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Paper 3, Section II

23H Algebraic Geometry
Let C ⊂ P2 be the plane curve given by the polynomial

Xn
0 −Xn

1 −Xn
2

over the field of complex numbers, where n > 3.

(i) Show that C is nonsingular.

(ii) Compute the divisors of the rational functions

x =
X1

X0
, y =

X2

X0

on C.

(iii) Consider the morphism φ = (X0 : X1) : C → P1. Compute its ramification
points and degree.

(iv) Show that a basis for the space of regular differentials on C is

{
xiyjω0

∣∣∣ i, j > 0, i+ j 6 n− 3
}

where ω0 = dx/yn−1.

Paper 4, Section II

23H Algebraic Geometry
Let C be a nonsingular projective curve, and D a divisor on C of degree d.

(i) State the Riemann–Roch theorem for D, giving a brief explanation of each term.
Deduce that if d > 2g − 2 then ℓ(D) = 1− g + d.

(ii) Show that, for every P ∈ C,

ℓ(D − P ) > ℓ(D)− 1.

Deduce that ℓ(D) 6 1 + d. Show also that if ℓ(D) > 1, then ℓ(D − P ) = ℓ(D) − 1 for all
but finitely many P ∈ C.

(iii) Deduce that for every d > g − 1 there exists a divisor D of degree d with
ℓ(D) = 1− g + d.
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Paper 2, Section II

24H Algebraic Geometry
Let V ⊂ P3 be an irreducible quadric surface.

(i) Show that if V is singular, then every nonsingular point lies in exactly one line
in V , and that all the lines meet in the singular point, which is unique.

(ii) Show that if V is nonsingular then each point of V lies on exactly two lines of V .

Let V be nonsingular, P0 a point of V , and Π ⊂ P3 a plane not containing P0. Show
that the projection from P0 to Π is a birational map f : V −−→ Π. At what points does f
fail to be regular? At what points does f−1 fail to be regular? Justify your answers.

Paper 1, Section II

24H Algebraic Geometry
Let V ⊂ An be an affine variety over an algebraically closed field k. What does it

mean to say that V is irreducible? Show that any non-empty affine variety V ⊂ An is the
union of a finite number of irreducible affine varieties Vj ⊂ An.

Define the ideal I(V ) of V . Show that I(V ) is a prime ideal if and only if V is
irreducible.

Assume that the base field k has characteristic zero. Determine the irreducible
components of

V
(
X1X2, X1X3 +X2

2 − 1, X2
1 (X1 −X3)

)
⊂ A3 .

Part II, 2013 List of Questions



5

Paper 3, Section II

20G Algebraic Topology

(i) State, but do not prove, the Mayer–Vietoris theorem for the homology groups of
polyhedra.

(ii) Calculate the homology groups of the n-sphere, for every n > 0.

(iii) Suppose that a > 1 and b > 0. Calculate the homology groups of the subspace X of

Ra+b defined by

a∑

i=1

x2i −
a+b∑

j=a+1

x2j = 1.

Paper 4, Section II

21G Algebraic Topology

(i) State, but do not prove, the Lefschetz fixed point theorem.

(ii) Show that if n is even, then for every map f : Sn → Sn there is a point x ∈ Sn such
that f(x) = ±x. Is this true if n is odd? [Standard results on the homology groups
for the n-sphere may be assumed without proof, provided they are stated clearly.]

Paper 2, Section II

21G Algebraic Topology

(i) State the Seifert–van Kampen theorem.

(ii) Assuming any standard results about the fundamental group of a circle that you
wish, calculate the fundamental group of the n-sphere, for every n > 2.

(iii) Suppose that n > 3 and that X is a path-connected topological n-manifold. Show
that π1(X,x0) is isomorphic to π1(X − {P}, x0) for any P ∈ X − {x0}.
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Paper 1, Section II

21G Algebraic Topology

(i) Define the notion of the fundamental group π1(X,x0) of a path-connected space X
with base point x0.

(ii) Prove that if a group G acts freely and properly discontinuously on a simply
connected space Z, then π1(G\Z, x0) is isomorphic to G. [You may assume the
homotopy lifting property, provided that you state it clearly.]

(iii) Suppose that p, q are distinct points on the 2-sphere S2 and that X = S2/(p ∼ q).
Exhibit a simply connected space Z with an action of a group G as in (ii) such that
X = G\Z, and calculate π1(X,x0).
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Paper 4, Section II

33D Applications of Quantum Mechanics
Define the Floquet matrix for a particle moving in a periodic potential in one

dimension and explain how it determines the allowed energy bands of the system.

A potential barrier in one dimension has the form

V (x) =

{
V0(x) , |x| < a/4 ,

0 , |x| > a/4 ,

where V0(x) is a smooth, positive function of x. The reflection and transmission amplitudes
for a particle of wavenumber k > 0, incident from the left, are r(k) and t(k) respectively.
For a particle of wavenumber −k, incident from the right, the corresponding amplitudes
are r′(k) and t′(k) = t(k). In the following, for brevity, we will suppress the k-dependence
of these quantities.

Consider the periodic potential Ṽ , defined by Ṽ (x) = V (x) for |x| < a/2 and
by Ṽ (x + a) = Ṽ (x) elsewhere. Write down two linearly independent solutions of the
corresponding Schrödinger equation in the region −3a/4 < x < −a/4. Using the scattering
data given above, extend these solutions to the region a/4 < x < 3a/4. Hence find the
Floquet matrix of the system in terms of the amplitudes r, r′ and t defined above.

Show that the edges of the allowed energy bands for this potential lie at
E = ~2k2/2m, where

ka = i log
(
t±

√
rr′

)
.
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Paper 3, Section II

34D Applications of Quantum Mechanics
Write down the classical Hamiltonian for a particle of mass m, electric charge −e

and momentum p moving in the background of an electromagnetic field with vector and
scalar potentials A(x, t) and φ(x, t).

Consider the case of a constant uniform magnetic field, B = (0, 0, B) and E = 0.
Working in the gauge with A = (−By, 0, 0) and φ = 0, show that Hamilton’s equations,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
,

admit solutions corresponding to circular motion in the x-y plane with angular frequency
ωB = eB/m.

Show that, in the same gauge, the coordinates (x0, y0, 0) of the centre of the circle
are related to the instantaneous position x = (x, y, z) and momentum p = (px, py, pz) of
the particle by

x0 = x− py
eB

, y0 =
px
eB

. (1)

Write down the quantum Hamiltonian Ĥ for the system. In the case of a uniform
constant magnetic field discussed above, find the allowed energy levels. Working in
the gauge specified above, write down quantum operators corresponding to the classical
quantities x0 and y0 defined in (1) above and show that they are conserved.

[In this question you may use without derivation any facts relating to the energy
spectrum of the quantum harmonic oscillator provided they are stated clearly.]
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Paper 2, Section II

34D Applications of Quantum Mechanics
(i) A particle of momentum ~k and energy E = ~2k2/2m scatters off a spherically-

symmetric target in three dimensions. Define the corresponding scattering amplitude f as
a function of the scattering angle θ. Expand the scattering amplitude in partial waves of
definite angular momentum l, and determine the coefficients of this expansion in terms
of the phase shifts δl(k) appearing in the following asymptotic form of the wavefunction,
valid at large distance from the target,

ψ(r) ∼
∞∑

l=0

2l + 1

2ik

[
e2iδl

eikr

r
− (−1)l

e−ikr

r

]
Pl(cos θ) .

Here, r = |r| is the distance from the target and Pl are the Legendre polynomials.

