IB

Friday, 7 June, 2013 1:30 pm to 4:30 pm

PAPER 4

Before you begin read these instructions carefully.

Each question in Section II carries twice the number of marks of each question in Section I. Candidates may attempt at most **four** questions from Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled A, B, \ldots, H according to the examiner letter affixed to each question, including in the same bundle questions from Sections I and II with the same examiner letter.

Attach a completed gold cover sheet to each bundle.

You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet <u>must</u> bear your examination number and desk number.

STATIONERY REQUIREMENTS Gold cover sheets Green master cover sheet **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1E Linear Algebra

What is a quadratic form on a finite dimensional real vector space V? What does it mean for two quadratic forms to be isomorphic (*i.e.* congruent)? State Sylvester's law of inertia and explain the definition of the quantities which appear in it. Find the signature of the quadratic form on \mathbb{R}^3 given by $q(\mathbf{v}) = \mathbf{v}^T A \mathbf{v}$, where

$$A = \begin{pmatrix} -2 & 1 & 6\\ 1 & -1 & -3\\ 6 & -3 & 1 \end{pmatrix}.$$

2G Groups, Rings and Modules

Let p be a prime number, and G be a non-trivial finite group whose order is a power of p. Show that the size of every conjugacy class in G is a power of p. Deduce that the centre Z of G has order at least p.

3F Analysis II

State and prove the chain rule for differentiable mappings $F : \mathbb{R}^n \to \mathbb{R}^m$ and $G : \mathbb{R}^m \to \mathbb{R}^k$.

Suppose now $F : \mathbb{R}^2 \to \mathbb{R}^2$ has image lying on the unit circle in \mathbb{R}^2 . Prove that the determinant det $(DF|_x)$ vanishes for every $x \in \mathbb{R}^2$.

4E Complex Analysis

State Rouché's theorem. How many roots of the polynomial $z^8 + 3z^7 + 6z^2 + 1$ are contained in the annulus 1 < |z| < 2?

5C Methods

Show that the general solution of the wave equation

$$\frac{1}{c^2}\frac{\partial^2 y}{\partial t^2} - \frac{\partial^2 y}{\partial x^2} = 0$$

can be written in the form

$$y(x,t) = f(ct - x) + g(ct + x).$$

For the boundary conditions

$$y(0,t) = y(L,t) = 0, \qquad t > 0,$$

find the relation between f and g and show that they are 2L-periodic. Hence show that

$$E(t) = \frac{1}{2} \int_0^L \left(\frac{1}{c^2} \left(\frac{\partial y}{\partial t} \right)^2 + \left(\frac{\partial y}{\partial x} \right)^2 \right) dx$$

is independent of t.

6B Quantum Mechanics

The components of the three-dimensional angular momentum operator $\hat{\mathbf{L}}$ are defined as follows:

$$\hat{L}_x = -i\hbar \left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y} \right) \quad \hat{L}_y = -i\hbar \left(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z} \right) \quad \hat{L}_z = -i\hbar \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} \right)$$

Given that the wavefunction

$$\psi = (f(x) + iy)z$$

is an eigenfunction of \hat{L}_z , find all possible values of f(x) and the corresponding eigenvalues of ψ . Letting f(x) = x, show that ψ is an eigenfunction of $\hat{\mathbf{L}}^2$ and calculate the corresponding eigenvalue.

CAMBRIDGE

7D Electromagnetism

The infinite plane z = 0 is earthed and the infinite plane z = d carries a charge of σ per unit area. Find the electrostatic potential between the planes.

Show that the electrostatic energy per unit area (of the planes z = constant) between the planes can be written as either $\frac{1}{2}\sigma^2 d/\epsilon_0$ or $\frac{1}{2}\epsilon_0 V^2/d$, where V is the potential at z = d.

The distance between the planes is now increased by αd , where α is small. Show that the change in the energy per unit area is $\frac{1}{2}\sigma V\alpha$ if the upper plane (z = d) is electrically isolated, and is approximately $-\frac{1}{2}\sigma V\alpha$ if instead the potential on the upper plane is maintained at V. Explain briefly how this difference can be accounted for.

8C Numerical Analysis

For a continuous function f, and k + 1 distinct points $\{x_0, x_1, \ldots, x_k\}$, define the divided difference $f[x_0, \ldots, x_k]$ of order k.

Given n + 1 points $\{x_0, x_1, \ldots, x_n\}$, let $p_n \in \mathbb{P}_n$ be the polynomial of degree n that interpolates f at these points. Prove that p_n can be written in the Newton form

$$p_n(x) = f(x_0) + \sum_{k=1}^n f[x_0, \dots, x_k] \prod_{i=0}^{k-1} (x - x_i).$$

9H Markov Chains

Suppose P is the transition matrix of an irreducible recurrent Markov chain with state space I. Show that if x is an invariant measure and $x_k > 0$ for some $k \in I$, then $x_j > 0$ for all $j \in I$.

