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SECTION I

1E Numbers and Sets
Let m and n be positive integers. State what is meant by the greatest common

divisor gcd(m,n) of m and n, and show that there exist integers a and b such that
gcd(m,n) = am + bn. Deduce that an integer k divides both m and n only if k divides
gcd(m,n).

Prove (without using the Fundamental Theorem of Arithmetic) that for any positive
integer k, gcd(km, kn) = k gcd(m,n).

2E Numbers and Sets
Let (xn)

∞
n=1 be a sequence of real numbers. What does it mean to say that the

sequence (xn) is convergent? What does it mean to say the series
∑

xn is convergent?
Show that if

∑
xn is convergent, then the sequence (xn) converges to zero. Show that the

converse is not necessarily true.

3B Dynamics and Relativity
A hot air balloon of mass M is equipped with a bag of sand of mass m = m(t)

which decreases in time as the sand is gradually released. In addition to gravity the
balloon experiences a constant upwards buoyancy force T and we neglect air resistance
effects. Show that if v(t) is the upward speed of the balloon then

(M +m)
dv

dt
= T − (M +m)g.

Initially at t = 0 the mass of sand is m(0) = m0 and the balloon is at rest in equilibrium.
Subsequently the sand is released at a constant rate and is depleted in a time t0. Show
that the speed of the balloon at time t0 is

gt0

((
1 +

M

m0

)
ln

(
1 +

m0

M

)
− 1

)
.

[You may use without proof the indefinite integral
∫
t/(A− t) dt = −t−A ln |A− t|+C.]
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4B Dynamics and Relativity
A frame S′ moves with constant velocity v along the x axis of an inertial frame S

of Minkowski space. A particle P moves with constant velocity u′ along the x′ axis of S′.
Find the velocity u of P in S.
The rapidity ϕ of any velocity w is defined by tanhϕ = w/c. Find a relation between the
rapidities of u, u′ and v.
Suppose now that P is initially at rest in S and is subsequently given n successive velocity
increments of c/2 (each delivered in the instantaneous rest frame of the particle). Show
that the resulting velocity of P in S is

c

(
e2nα − 1

e2nα + 1

)

where tanhα = 1/2.
[You may use without proof the addition formulae sinh(a+b) = sinh a cosh b+cosh a sinh b
and cosh(a+ b) = cosh a cosh b+ sinh a sinh b.]
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SECTION II

5E Numbers and Sets

(i) What does it mean to say that a function f : X → Y is injective? What does it
mean to say that f is surjective? Let g : Y → Z be a function. Show that if g ◦ f is
injective, then so is f , and that if g ◦ f is surjective, then so is g.

(ii) Let X1, X2 be two sets. Their product X1 ×X2 is the set of ordered pairs (x1, x2)
with xi ∈ Xi (i = 1, 2). Let pi (for i = 1, 2) be the function

pi : X1 ×X2 → Xi, pi(x1, x2) = xi.

When is pi surjective? When is pi injective?

(iii) Now let Y be any set, and let f1 : Y → X1, f2 : Y → X2 be functions. Show that
there exists a unique g : Y → X1 ×X2 such that f1 = p1 ◦ g and f2 = p2 ◦ g.
Show that if f1 or f2 is injective, then g is injective. Is the converse true? Justify
your answer.

Show that if g is surjective then both f1 and f2 are surjective. Is the converse true?
Justify your answer.

Part IA, Paper 4



5

6E Numbers and Sets
(i) Let N and r be integers with N > 0, r > 1. Let S be the set of (r + 1)-tuples

(n0, n1, . . . , nr) of non-negative integers satisfying the equation n0 + · · · + nr = N . By
mapping elements of S to suitable subsets of {1, . . . , N + r} of size r, or otherwise, show
that the number of elements of S equals

(
N + r

r

)
.

(ii) State the Inclusion–Exclusion principle.

(iii) Let a0, . . . , ar be positive integers. Show that the number of (r+1)-tuples (ni)
of integers satisfying

n0 + · · ·+ nr = N, 0 6 ni < ai for all i

is
(
N + r

r

)
−

∑

06i6r

(
N + r − ai

r

)
+

∑

06i<j6r

(
N + r − ai − aj

r

)

−
∑

06i<j<k6r

(
N + r − ai − aj − ak

r

)
+ · · ·

where the binomial coefficient
(m
r

)
is defined to be zero if m < r.

7E Numbers and Sets

(i) What does it mean to say that a set is countable? Show directly from your definition
that any subset of a countable set is countable, and that a countable union of
countable sets is countable.

(ii) Let X be either Z or Q. A function f : X → Z is said to be periodic if there exists
a positive integer n such that for every x ∈ X, f(x+ n) = f(x). Show that the set
of periodic functions from Z to itself is countable. Is the set of periodic functions
f : Q → Z countable? Justify your answer.

(iii) Show that R2 is not the union of a countable collection of lines.

[You may assume that R and the power set of N are uncountable.]
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8E Numbers and Sets
Let p be a prime number, and x, n integers with n > 1.

(i) Prove Fermat’s Little Theorem: for any integer x, xp ≡ x (mod p).

(ii) Show that if y is an integer such that x ≡ y (mod pn), then for every integer r > 0,

xp
r ≡ yp

r
(mod pn+r) .

Deduce that xp
n ≡ xp

n−1
(mod pn).