[You may use without derivation the following approximate relation between plane and
spherical waves (valid asymptotically for large r):

exp(ikz) ∼
∞∑

l=0

(2l + 1) il
sin

(
kr − 1

2 lπ
)

kr
Pl(cos θ) . ]

(ii) Suppose that the potential energy takes the form V (r) = λU(r) where λ ≪ 1
is a dimensionless coupling. By expanding the wavefunction in a power series in λ, derive
the Born Approximation to the scattering amplitude in the form

f(θ) = −2mλ

~2

∫ ∞

0
U(r)

sin qr

q
rdr ,

up to corrections of order λ2, where q = 2k sin(θ/2). [You may quote any results you need
for the Green’s function for the differential operator ∇2 + k2 provided they are stated
clearly.]

(iii) Derive the corresponding order λ contribution to the phase shift δl(k) of angular
momentum l.

[You may use the orthogonality relations

∫ +1

−1
Pl(w)Pm(w) dw =

2

(2l + 1)
δlm

and the integral formula

∫ 1

0
Pl

(
1− 2x2

)
sin(ax) dx =

a

2

[
jl

(a
2

)]2
,

where jl(z) is a spherical Bessel function.]
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Paper 1, Section II

34D Applications of Quantum Mechanics
Consider a quantum system with Hamiltonian Ĥ and energy levels

E0 < E1 < E2 < . . . .

For any state |ψ〉 define the Rayleigh–Ritz quotient R[ψ] and show the following:

(i) the ground state energy E0 is the minimum value of R[ψ];

(ii) all energy eigenstates are stationary points of R[ψ] with respect to variations of |ψ〉.
Under what conditions can the value of R[ψα] for a trial wavefunction ψα (depending

on some parameter α) be used as an estimate of the energy E1 of the first excited state?
Explain your answer.

For a suitably chosen trial wavefunction which is the product of a polynomial and a
Gaussian, use the Rayleigh–Ritz quotient to estimate E1 for a particle of mass m moving
in a potential V (x) = g|x|, where g is a constant.

[You may use the integral formulae,

∫ ∞

0
x2n exp

(
−px2

)
dx =

(2n − 1)!!

2(2p)n

√
π

p∫ ∞

0
x2n+1 exp

(
−px2

)
dx =

n!

2pn+1

where n is a non-negative integer and p is a constant. ]
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Paper 4, Section II

26J Applied Probability
(i) Define an M/M/1 queue. Justifying briefly your answer, specify when this queue

has a stationary distribution, and identify that distribution. State and prove Burke’s
theorem for this queue.

(ii) Let (L1(t), . . . , LN (t), t > 0) denote a Jackson network of N queues, where the
entrance and service rates for queue i are respectively λi and µi, and each customer leaving
queue i moves to queue j with probability pij after service. We assume

∑
j pij < 1 for

each i = 1, . . . , N ; with probability 1−∑
j pij a customer leaving queue i departs from the

system. State Jackson’s theorem for this network. [You are not required to prove it.] Are
the processes (L1(t), . . . , LN (t), t > 0) independent at equilibrium? Justify your answer.

(iii) Let Di(t) be the process of final departures from queue i. Show that, at
equilibrium, (L1(t), . . . , LN (t)) is independent of (Di(s), 1 6 i 6 N, 0 6 s 6 t). Show
that, for each fixed i = 1, . . . , N , (Di(t), t > 0) is a Poisson process, and specify its rate.
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Paper 3, Section II

26J Applied Probability
Define the Moran model. Describe briefly the infinite sites model of mutations.

We henceforth consider a population with N individuals evolving according to the
rules of the Moran model. In addition we assume:

• the allelic type of any individual at any time lies in a given countable state space S;

• individuals are subject to mutations at constant rate u = θ/N , independently of
the population dynamics;

• each time a mutation occurs, if the allelic type of the individual was x ∈ S, it changes
to y ∈ S with probability P (x, y), where P (x, y) is a given Markovian transition
matrix on S that is symmetric:

P (x, y) = P (y, x) (x, y ∈ S).

(i) Show that, if two individuals are sampled at random from the population at
some time t, then the time to their most recent common ancestor has an exponential
distribution, with a parameter that you should specify.

(ii) Let ∆+1 be the total number of mutations that accumulate on the two branches
separating these individuals from their most recent common ancestor. Show that ∆+1 is
a geometric random variable, and specify its probability parameter p.

(iii) The first individual is observed to be of type x ∈ S. Explain why the probability
that the second individual is also of type x is

P(X∆ = x|X0 = x) ,

where (Xn, n > 0) is a Markov chain on S with transition matrix P and is independent
of ∆.
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Paper 2, Section II

27J Applied Probability

(i) Define a Poisson process as a Markov chain on the non-negative integers and state
three other characterisations.

(ii) Let λ(s) (s > 0) be a continuous positive function. Let (Xt, t > 0) be a right-continuous
process with independent increments, such that

P(Xt+h = Xt + 1) = λ(t)h+ o(h),

P(Xt+h = Xt) = 1− λ(t)h+ o(h),

where the o(h) terms are uniform in t ∈ [0,∞). Show that Xt is a Poisson random variable
with parameter Λ(t) =

∫ t
0 λ(s)ds.

(iii) Let X = (Xn : n = 1, 2, . . .) be a sequence of independent and identically distributed
positive random variables with continuous density function f . We define the sequence of
successive records, (Kn, n = 0, 1, . . .), by K0 := 0 and, for n > 0,

Kn+1 := inf{m > Kn : Xm > XKn}.

The record process, (Rt, t > 0), is then defined by

Rt := #{n > 1 : XKn 6 t}.

Explain why the increments of R are independent. Show that Rt is a Poisson random
variable with parameter − log{1− F (t)} where F (t) =

∫ t
0 f(s)ds.

[You may assume the following without proof: For fixed t > 0, let Y (respectively, Z)
be the subsequence of X obtained by retaining only those elements that are greater than
(respectively, smaller than) t. Then Y (respectively, Z) is a sequence of independent
variables each having the distribution of X1 conditioned on X1 > t (respectively, X1 < t);
and Y and Z are independent.]
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Paper 1, Section II

27J Applied Probability
Let (Xt, t > 0) be a Markov chain on {0, 1, . . .} with Q-matrix given by

qn,n+1 = λn ,

qn,0 = λnεn (n > 0) ,

qn,m = 0 if m /∈ {0, n, n + 1} ,

where εn, λn > 0.

(i) Show that X is transient if and only if
∑

n εn < ∞. [You may assume without proof
that x(1− δ) 6 log(1 + x) 6 x for all δ > 0 and all sufficiently small positive x.]

(ii) Assume that
∑

n εn < ∞. Find a necessary and sufficient condition for X to be
almost surely explosive. [You may assume without proof standard results about pure
birth processes, provided that they are stated clearly.]

(iii) Find a stationary measure for X. For the case λn = λ and εn = α/(n+1) (λ, α > 0),
show that X is positive recurrent if and only if α > 1.
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Paper 4, Section II

31B Asymptotic Methods
Show that the equation

d2y

dx2
+

2

x

dy

dx
+

(
1

x2
− 1

)
y = 0

has an irregular singular point at infinity. Using the Liouville–Green method, show that
one solution has the asymptotic expansion

y(x) ∼ 1

x
ex

(
1 +

1

2x
+ . . .

)

as x → ∞.

Paper 3, Section II

31B Asymptotic Methods
Let

I(x) =

∫ π

0
f(t)eixψ(t)dt ,

where f(t) and ψ(t) are smooth, and ψ′(t) 6= 0 for t > 0; also f(0) 6= 0, ψ(0) = a,
ψ′(0) = ψ′′(0) = 0 and ψ′′′(0) = 6b > 0. Show that, as x→ +∞,

I(x) ∼ f(0)ei(xa+π/6)
(

1

27bx

)1/3

Γ (1/3) .

Consider the Bessel function

Jn(x) =
1

π

∫ π

0
cos(nt− x sin t) dt .