Let

$$\gamma_j^k = p_{kj} + \sum_{t=1}^{\infty} \sum_{i_1 \neq k, \dots, i_t \neq k} p_{ki_t} p_{i_t i_{t-1}} \cdots p_{i_1 j}.$$

Give a meaning to γ_i^k and explain why $\gamma_k^k = 1$.

Suppose x is an invariant measure with $x_k = 1$. Prove that $x_j \ge \gamma_j^k$ for all j.

SECTION II

10E Linear Algebra

What does it mean for an $n \times n$ matrix to be in Jordan form? Show that if $A \in M_{n \times n}(\mathbb{C})$ is in Jordan form, there is a sequence (A_m) of diagonalizable $n \times n$ matrices which converges to A, in the sense that the (ij)th component of A_m converges to the (ij)th component of A for all i and j. [Hint: A matrix with distinct eigenvalues is diagonalizable.] Deduce that the same statement holds for all $A \in M_{n \times n}(\mathbb{C})$.

Let $V = M_{2\times 2}(\mathbb{C})$. Given $A \in V$, define a linear map $T_A : V \to V$ by $T_A(B) = AB + BA$. Express the characteristic polynomial of T_A in terms of the trace and determinant of A. [*Hint: First consider the case where* A *is diagonalizable.*]

11G Groups, Rings and Modules

Let R be an integral domain, and M be a finitely generated R-module.

(i) Let S be a finite subset of M which generates M as an R-module. Let T be a maximal linearly independent subset of S, and let N be the R-submodule of M generated by T. Show that there exists a non-zero $r \in R$ such that $rx \in N$ for every $x \in M$.

(ii) Now assume M is torsion-free, i.e. rx = 0 for $r \in R$ and $x \in M$ implies r = 0 or x = 0. By considering the map $M \to N$ mapping x to rx for r as in (i), show that every torsion-free finitely generated R-module is isomorphic to an R-submodule of a finitely generated free R-module.

12F Analysis II

State the contraction mapping theorem.

A metric space (X, d) is bounded if $\{d(x, y) | x, y \in X\}$ is a bounded subset of \mathbb{R} . Suppose (X, d) is complete and bounded. Let Maps(X, X) denote the set of continuous maps from X to itself. For $f, g \in \text{Maps}(X, X)$, let

$$\delta(f,g) \,=\, \sup_{x\in X} d(f(x),g(x)).$$

Prove that $(Maps(X, X), \delta)$ is a complete metric space. Is the subspace $\mathcal{C} \subset Maps(X, X)$ of contraction mappings a complete subspace?

Let $\tau : \mathcal{C} \to X$ be the map which associates to any contraction its fixed point. Prove that τ is continuous.

CAMBRIDGE

13G Metric and Topological Spaces

Let X be a topological space. A *connected component* of X means an equivalence class with respect to the equivalence relation on X defined as:

 $x \sim y \iff x, y$ belong to some connected subspace of X.

(i) Show that every connected component is a connected and closed subset of X.

(ii) If X, Y are topological spaces and $X \times Y$ is the product space, show that every connected component of $X \times Y$ is a direct product of connected components of X and Y.

14D Complex Methods

Let C_1 and C_2 be the circles $x^2 + y^2 = 1$ and $5x^2 - 4x + 5y^2 = 0$, respectively, and let D be the (finite) region between the circles. Use the conformal mapping

$$w = \frac{z-2}{2z-1}$$

to solve the following problem:

 $\nabla^2 \phi = 0$ in D with $\phi = 1$ on C_1 and $\phi = 2$ on C_2 .

15F Geometry

Let η be a smooth curve in the *xz*-plane $\eta(s) = (f(s), 0, g(s))$, with f(s) > 0 for every $s \in \mathbb{R}$ and $f'(s)^2 + g'(s)^2 = 1$. Let S be the surface obtained by rotating η around the z-axis. Find the first fundamental form of S.

State the equations for a curve $\gamma:(a,b)\to S$ parametrised by arc-length to be a geodesic.

A parallel on S is the closed circle swept out by rotating a single point of η . Prove that for every $n \in \mathbb{Z}_{>0}$ there is some η for which exactly n parallels are geodesics. Sketch possible such surfaces S in the cases n = 1 and n = 2.

If *every* parallel is a geodesic, what can you deduce about S ? Briefly justify your answer.

16A Variational Principles

Derive the Euler–Lagrange equation for the integral

$$\int_{a}^{b} f(x, y, y', y'') \, dx$$

7

where prime denotes differentiation with respect to x, and both y and y' are specified at x = a, b.