(iii) Show that there exists a unique integer y ∈ {0, 1, . . . , pn − 1} such that

y ≡ x (mod p) and yp ≡ y (mod pn) .

9B Dynamics and Relativity

(a) A particle P of unit mass moves in a plane with polar coordinates (r, θ). You may
assume that the radial and angular components of the acceleration are given by
(r̈ − rθ̇2, rθ̈ + 2ṙθ̇), where the dot denotes d/dt. The particle experiences a central
force corresponding to a potential V = V (r).

(i) Prove that l = r2θ̇ is constant in time and show that the time dependence
of the radial coordinate r(t) is equivalent to the motion of a particle in one
dimension x in a potential Veff given by

Veff = V (x) +
l2

2x2
.

(ii) Now suppose that V (r) = −e−r. Show that if l2 < 27/e3 then two circular
orbits are possible with radii r1 < 3 and r2 > 3. Determine whether each
orbit is stable or unstable.

(b) Kepler’s first and second laws for planetary motion are the following statements:
K1: the planet moves on an ellipse with a focus at the Sun;
K2: the line between the planet and the Sun sweeps out equal areas in equal times.
Show that K2 implies that the force acting on the planet is a central force.
Show that K2 together with K1 implies that the force is given by the inverse square
law.
[You may assume that an ellipse with a focus at the origin has polar equation
A
r = 1 + ε cos θ with A > 0 and 0 < ε < 1.]

Part IA, Paper 4



7

10B Dynamics and Relativity

(a) A rigid body Q is made up of N particles of masses mi at positions ri(t). Let R(t)
denote the position of its centre of mass. Show that the total kinetic energy of Q
may be decomposed into T1, the kinetic energy of the centre of mass, plus a term
T2 representing the kinetic energy about the centre of mass.
Suppose now that Q is rotating with angular velocity ω about its centre of mass.
Define the moment of inertia I of Q (about the axis defined by ω) and derive an
expression for T2 in terms of I and ω = |ω|.

(b) Consider a uniform rod AB of length 2l and mass M . Two such rods AB and BC
are freely hinged together at B. The end A is attached to a fixed point O on a
perfectly smooth horizontal floor and AB is able to rotate freely about O. The rods
are initially at rest, lying in a vertical plane with C resting on the floor and each
rod making angle α with the horizontal. The rods subsequently move under gravity
in their vertical plane.
Find an expression for the angular velocity of rod AB when it makes angle θ with
the floor. Determine the speed at which the hinge strikes the floor.

11B Dynamics and Relativity

(i) An inertial frame S has orthonormal coordinate basis vectors e1, e2, e3. A second
frame S′ rotates with angular velocity ω relative to S and has coordinate basis
vectors e′1, e

′
2, e

′
3. The motion of S′ is characterised by the equations de′i/dt = ω×e′i

and at t = 0 the two coordinate frames coincide.
If a particle P has position vector r show that v = v′ + ω × r where v and v′ are
the velocity vectors of P as seen by observers fixed respectively in S and S′.

(ii) For the remainder of this question you may assume that a = a′+2ω×v′+ω×(ω×r)
where a and a′ are the acceleration vectors of P as seen by observers fixed
respectively in S and S′, and that ω is constant.

Consider again the frames S and S′ in (i). Suppose that ω = ω e3 with ω constant. A
particle of massmmoves under a force F = −4mω2r. When viewed in S′ its position
and velocity at time t = 0 are (x′, y′, z′) = (1, 0, 0) and (ẋ′, ẏ′, ż′) = (0, 0, 0). Find
the motion of the particle in the coordinates of S′. Show that for an observer fixed
in S′, the particle achieves its maximum speed at time t = π/(4ω) and determine
that speed. [Hint: you may find it useful to consider the combination ζ = x′ + iy′.]
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12B Dynamics and Relativity

(a) Let S with coordinates (ct, x, y) and S′ with coordinates (ct′, x′, y′) be inertial frames
in Minkowski space with two spatial dimensions. S′ moves with velocity v along the
x-axis of S and they are related by the standard Lorentz transformation:




ct
x
y


 =




γ γv/c 0
γv/c γ 0
0 0 1







ct′

x′

y′


 , where γ =

1√
1− v2/c2

.

A photon is emitted at the spacetime origin. In S′ it has frequency ν ′ and propagates
at angle θ′ to the x′-axis.
Write down the 4-momentum of the photon in the frame S′.
Hence or otherwise find the frequency of the photon as seen in S. Show that it
propagates at angle θ to the x-axis in S, where

tan θ =
tan θ′

γ
(
1 +

v

c
sec θ′

) .

A light source in S′ emits photons uniformly in all directions in the x′y′-plane.
Show that for large v, in S half of the light is concentrated into a narrow cone
whose semi-angle α is given by cosα = v/c.

(b) The centre-of-mass frame for a system of relativistic particles in Minkowski space is
the frame in which the total relativistic 3-momentum is zero.
Two particles A1 and A2 of rest masses m1 and m2 move collinearly with uniform
velocities u1 and u2 respectively, along the x-axis of a frame S. They collide,
coalescing to form a single particle A3.
Determine the velocity of the centre-of-mass frame of the system comprising A1 and
A2.
Find the speed of A3 in S and show that its rest mass m3 is given by

m2
3 = m2

1 +m2
2 + 2m1m2γ1γ2

(
1− u1u2

c2

)
,

where γi = (1− u2i /c
2)−1/2.

END OF PAPER
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