Show that, as n→ +∞,

Jn(n) ∼
Γ (1/3)

π

1

(48)1/6
1

n1/3
.
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Paper 1, Section II

31B Asymptotic Methods
Suppose α > 0. Define what it means to say that

F (x) ∼ 1

αx

∞∑

n=0

n!

(−1

αx

)n

is an asymptotic expansion of F (x) as x → ∞. Show that F (x) has no other asymptotic
expansion in inverse powers of x as x → ∞.

To estimate the value of F (x) for large x, one may use an optimal truncation of
the asymptotic expansion. Explain what is meant by this, and show that the error is an
exponentially small quantity in x.

Derive an integral respresentation for a function F (x) with the above asymptotic
expansion.

Part II, 2013 List of Questions



17

Paper 4, Section I

9B Classical Dynamics
The Lagrangian for a heavy symmetric top of mass M , pinned at point O which is

a distance l from the centre of mass, is

L =
1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1

2
I3(ψ̇ + φ̇ cos θ)2 −Mgl cos θ.

(i) Starting with the fixed space frame (ẽ1, ẽ2, ẽ3) and choosing O at its origin, sketch
the top with embedded body frame axis e3 being the symmetry axis. Clearly identify
the Euler angles (θ, φ, ψ).

(ii) Obtain the momenta pθ, pφ and pψ and the Hamiltonian H(θ, φ, ψ, pθ, pφ, pψ). Derive
Hamilton’s equations. Identify the three conserved quantities.

Paper 3, Section I

9B Classical Dynamics
Two equal masses m are connected to each other and to fixed points by three springs

of force constant 5k, k and 5k as shown in the figure.
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(i) Write down the Lagrangian and derive the equations describing the motion of the
system in the direction parallel to the springs.

(ii) Find the normal modes and their frequencies. Comment on your results.
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Paper 2, Section I

9B Classical Dynamics

(i) Consider a rigid body with principal moments of inertia I1, I2, I3. Derive Euler’s
equations of torque-free motion,

I1ω̇1 = (I2 − I3)ω2ω3,

I2ω̇2 = (I3 − I1)ω3ω1,

I3ω̇3 = (I1 − I2)ω1ω2,

with components of the angular velocity ω = (ω1, ω2, ω3) given in the body frame.

(ii) Use Euler’s equations to show that the energy E and the square of the total angular
momentum L2 of the body are conserved.

(iii) Consider a torque-free motion of a symmetric top with I1 = I2 =
1
2I3. Show that in

the body frame the vector of angular velocity ω precesses about the body-fixed e3
axis with constant angular frequency equal to ω3.

Paper 1, Section I

9B Classical Dynamics
Consider an n-dimensional dynamical system with generalized coordinates and

momenta (qi, pi), i = 1, 2, ..., n.

(a) Define the Poisson bracket {f, g} of two functions f(qi, pi, t) and g(qi, pi, t).

(b) Assuming Hamilton’s equations of motion, prove that if a function G(qi, pi) Poisson
commutes with the Hamiltonian, that is {G,H} = 0, then G is a constant of the
motion.

(c) Assume that qj is an ignorable coordinate, that is the Hamiltonian does not depend
on it explicitly. Using the formalism of Poisson brackets prove that the conjugate
momentum pj is conserved.
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Paper 4, Section II

15B Classical Dynamics
The motion of a particle of charge q and mass m in an electromagnetic field with

scalar potential φ(r, t) and vector potential A(r, t) is characterized by the Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A) .

(i) Write down the Hamiltonian of the particle.

(ii) Write down Hamilton’s equations of motion for the particle.

(iii) Show that Hamilton’s equations are invariant under the gauge transformation

φ → φ− ∂Λ

∂t
, A → A+∇Λ,

for an arbitrary function Λ(r, t).

(iv) The particle moves in the presence of a field such that φ = 0 andA = (−1
2yB, 12xB, 0),

where (x, y, z) are Cartesian coordinates and B is a constant.

(a) Find a gauge transformation such that only one component of A(x, y, z) remains
non-zero.

(b) Determine the motion of the particle.

(v) Now assume that B varies very slowly with time on a time-scale much longer than
(qB/m)−1. Find the quantity which remains approximately constant throughout the
motion.
[You may use the expression for the action variable I = 1

2π

∮
pidqi. ]
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Paper 2, Section II

15B Classical Dynamics

(i) The action for a system with a generalized coordinate q is given by

S =

∫ t2

t1

L(q, q̇, t)dt .

(a) State the Principle of Least Action and derive the Euler–Lagrange equation.

(b) Consider an arbitrary function f(q, t). Show that L′ = L + df/dt leads to the
same equation of motion.

(ii) A wire frame ABC in a shape of an equilateral triangle with side a rotates in a
horizontal plane with constant angular frequency ω about a vertical axis through A.
A bead of mass m is threaded on BC and moves without friction. The bead
is connected to B and C by two identical light springs of force constant k and
equilibrium length a/2.

(a) Introducing the displacement η of the particle from the mid point of BC,
determine the Lagrangian L(η, η̇).

(b) Derive the equation of motion. Identify the integral of the motion.

(c) Describe the motion of the bead. Find the condition for there to be a stable
equilibrium and find the frequency of small oscillations about it when it exists.
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Paper 4, Section I

4H Coding and Cryptography
Describe how a stream cipher works. What is a one-time pad?

A one-time pad is used to send the message x1x2x3x4x5x6y7 which is encoded as
0101011. In error, it is reused to send the message y0x1x2x3x4x5x6 which is encoded as
0100010. Show that there are two possibilities for the substring x1x2x3x4x5x6, and find
them.

Paper 3, Section I

4H Coding and Cryptography
Describe briefly the Rabin cipher with modulus N , explaining how it can be

deciphered by the intended recipient and why it is difficult for an eavesdropper to decipher
it.

The Cabinet decides to communicate using Rabin ciphers to maintain confidential-
ity. The Cabinet Secretary encrypts a message, represented as a positive integer m, using
the Rabin cipher with modulus N (with 0 < m < N) and publishes both the encrypted
message and the modulus. The Defence Secretary deciphers this message to read it but
then foolishly encrypts it again using a Rabin cipher with a different modulus N ′ (with
m < N ′) and publishes the newly encrypted message and N ′. Mr Rime (the Leader of the
Opposition) knows this has happened. Explain how Rime can work out what the original
message was using the two different encrypted versions.

Can Rime decipher other messages sent out by the Cabinet using the original
modulus N?

Paper 2, Section I

4H Coding and Cryptography
Let A(n, d) denote the maximum size of a binary code of length n with minimum

distance d. For fixed δ with 0 < δ < 1/2, let α(δ) = lim sup 1
n log2 A(n, nδ). Show that

1−H(δ) 6 α(δ) 6 1−H(δ/2)

where H(p) = −p log2 p− (1− p) log2(1− p).

[You may assume the GSV and Hamming bounds and any form of Stirling’s theorem
provided you state them clearly.]
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Paper 1, Section I

4H Coding and Cryptography
A binary Huffman code is used for encoding symbols 1, . . . ,m occurring with

respective probabilities p1 > · · · > pm > 0 where
∑

16j6m pj = 1. Let s1 be the length of a
shortest codeword and sm the length of a longest codeword. Determine the maximal and
minimal values of each of s1 and sm, and find binary trees for which they are attained.

Paper 2, Section II

12H Coding and Cryptography
Define a BCH code of length n, where n is odd, over the field of 2 elements with

design distance δ. Show that the minimum weight of such a code is at least δ. [Results
about the van der Monde determinant may be quoted without proof, provided they are
stated clearly.]