Find y(x) that extremises the integral

$$\int_0^{\pi} \left(y + \frac{1}{2} y^2 - \frac{1}{2} {y''}^2 \right) dx$$

subject to y(0) = -1, y'(0) = 0, $y(\pi) = \cosh \pi$ and $y'(\pi) = \sinh \pi$.

Show that your solution is a global maximum. You may use the result that

$$\int_0^\pi \phi^2(x) dx \leqslant \int_0^\pi {\phi'}^2(x) dx$$

for any (suitably differentiable) function ϕ which satisfies $\phi(0) = 0$ and $\phi(\pi) = 0$.

17C Methods

Find the inverse Fourier transform G(x) of the function

$$g(k) = e^{-a|k|}, \quad a > 0, \quad -\infty < k < \infty.$$

Assuming that appropriate Fourier transforms exist, determine the solution $\psi(x, y)$ of

$$\nabla^2 \psi = 0, \qquad -\infty < x < \infty, \qquad 0 < y < 1,$$

with the following boundary conditions

$$\psi(x,0) = \delta(x), \qquad \psi(x,1) = \frac{1}{\pi} \frac{1}{x^2 + 1}.$$

Here $\delta(x)$ is the Dirac delta-function.

18A Fluid Dynamics

The axisymmetric, irrotational flow generated by a solid sphere of radius *a* translating at velocity *U* in an inviscid, incompressible fluid is represented by a velocity potential $\phi(r, \theta)$. Assume the fluid is at rest far away from the sphere. Explain briefly why $\nabla^2 \phi = 0$.

By trying a solution of the form $\phi(r, \theta) = f(r) g(\theta)$, show that

$$\phi = -\frac{Ua^3\cos\theta}{2r^2}$$

and write down the fluid velocity.

Show that the total kinetic energy of the fluid is $kMU^2/4$ where M is the mass of the sphere and k is the ratio of the density of the fluid to the density of the sphere.

A heavy sphere (i.e. k < 1) is released from rest in an inviscid fluid. Determine its speed after it has fallen a distance h in terms of M, k, g and h.

Note, in spherical polars:

$$\boldsymbol{\nabla}\phi = \frac{\partial\phi}{\partial r}\mathbf{e_r} + \frac{1}{r}\frac{\partial\phi}{\partial\theta}\mathbf{e_\theta}$$

$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) \,.$$

19H Statistics

Explain the notion of a sufficient statistic.

Suppose X is a random variable with distribution F taking values in $\{1, \ldots, 6\}$, with $P(X = i) = p_i$. Let x_1, \ldots, x_n be a sample from F. Suppose n_i is the number of these x_j that are equal to i. Use a factorization criterion to explain why (n_1, \ldots, n_6) is sufficient for $\theta = (p_1, \ldots, p_6)$.

Let H_0 be the hypothesis that $p_i = 1/6$ for all *i*. Derive the statistic of the generalized likelihood ratio test of H_0 against the alternative that this is not a good fit.

Assuming that $n_i \approx n/6$ when H_0 is true and n is large, show that this test can be approximated by a chi-squared test using a test statistic

$$T = -n + \frac{6}{n} \sum_{i=1}^{6} n_i^2.$$

Suppose n = 100 and T = 8.12. Would you reject H_0 ? Explain your answer.

20H Optimization

Given real numbers a and b, consider the problem P of minimizing

$$f(x) = ax_{11} + 2x_{12} + 3x_{13} + bx_{21} + 4x_{22} + x_{23}$$

subject to $x_{ij} \ge 0$ and

$$x_{11} + x_{12} + x_{13} = 5$$

$$x_{21} + x_{22} + x_{23} = 5$$

$$x_{11} + x_{21} = 3$$

$$x_{12} + x_{22} = 3$$

$$x_{13} + x_{23} = 4.$$

List all the basic feasible solutions, writing them as 2×3 matrices (x_{ij}) .

Let $f(x) = \sum_{ij} c_{ij} x_{ij}$. Suppose there exist λ_i , μ_j such that

$$\lambda_i + \mu_j \leq c_{ij}$$
 for all $i \in \{1, 2\}, j \in \{1, 2, 3\}$.

Prove that if x and x' are both feasible for P and $\lambda_i + \mu_j = c_{ij}$ whenever $x_{ij} > 0$, then $f(x) \leq f(x')$.

Let x^* be the initial feasible solution that is obtained by formulating P as a transportation problem and using a greedy method that starts in the upper left of the matrix (x_{ij}) . Show that if $a + 2 \leq b$ then x^* minimizes f.

For what values of a and b is one step of the transportation algorithm sufficient to pivot from x^* to a solution that maximizes f?

END OF PAPER