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SECTION I

1D Groups
State Lagrange’s Theorem.

Let G be a finite group, and H and K two subgroups of G such that

(i) the orders of H and K are coprime;

(ii) every element of G may be written as a product hk, with h ∈ H and k ∈ K;

(iii) both H and K are normal subgroups of G.

Prove that G is isomorphic to H ×K.

2D Groups
Define what it means for a group to be cyclic, and for a group to be abelian. Show

that every cyclic group is abelian, and give an example to show that the converse is false.

Show that a group homomorphism from the cyclic group Cn of order n to a group
G determines, and is determined by, an element g of G such that gn = 1.

Hence list all group homomorphisms from C4 to the symmetric group S4.

3C Vector Calculus
The curve C is given by

r(t) =
(√

2et, −et sin t, et cos t
)
, −∞ < t < ∞ .

(i) Compute the arc length of C between the points with t = 0 and t = 1.

(ii) Derive an expression for the curvature of C as a function of arc length s measured
from the point with t = 0.

4C Vector Calculus
State a necessary and sufficient condition for a vector field F on R3 to be

conservative.

Check that the field

F = (2x cos y − 2z3, 3 + 2yez − x2 sin y, y2ez − 6xz2)

is conservative and find a scalar potential for F.
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SECTION II

5D Groups

(a) Let G be a finite group. Show that there exists an injective homomorphism
G → Sym(X) to a symmetric group, for some set X.

(b) Let H be the full group of symmetries of the cube, and X the set of edges of the
cube.

Show that H acts transitively on X, and determine the stabiliser of an element of
X. Hence determine the order of H.

Show that the action of H on X defines an injective homomorphism H → Sym(X)
to the group of permutations of X, and determine the number of cosets of H in
Sym(X).

Is H a normal subgroup of Sym(X)? Prove your answer.
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6D Groups

(a) Let p be a prime, and let G = SL2(p) be the group of 2× 2 matrices of determinant
1 with entries in the field Fp of integers mod p.

(i) Define the action of G on X = Fp ∪ {∞} by Möbius transformations. [You need
not show that it is a group action.]

State the orbit-stabiliser theorem.

Determine the orbit of ∞ and the stabiliser of ∞. Hence compute the order of
SL2(p).

(ii) Let

A =

(
1 1
0 1

)
, B =

(
1 3
0 1

)
.

Show that A is conjugate to B in G if p = 11, but not if p = 5.

(b) Let G be the set of all 3× 3 matrices of the form




1 a x
0 1 b
0 0 1




where a, b, x ∈ R. Show that G is a subgroup of the group of all invertible real
matrices.

Let H be the subset of G given by matrices with a = 0. Show that H is a normal
subgroup, and that the quotient group G/H is isomorphic to R.
Determine the centre Z(G) of G, and identify the quotient group G/Z(G).
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7D Groups

(a) Let G be the dihedral group of order 4n, the symmetry group of a regular polygon
with 2n sides.

Determine all elements of order 2 in G. For each element of order 2, determine its
conjugacy class and the smallest normal subgroup containing it.

(b) Let G be a finite group.

(i) Prove that if H and K are subgroups of G, then K ∪H is a subgroup if and only
if H ⊆ K or K ⊆ H.

(ii) Let H be a proper subgroup of G, and write G \H for the elements of G not in
H. Let K be the subgroup of G generated by G \H.

Show that K = G.

8D Groups
Let p be a prime number.

Prove that every group whose order is a power of p has a non-trivial centre.

Show that every group of order p2 is abelian, and that there are precisely two of
them, up to isomorphism.

9C Vector Calculus
Give an explicit formula for J which makes the following result hold:

∫

D
f dx dy dz =

∫

D′
φ |J | du dv dw ,

where the region D, with coordinates x, y, z, and the region D′, with coordinates u, v, w,
are in one-to-one correspondence, and

φ(u, v, w) = f(x(u, v, w), y(u, v, w), z(u, v, w)) .

Explain, in outline, why this result holds.

Let D be the region in R3 defined by 4 6 x2 + y2 + z2 6 9 and z > 0. Sketch the
region and employ a suitable transformation to evaluate the integral

∫

D
(x2 + y2) dx dy dz .
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10C Vector Calculus
Consider the bounded surface S that is the union of x2 + y2 = 4 for −2 6 z 6 2

and (4− z)2 = x2 + y2 for 2 6 z 6 4. Sketch the surface.

Using suitable parametrisations for the two parts of S, calculate the integral

∫

S
(∇× F ) · dS

for F = yz2i.

Check your result using Stokes’s Theorem.

11C Vector Calculus
If E and B are vectors in R3, show that

Tij = EiEj +BiBj −
1

2
δij (EkEk +BkBk)

is a second rank tensor.

Now assume that E(x, t) and B(x, t) obey Maxwell’s equations, which in suitable
units read

∇ ·E = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×B = J+
∂E

∂t
,

where ρ is the charge density and J the current density. Show that

∂

∂t
(E×B) = M− ρE− J×B where Mi =

∂Tij

∂xj
.
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12C Vector Calculus

(a) Prove that

∇× (F×G) = F(∇ ·G)−G(∇ · F) + (G · ∇)F− (F · ∇)G .

(b) State the divergence theorem for a vector field F in a closed region Ω ⊂ R3 bounded
by ∂Ω.

For a smooth vector field F and a smooth scalar function g prove that

∫

Ω
F · ∇g + g∇ · F dV =

∫

∂Ω
gF · n dS ,

where n is the outward unit normal on the surface ∂Ω.

Use this identity to prove that the solution u to the Laplace equation ∇2u = 0 in
Ω with u = f on ∂Ω is unique, provided it exists.

END OF PAPER
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