Consider a BCH code of length 31 over the field of 2 elements with design distance 8.
Show that the minimum distance is at least 11. [Hint: Let α be a primitive element in the
field of 25 elements, and consider the minimal polynomial for certain powers of α.]

Paper 1, Section II

12H Coding and Cryptography
Define the bar product C1|C2 of binary linear codes C1 and C2, where C2 is a subcode

of C1. Relate the rank and minimum distance of C1|C2 to those of C1 and C2 and justify
your answer. Show that if C⊥ denotes the dual code of C, then

(C1|C2)
⊥ = C⊥

2 |C⊥
1 .

Using the bar product construction, or otherwise, define the Reed–Muller code RM(d, r)
for 0 6 r 6 d. Show that if 0 6 r 6 d−1, then the dual of RM(d, r) is again a Reed–Muller
code.
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10D Cosmology
List the relativistic species of bosons and fermions from the standard model of

particle physics that are present in the early universe when the temperature falls to
1MeV/kB .

Which of the particles above will be interacting when the temperature is above
1MeV/kB and between 1MeV/kB & T & 0.51MeV/kB , respectively?

Explain what happens to the populations of particles present when the temperature
falls to 0.51MeV/kB .

The entropy density of fermion and boson species with temperature T is s ∝ gsT
3,

where gs is the number of relativistic spin degrees of freedom, that is,

gs =
∑

bosons

gi +
7

8

∑

fermions

gi .

Show that when the temperature of the universe falls below 0.51MeV/kB the ratio
of the neutrino and photon temperatures will be given by

Tν

Tγ
=

(
4

11

)1/3

.
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10D Cosmology
The number densities of protons of mass mp or neutrons of mass mn in kinetic

equilibrium at temperature T , in the absence of any chemical potentials, are each given
by (with i = n or p)

ni = gi

(
mikBT

2π~2

)3/2

exp
[
−mic

2/kBT
]

,

where kB is Boltzmann’s constant and gi is the spin degeneracy.

Use this to show, to a very good approximation, that the ratio of the number of
neutrons to protons at a temperature T ≃ 1MeV/kB is given by

nn

np
= exp

[
−(mn −mp)c

2/kBT
]
,

where (mn −mp)c
2 = 1.3MeV . Explain any approximations you have used.

The reaction rate for weak interactions between protons and neutrons at energies
5MeV > kBT > 0.8MeV is given by Γ = (kBT/1MeV )5s−1 and the expansion rate of the
universe at these energies is given by H = (kBT/1MeV )2s−1. Give an example of a weak
interaction that can maintain equilibrium abundances of protons and neutrons at these
energies. Show how the final abundance of neutrons relative to protons can be calculated
and use it to estimate the mass fraction of the universe in helium-4 after nucleosynthesis.

What would have happened to the helium abundance if the proton and neutron
masses had been exactly equal?
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10D Cosmology
The linearised equation for the growth of small inhomogeneous density perturbations

δk with comoving wavevector k in an isotropic and homogeneous universe is

δ̈k + 2
ȧ

a
δ̇k +

(
c2sk

2

a2
− 4πGρ

)
δk = 0 ,

where ρ is the matter density, cs = (dP/dρ)1/2 is the sound speed, P is the pressure, a(t) is
the expansion scale factor of the unperturbed universe, and overdots denote differentiation
with respect to time t.

Define the Jeans wavenumber and explain its physical meaning.

Assume the unperturbed Friedmann universe has zero curvature and cosmological
constant and it contains only zero-pressure matter, so that a(t) = a0t

2/3. Show that the
solution for the growth of density perturbations is given by

δk = A(k)t2/3 +B(k)t−1 .

Comment briefly on the cosmological significance of this result.

Paper 1, Section I

10D Cosmology
The Friedmann equation and the fluid conservation equation for a closed isotropic

and homogeneous cosmology are given by

ȧ2

a2
=

8πGρ

3
− 1

a2
,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ,

where the speed of light is set equal to unity, G is the gravitational constant, a(t) is the
expansion scale factor, ρ is the fluid mass density and P is the fluid pressure, and overdots
denote differentiation with respect to the time coordinate t.

If the universe contains only blackbody radiation and a = 0 defines the zero of time
t, show that

a2(t) = t(t∗ − t) ,

where t∗ is a constant. What is the physical significance of the time t∗? What is the value
of the ratio a(t)/t at the time when the scale factor is largest? Sketch the curve of a(t)
and identify its geometric shape.

Briefly comment on whether this cosmological model is a good description of the
observed universe at any time in its history.
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15D Cosmology
The contents of a spatially homogeneous and isotropic universe are modelled as

a finite mass M of pressureless material whose radius r(t) evolves from some constant
reference radius r0 in proportion to the time-dependent scale factor a(t), with

r(t) = a(t)r0 .

(i) Show that this motion leads to expansion governed by Hubble’s Law. If this
universe is expanding, explain why there will be a shift in the frequency of radiation
between its emission from a distant object and subsequent reception by an observer. Define
the redshift z of the observed object in terms of the values of the scale factor a(t) at the
times of emission and reception.

(ii) The expanding universal mass M is given a small rotational perturbation, with
angular velocity ω, and its angular momentum is subsequently conserved. If deviations
from spherical expansion can be neglected, show that its linear rotational velocity will fall
as V ∝ a−n, where you should determine the value of n. Show that this perturbation
will become increasingly insignificant compared to the expansion velocity as the universe
expands if a ∝ t2/3.

(iii) A distant cloud of intermingled hydrogen (H) atoms and carbon monoxide (CO)
molecules has its redshift determined simultaneously in two ways: by detecting 21 cm
radiation from atomic hydrogen and by detecting radiation from rotational transitions in
CO molecules. The ratio of the 21 cm atomic transition frequency to the CO rotational
transition frequency is proportional to α2, where α is the fine structure constant. It is
suggested that there may be a small difference in the value of the constant α between the
times of emission and reception of the radiation from the cloud.

Show that the difference in the redshift values for the cloud, ∆z = zCO − z21,
determined separately by observations of the H and CO transitions, is related to δα =
αr − αe, the difference in α values at the times of reception and emission, by

∆z = 2

(
δα

αr

)
(1 + zCO) .

(iv) The universe today contains 30% of its total density in the form of pressureless
matter and 70% in the form of a dark energy with constant redshift-independent density.
If these are the only two significant constituents of the universe, show that their densities
were equal when the scale factor of the universe was approximately equal to 75% of its
present value.
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15D Cosmology
A spherically symmetric star of total mass Ms has pressure P (r) and mass density

ρ(r), where r is the radial distance from its centre. These quantities are related by the
equations of hydrostatic equilibrium and mass conservation:

dP

dr
= −GM(r)ρ

r2
,

dM

dr
= 4πρr2 ,

where M(r) is the mass inside radius r.

By integrating from the centre of the star at r = 0, where P = Pc, to the surface of
the star at r = Rs, where P = Ps, show that

4πR3
sPs = Ω+ 3

∫ Ms

0

P

ρ
dM ,

where Ω is the total gravitational potential energy. Show that

−Ω >
GM2

s

2Rs
.

If the surface pressure is negligible and the star is a perfect gas of particles of mass
m with number density n and P = nkBT at temperature T , and radiation pressure can
be ignored, then show that

3

∫ Ms

0

P

ρ
dM =

3kB
m

T̄ ,

where T̄ is the mean temperature of the star, which you should define.

Hence, show that the mean temperature of the star satisfies the inequality

T̄ >
GMsm

6kBRs
.
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24H Differential Geometry

Define what is meant by the geodesic curvature kg of a regular curve α : I → S

parametrized by arc length on a smooth oriented surface S ⊂ R3. If S is the unit sphere

in R3 and α : I → S is a parametrized geodesic circle of radius φ, with 0 < φ < π/2,

justify the fact that |kg| = cotφ.

State the general form of the Gauss–Bonnet theorem with boundary on an oriented

surface S, explaining briefly the terms which occur.

Let S ⊂ R3 now denote the circular cone given by z > 0 and x2 + y2 = z2 tan2 φ,

for a fixed choice of φ with 0 < φ < π/2, and with a fixed choice of orientation. Let

α : I → S be a simple closed piecewise regular curve on S, with (signed) exterior angles

θ1, . . . , θN at the vertices (that is, θi is the angle between limits of tangent directions, with

sign determined by the orientation). Suppose furthermore that the smooth segments of α

are geodesic curves. What possible values can θ1 + · · ·+ θN take? Justify your answer.

[You may assume that a simple closed curve in R2 bounds a region which is homeomorphic

to a disc. Given another simple closed curve in the interior of this region, you may assume

that the two curves bound a region which is homeomorphic to an annulus.]
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24H Differential Geometry

We say that a parametrization φ : U → S ⊂ R3 of a smooth surface S is isothermal

if the coefficients of the first fundamental form satisfy F = 0 and E = G = λ(u, v)2, for

some smooth non-vanishing function λ on U . For an isothermal parametrization, prove

that

φuu + φvv = 2λ2HN,

whereN denotes the unit normal vector andH the mean curvature, which you may assume

is given by the formula

H =
g + e

2λ2
,

where g = −〈Nu, φu〉 and e = −〈Nv, φv〉 are coefficients in the second fundamental form.

Given a parametrization φ(u, v) = (x(u, v), y(u, v), z(u, v)) of a surface S ⊂ R3, we

consider the complex valued functions on U :

θ1 = xu − ixv, θ2 = yu − iyv, θ3 = zu − izv . (1)

Show that φ is isothermal if and only if θ21 + θ22 + θ23 = 0. If φ is isothermal, show that

S is a minimal surface if and only if θ1, θ2, θ3 are holomorphic functions of the complex

variable ζ = u+ iv.

Consider the holomorphic functions on D := C \ R>0 (with complex coordinate

ζ = u+ iv on C) given by

θ1 :=
1

2
(1− ζ−2), θ2 := − i

2
(1 + ζ−2), θ3 := −ζ−1. (2)

Find a smooth map φ(u, v) = (x(u, v), y(u, v), z(u, v)) : D → R3 for which φ(−1, 0) = 0

and the θi defined by (2) satisfy the equations (1). Show furthermore that φ extends to a

smooth map φ̃ : C∗ → R3. If w = x+ iy is the complex coordinate on C, show that

φ̃(exp(iw)) = (cosh y cos x+ 1, cosh y sinx, y).
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25H Differential Geometry

Let α : [0, L] → R3 be a regular curve parametrized by arc length having nowhere-

vanishing curvature. State the Frenet relations between the tangent, normal and binormal

vectors at a point, and their derivatives.

Let S ⊂ R3 be a smooth oriented surface. Define the Gauss map N : S → S2, and

show that its derivative at P ∈ S, dNP : TPS → TPS, is self-adjoint. Define the Gaussian

curvature of S at P .

Now suppose that α : [0, L] → R3 has image in S and that its normal curvature is

zero for all s ∈ [0, L]. Show that the Gaussian curvature of S at a point P = α(s) of the

curve is K(P ) = −τ(s)2, where τ(s) denotes the torsion of the curve.

If S ⊂ R3 is a standard embedded torus, show that there is a curve on S for which

the normal curvature vanishes and the Gaussian curvature of S is zero at all points of the

curve.

Paper 1, Section II

25H Differential Geometry

For f : X → Y a smooth map of manifolds, define the concepts of critical point,

critical value and regular value.

With the obvious identification of C with R2, and hence also of C3 with R6, show

that the complex-valued polynomial z31 + z22 + z23 determines a smooth map f : R6 → R2

whose only critical point is at the origin. Hence deduce that V := f−1((0, 0)) \ {0} ⊂ R6

is a 4-dimensional manifold, and find the equations of its tangent space at any given point

(z1, z2, z3) ∈ V .

Now let S5 ⊂ C3 = R6 be the unit 5-sphere, defined by |z1|2 + |z2|2 + |z3|2 = 1.

Given a point P = (z1, z2, z3) ∈ S5∩V , by considering the vector (2z1, 3z2, 3z3) ∈ C3 = R6

or otherwise, show that not all tangent vectors to V at P are tangent to S5. Deduce that

S5 ∩ V ⊂ R6 is a compact three-dimensional manifold.

[Standard results may be quoted without proof if stated carefully.]
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7C Dynamical Systems
Consider the system

ẋ = y + ax+ bx3 ,

ẏ = −x .

What is the Poincaré index of the single fixed point? If there is a closed orbit, why must
it enclose the origin?

By writing ẋ = ∂H/∂y + g(x) and ẏ = −∂H/∂x for suitable functions H(x, y) and
g(x), show that if there is a closed orbit C then

∮

C
(ax+ bx3)x dt = 0 .

Deduce that there is no closed orbit when ab > 0.

If ab < 0 and a and b are both O(ǫ), where ǫ is a small parameter, then there is a
single closed orbit that is to within O(ǫ) a circle of radius R centred on the origin. Deduce
a relation between a, b and R.

Paper 3, Section I

7C Dynamical Systems
A one-dimensional map is defined by

xn+1 = F (xn, µ) ,

where µ is a parameter. What is the condition for a bifurcation of a fixed point x∗ of F?

Let F (x, µ) = x(x2−2x+µ). Find the fixed points and show that bifurcations occur
when µ = −1, µ = 1 and µ = 2. Sketch the bifurcation diagram, showing the locus and
stability of the fixed points in the (x, µ) plane and indicating the type of each bifurcation.
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7C Dynamical Systems
Let ẋ = f(x) be a two-dimensional dynamical system with a fixed point at x = 0.

Define a Lyapunov function V (x) and explain what it means for x = 0 to be Lyapunov
stable.

For the system

ẋ = −x− 2y + x3 ,

ẏ = −y + x+ 1
2y

3 + x2y ,

determine the values of C for which V = x2+Cy2 is a Lyapunov function in a sufficiently
small neighbourhood of the origin.

For the case C = 2 , find V1 and V2 such that V (x) < V1 at t = 0 implies that
V → 0 as t → ∞ and V (x) > V2 at t = 0 implies that V → ∞ as t → ∞.

Paper 1, Section I

7C Dynamical Systems
Consider the dynamical system ẋ = f(x) in Rn which has a hyperbolic fixed point

at the origin.

Define the stable and unstable invariant subspaces of the system linearised about
the origin. Give a constraint on the dimensions of these two subspaces.

Define the local stable and unstable manifolds of the origin for the system. How are
these related to the invariant subspaces of the linearised system?

For the system

ẋ = −x+ x2 + y2 ,

ẏ = y + y2 − x2 ,

calculate the stable and unstable manifolds of the origin, each correct up to and including
cubic order.
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14C Dynamical Systems
Let f : I → I be a continuous map of an interval I ⊂ R. Explain what is meant

by the statements (a) f has a horseshoe and (b) f is chaotic according to Glendinning’s
definition of chaos.

Assume that f has a 3-cycle {x0, x1, x2} with x1 = f(x0), x2 = f(x1), x0 = f(x2),
x0 < x1 < x2. Prove that f2 has a horseshoe. [You may assume the Intermediate Value
Theorem.]

Represent the effect of f on the intervals Ia = [x0, x1] and Ib = [x1, x2] by means of
a directed graph. Explain how the existence of the 3-cycle corresponds to this graph.

The map g : I → I has a 4-cycle {x0, x1, x2, x3} with x1 = g(x0), x2 = g(x1),
x3 = g(x2) and x0 = g(x3). If x0 < x3 < x2 < x1 is g necessarily chaotic? [You may use
a suitable directed graph as part of your argument.]

How does your answer change if x0 < x2 < x1 < x3?
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14C Dynamical Systems
Consider the dynamical system

ẋ = (x+ y + a)(x− y + a) ,

ẏ = y − x2 − b ,

where a > 0.

Find the fixed points of the dynamical system. Show that for any fixed value of a
there exist three values b1 > b2 > b3 of b where a bifurcation occurs. Show that b2 = b3
when a = 1/2.

In the remainder of this question set a = 1/2.

(i) Being careful to explain your reasoning, show that the extended centre manifold
for the bifurcation at b = b1 can be written in the form X = αY + βµ + p(Y, µ),
where X and Y denote the departures from the values of x and y at the fixed point,
b = b1 + µ, α and β are suitable constants (to be determined) and p is quadratic to
leading order. Derive a suitable approximate form for p, and deduce the nature of
the bifurcation and the stability of the different branches of the steady state solution
near the bifurcation.

(ii) Repeat the calculations of part (i) for the bifurcation at b = b2.

(iii) Sketch the x values of the fixed points as functions of b, indicating the nature of the
bifurcations and where each branch is stable.
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35B Electrodynamics
(i) For a time-dependent source, confined within a domain D, show that the time

derivative ḋ of the dipole moment d satisfies

ḋ =

∫

D
d3y (y) ,

where  is the current density.

(ii) The vector potential A(x, t) due to a time-dependent source is given by

A =
1

r
f (t− r/c)k ,

where r = |x| 6= 0, and k is the unit vector in the z direction. Calculate the resulting
magnetic field B(x, t). By considering the magnetic field for small r show that the dipole
moment of the effective source satisfies

µ0

4π
ḋ = f(t)k .

Calculate the asymptotic form of the magnetic field B at very large r.

(iii) Using the equation
∂E

∂t
= c2∇×B ,

calculate E at very large r. Show that E,B and r̂ = x/|x| form a right-handed triad, and
moreover |E| = c|B|. How do |E| and |B| depend on r? What is the significance of this?

(iv) Calculate the power P (θ, φ) emitted per unit solid angle and sketch its
dependence on θ. Show that the emitted radiation is polarised and describe how the
plane of polarisation (that is, the plane in which E and r̂ lie) depends on the direction of
the dipole. Suppose the dipole moment has constant amplitude and constant frequency
and so the radiation is monochromatic with wavelength λ. How does the emitted power
depend on λ?
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36B Electrodynamics
(i) Obtain Maxwell’s equations in empty space from the action functional

S[Aµ] = − 1

µ0

∫
d4x

1

4
FµνF

µν ,

where Fµν = ∂µAν − ∂νAµ.

(ii) A modification of Maxwell’s equations has the action functional

S̃[Aµ] = − 1

µ0

∫
d4x

{1

4
FµνF

µν +
1

2λ2
AµA

µ
}
,

where again Fµν = ∂µAν − ∂νAµ and λ is a constant. Obtain the equations of motion of
this theory and show that they imply ∂µA

µ = 0.

(iii) Show that the equations of motion derived from S̃ admit solutions of the form

Aµ = Aµ
0e

ikνxν
,

where Aµ
0 is a constant 4-vector, and the 4-vector kµ satisfies Aµ

0kµ = 0 and kµk
µ = −1/λ2.

(iv) Show further that the tensor

Tµν =
1

µ0

{
FµσFν

σ − 1

4
ηµνFαβF

αβ − 1

2λ2

(
ηµνAαA

α − 2AµAν

)}

is conserved, that is ∂µTµν = 0.
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36B Electrodynamics
(i) Starting from

Fµν =




0 E1/c E2/c E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0




and performing a Lorentz transformation with γ = 1/
√

1− u2/c2, using

Λµ
ν =




γ −γu/c 0 0
−γu/c γ 0 0

0 0 1 0
0 0 0 1


 ,

show how E and B transform under a Lorentz transformation.

(ii) By taking the limit c → ∞, obtain the behaviour of E and B under a
Galilei transfomation and verify the invariance under Galilei transformations of the non-
relativistic equation

m
dv

dt
= q(E+ v×B) .

(iii) Show that Maxwell’s equations admit solutions of the form

E = E0 f(t− n · x/c) , B = B0 f(t− n · x/c) , (⋆)

where f is an arbitrary function, n is a unit vector, and the constant vectors E0 and B0

are subject to restrictions which should be stated.

(iv) Perform a Galilei transformation of a solution (⋆), with n = (1, 0, 0). Show
that, by a particular choice of u, the solution may brought to the form

Ẽ = Ẽ0g(x̃) , B̃ = B̃0g(x̃) , (†)

where g is an arbitrary function and x̃ is a spatial coordinate in the rest frame. By
showing that (†) is not a solution of Maxwell’s equations in the boosted frame, conclude
that Maxwell’s equations are not invariant under Galilei transformations.
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37A Fluid Dynamics II
Consider the flow of an incompressible fluid of uniform density ρ and dynamic

viscosity µ. Show that the rate of viscous dissipation per unit volume is given by

Φ = 2µeijeij,

where eij is the strain rate.

Determine expressions for eij and Φ when the flow is irrotational with velocity
potential φ.

In deep water a linearised wave with a surface displacement η = a cos(kx − ωt)
has a velocity potential φ = −(ωa/k)e−kz sin(kx − ωt). Hence determine the rate of the
viscous dissipation, averaged over a wave period 2π/ω, for an irrotational surface wave of
wavenumber k and small amplitude a ≪ 1/k in a fluid with very small viscosity µ ≪ ρω/k2

and great depth H ≫ 1/k.

Calculate the depth-integrated kinetic energy per unit wavelength. Assuming that
the average potential energy is equal to the average kinetic energy, show that the total
wave energy decreases to leading order as e−γt, where γ should be found.

Paper 2, Section II

37A Fluid Dynamics II
Write down the boundary-layer equations for steady two-dimensional flow of a

viscous incompressible fluid with velocity U(x) outside the boundary layer. Find the
boundary layer thickness δ(x) when U(x) = U0, a constant. Show that the boundary-
layer equations can be satisfied in this case by a streamfunction ψ(x, y) = g(x)f(η) with
suitable scaling function g(x) and similarity variable η. Find the equation satisfied by f
and the associated boundary conditions.

Find the drag on a thin two-dimensional flat plate of finite length L placed parallel
to a uniform flow. Why does the drag not increase in proportion to the length of the plate?
[You may assume that the boundary-layer solution is applicable except in negligibly small
regions near the leading and trailing edges. You may also assume that f ′′(0) = 0.33.]
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38A Fluid Dynamics II
A disk hovers on a cushion of air above an air-table – a fine porous plate through

which a constant flux of air is pumped. Let the disk have a radius R and a weight Mg
and hover at a low height h ≪ R above the air-table. Let the volume flux of air, which
has density ρ and viscosity µ, be w per unit surface area. The conditions are such that
ρwh2/µR ≪ 1. Explain the significance of this restriction.

Find the pressure distribution in the air under the disk. Show that this pressure
balances the weight of the disk if

h = R

(
3πµRw

2Mg

)1/3

.

Paper 1, Section II

38A Fluid Dynamics II
The velocity field u and stress tensor σ satisfy the Stokes equations in a volume V

bounded by a surface S. Let û be another solenoidal velocity field. Show that

∫

S
σijnjûi dS =

∫

V
2µeij êij dV ,

where e and ê are the strain-rates corresponding to the velocity fields u and û respectively,
and n is the unit normal vector out of V . Hence, or otherwise, prove the minimum
dissipation theorem for Stokes flow.

A particle moves at velocity U through a highly viscous fluid of viscosity µ contained
in a stationary vessel. As the particle moves, the fluid exerts a drag force F on it. Show
that

−F ·U =

∫

V
2µeijeij dV .

Consider now the case when the particle is a small cube, with sides of length ℓ, moving in
a very large vessel. You may assume that

F = −kµℓU ,

for some constant k. Use the minimum dissipation theorem, being careful to declare the
domain(s) involved, to show that

3π 6 k 6 3
√
3π.

[You may assume Stokes’ result for the drag on a sphere of radius a, F = −6πµaU.]

Part II, 2013 List of Questions [TURN OVER



40

Paper 4, Section I

8E Further Complex Methods
Let the function f(z) be analytic in the upper half-plane and such that |f(z)| → 0

as |z| → ∞. Show that

P
∫ ∞

−∞

f(x)

x
dx = iπf(0) ,

where P denotes the Cauchy principal value.

Use the Cauchy integral theorem to show that

P
∫ ∞

−∞

u(x, 0)

x− t
dx = −πv(t, 0) , P

∫ ∞

−∞

v(x, 0)

x− t
dx = πu(t, 0) ,

where u(x, y) and v(x, y) are the real and imaginary parts of f(z).

Paper 3, Section I

8E Further Complex Methods
Let a real-valued function u = u(x, y) be the real part of a complex-valued function

f = f(z) which is analytic in the neighbourhood of a point z = 0, where z = x + iy.
Derive a formula for f in terms of u and use it to find an analytic function f whose real
part is

x3 + x2 − y2 + xy2

(x+ 1)2 + y2

and such that f(0) = 0.

Paper 2, Section I

8E Further Complex Methods
(i) Find all branch points of (z3 − 1)1/4 on an extended complex plane.

(ii) Use a branch cut to evaluate the integral

∫ 2

−2
(4− x2)1/2dx .
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Paper 1, Section I

8E Further Complex Methods
Prove that there are no second order linear ordinary homogeneous differential

equations for which all points in the extended complex plane are analytic.

Find all such equations which have one regular singular point at z = 0.

Paper 2, Section II

14E Further Complex Methods
The Beta function is defined for Re(z) > 0 as

B(z, q) =

∫ 1

0
tq−1(1− t)z−1dt, (Re(q) > 0) ,

and by analytic continuation elsewhere in the complex z-plane.

Show that:

(i) (z + q)B(z + 1, q) = zB(z, q);

(ii) Γ(z)2 = B(z, z)Γ(2z).

By considering Γ(z/2m) for all positive integers m, deduce that Γ(z) 6= 0 for all z
with Re(z) > 0.

Paper 1, Section II

14E Further Complex Methods
Show that the equation

(z − 1)w′′ − zw′ + (4− 2z)w = 0

has solutions of the form w(z) =
∫
γ exp (zt)f(t)dt, where

f(t) =
exp (−t)

(t− a)(t− b)2

and the contour γ is any closed curve in the complex plane, where a and b are real constants
which should be determined.

Use this to find the general solution, evaluating the integrals explicitly.
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Paper 4, Section II

18I Galois Theory
(i) Let ζN = e2πi/N ∈ C for N > 1. For the cases N = 11, 13, is it possible to express

ζN , starting with integers and using rational functions and (possibly nested) radicals? If
it is possible, briefly explain how this is done, assuming standard facts in Galois Theory.

(ii) Let F = C(X,Y,Z) be the rational function field in three variables over C, and
for integers a, b, c > 1 let K = C(Xa, Y b, Zc) be the subfield of F consisting of all rational
functions in Xa, Y b, Zc with coefficients in C. Show that F/K is Galois, and determine
its Galois group. [Hint: For α, β, γ ∈ C×, the map (X,Y,Z) 7−→ (αX, βY, γZ) is an
automorphism of F .]

Paper 3, Section II

18I Galois Theory
Let p be a prime number and F a field of characteristic p. Let Frp : F → F be the

Frobenius map defined by Frp(x) = xp for all x ∈ F .

(i) Prove that Frp is a field automorphism when F is a finite field.

(ii) Is the same true for an arbitrary algebraic extension F of Fp? Justify your
answer.

(iii) Let F = Fp(X1, . . . ,Xn) be the rational function field in n variables where
n > 1 over Fp. Determine the image of Frp : F → F , and show that Frp makes F into an
extension of degree pn over a subfield isomorphic to F . Is it a separable extension?

Paper 2, Section II

18I Galois Theory
For a positive integer N , let Q(µN ) be the cyclotomic field obtained by adjoining

all N -th roots of unity to Q. Let F = Q(µ24).

(i) Determine the Galois group of F over Q.

(ii) Find all N > 1 such that Q(µN ) is contained in F .

(iii) List all quadratic and quartic extensions of Q which are contained in F , in the
form Q(α) or Q(α, β). Indicate which of these fields occurred in (ii).

[Standard facts on the Galois groups of cyclotomic fields and the fundamental
theorem of Galois theory may be used freely without proof.]
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Paper 1, Section II

18I Galois Theory
(i) Give an example of a field F , contained in C, such that X4 + 1 is a product of

two irreducible quadratic polynomials in F [X]. Justify your answer.

(ii) Let F be any extension of degree 3 over Q. Prove that the polynomial X4 + 1
is irreducible over F .

(iii) Give an example of a prime number p such that X4 + 1 is a product of two
irreducible quadratic polynomials in Fp[X]. Justify your answer.

[Standard facts on fields, extensions, and finite fields may be quoted without proof,
as long as they are stated clearly.]
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Paper 4, Section II
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36D General Relativity
Consider the metric describing the interior of a star,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

defined for 0 6 r 6 r0 by

eα(r) =
3

2
e−β0 − 1

2
e−β(r) ,

with
e−2β(r) = 1−Ar2 .

Here A = 2M/r30 , where M is the mass of the star, β0 = β(r0), and we have taken units
in which we have set G = c = 1.

(i) The star is made of a perfect fluid with energy-momentum tensor

Tab = (p+ ρ)uaub + p gab .

Here ua is the 4-velocity of the fluid which is at rest, the density ρ is constant throughout
the star (0 6 r 6 r0) and the pressure p = p(r) depends only on the radial coordinate.
Write down the Einstein field equations and show that they may be written as

Rab = 8π(p + ρ)uaub + 4π(ρ − p)gab .

(ii) Using the formulae given below, or otherwise, show that for 0 6 r 6 r0, one has

4π(ρ+ p) =
(α′ + β′)

r
e−2β(r) ,

4π(ρ− p) =

(
β′ − α′

r
− 1

r2

)
e−2β(r) +

1

r2
,

where primes denote differentiation with respect to r. Hence show that

ρ =
3A

8π
, p(r) =

3A

8π

(
e−β(r) − e−β0

3e−β0 − e−β(r)

)
.

[The non-zero components of the Ricci tensor are

R00 = e2α−2β

(
α′′ − α′β′ + α′2 +

2α′

r

)

R11 = −α′′ + α′β′ − α′2 +
2β′

r

R22 = 1 + e−2β
[
(β′ − α′)r − 1

]

R33 = sin2 θR22 .

Note that

α′ =
1

2
Ar eβ−α , β′ = Ar e2β . ]
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Paper 2, Section II

36D General Relativity
A spacetime contains a one-parameter family of geodesics xa = xa(λ, µ), where λ is

a parameter along each geodesic, and µ labels the geodesics. The tangent to the geodesics
is T a = ∂xa/∂λ, and Na = ∂xa/∂µ is a connecting vector. Prove that

∇µT
a = ∇λN

a ,

and hence derive the equation of geodesic deviation:

∇2
λN

a +Ra
bcd T

bN cT d = 0 .

[You may assume Ra
bcd = −Ra

bdc and the Ricci identity in the form

(∇λ∇µ −∇µ∇λ)T
a = Ra

bcd T
bT cNd . ]

Consider the two-dimensional space consisting of the sphere of radius r with line
element

ds2 = r2(dθ2 + sin2 θ dφ2) .

Show that one may choose T a = (1, 0), Na = (0, 1), and that

∇θN
a = cot θ Na .

Hence show that R = 2/r2, using the geodesic deviation equation and the identity in any
two-dimensional space

Ra
bcd =

1

2
R(δac gbd − δad gbc) ,

where R is the Ricci scalar.

Verify your answer by direct computation of R.

[You may assume that the only non-zero connection components are

Γφ
φθ = Γφ

θφ = cot θ

and
Γθ
φφ = − sin θ cos θ .

You may also use the definition

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc . ]
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Paper 3, Section II

37D General Relativity
The Schwarzschild metric for a spherically symmetric black hole is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
,

where we have taken units in which we set G = c = 1. Consider a photon moving within
the equatorial plane θ = π

2 , along a path xa(λ) with affine parameter λ. Using a variational
principle with Lagrangian

L = gab
dxa

dλ

dxb

dλ
,

or otherwise, show that

(
1− 2M

r

)(
dt

dλ

)
= E and r2

(
dφ

dλ

)
= h ,

for constants E and h. Deduce that

(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
. (∗)

Assume now that the photon approaches from infinity. Show that the impact
parameter (distance of closest approach) is given by

b =
h

E
.

Denote the right hand side of equation (∗) as f(r). By sketching f(r) in each of the
cases below, or otherwise, show that:

(a) if b2 > 27M2, the photon is deflected but not captured by the black hole;

(b) if b2 < 27M2, the photon is captured;

(c) if b2 = 27M2, the photon orbit has a particular form, which should be described.
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Paper 1, Section II

37D General Relativity
The curve γ, xa = xa(λ), is a geodesic with affine parameter λ. Write down the

geodesic equation satisfied by xa(λ).

Suppose the parameter is changed to µ(λ), where dµ/dλ > 0. Obtain the
corresponding equation and find the condition for µ to be affine. Deduce that, whatever
parametrization ν is used along the curve γ, the tangent vector Ka to γ satisfies

(∇ν K)[aKb] = 0 .

Now consider a spacetime with metric gab, and conformal transformation

g̃ab = Ω2(xc)gab .

The curve γ is a geodesic of the metric connection of gab. What further restriction has to
be placed on γ so that it is also a geodesic of the metric connection of g̃ab? Justify your
answer.
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Paper 4, Section I

3G Geometry and Groups

Let ∆1,∆2 be two disjoint closed discs in the Riemann sphere with bounding

circles Γ1,Γ2 respectively. Let Jk be inversion in the circle Γk and let T be the Möbius

transformation J2 ◦ J1.
Show that, if w /∈ ∆1, then T (w) ∈ ∆2 and so T n(w) ∈ ∆2 for n = 1, 2, 3, . . ..

Deduce that T has a fixed point in ∆2 and a second in ∆1.

Deduce that there is a Möbius transformation A with

A(∆1) = {z : |z| 6 1} and A(∆2) = {z : |z| > R}

for some R > 1.

Paper 3, Section I

3G Geometry and Groups

Let Λ be a rank 2 lattice in the Euclidean plane. Show that the group G of all

Euclidean isometries of the plane that map Λ onto itself is a discrete group. List the

possible sizes of the point groups for G and give examples to show that point groups of

these sizes do arise.

[You may quote any standard results without proof.]

Paper 2, Section I

3G Geometry and Groups

Let ℓ1, ℓ2 be two straight lines in Euclidean 3-space. Show that there is a rotation

about some axis through an angle π that maps ℓ1 onto ℓ2. Is this rotation unique?

Paper 1, Section I

3G Geometry and Groups

Show that any pair of lines in hyperbolic 3-space that does not have a common

endpoint must have a common normal. Is this still true when the pair of lines does have

a common endpoint?
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Paper 1, Section II

11G Geometry and Groups

Define the modular group Γ acting on the upper half-plane.

Describe the set S of points z in the upper half-plane that have Im(T (z)) 6 Im(z)

for each T ∈ Γ. Hence find a fundamental set for Γ acting on the upper half-plane.

Let A and J be the two Möbius transformations

A : z 7→ z + 1 and J : z 7→ −1/z .

When is Im(J(z)) > Im(z)?

For any point z in the upper half-plane, show that either z ∈ S or else there is an

integer k with

Im(J(Ak(z))) > Im(z) .

Deduce that the modular group is generated by A and J .

Paper 4, Section II

12G Geometry and Groups

Define the limit set for a Kleinian group. If your definition of the limit set requires

an arbitrary choice of a base point, you should prove that the limit set does not depend

on this choice.

Let ∆1,∆2,∆3,∆4 be the four discs {z ∈ C : |z − c| 6 1} where c is the point

1+i, 1−i,−1−i,−1+i respectively. Show that there is a parabolic Möbius transformation

A that maps the interior of ∆1 onto the exterior of ∆2 and fixes the point where ∆1 and

∆2 touch. Show further that we can choose A so that it maps the unit disc onto itself.

Let B be the similar parabolic transformation that maps the interior of ∆3 onto the

exterior of ∆4, fixes the point where ∆3 and ∆4 touch, and maps the unit disc onto itself.

Explain why the group generated by A and B is a Kleinian group G. Find the limit set

for the group G and justify your answer.
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Paper 4, Section II

17F Graph Theory

Define the maximum degree ∆(G) and the chromatic index χ′(G) of the graph G.

State and prove Vizing’s theorem relating ∆(G) and χ′(G).

Let G be a connected graph such that χ′(G) = ∆(G) + 1 but, for every subgraph

H of G, χ′(H) = ∆(H) holds. Show that G is a circuit of odd length.

Paper 3, Section II

17F Graph Theory

Let G be a graph of order n and average degree d. Let A be the adjacency matrix

of G and let xn + c1x
n−1 + c2x

n−2 + · · ·+ cn be its characteristic polynomial. Show that

c1 = 0 and c2 = −nd/2. Show also that −c3 is twice the number of triangles in G.

The eigenvalues of A are λ1 > λ2 > · · · > λn. Prove that λ1 > d.

Evaluate λ1+ · · ·+λn. Show that λ2
1+ · · ·+λ2

n = nd and infer that λ1 6
√

d(n− 1).

Does there exist, for each n, a graph G with d > 0 for which λ2 = · · · = λn?

Paper 2, Section II

17F Graph Theory

Let G be a graph with |G| > 3. State and prove a necessary and sufficient condition

for G to be Eulerian (that is, for G to have an Eulerian circuit).

Prove that if δ(G) > |G|/2 then G is Hamiltonian (that is, G has a Hamiltonian

circuit).

The line graph L(G) of G has vertex set V (L(G)) = E(G) and edge set

E(L(G)) = { ef : e, f ∈ E(G), e and f are incident} .

Show that L(G) is Eulerian if G is regular and connected.

Must L(G) be Hamiltonian if G is Eulerian? Must G be Eulerian if L(G) is

Hamiltonian? Justify your answers.
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Paper 1, Section II

17F Graph Theory

State and prove Hall’s theorem about matchings in bipartite graphs.

Show that a regular bipartite graph has a matching meeting every vertex.

A graph is almost r-regular if each vertex has degree r − 1 or r. Show that, if

r > 2, an almost r-regular graph G must contain an almost (r − 1)-regular graph H with

V (H) = V (G).

[Hint: First, if possible, remove edges from G whilst keeping it almost r-regular.]
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Paper 3, Section II

32C Integrable Systems
Let U = U(x, y) and V = V (x, y) be two n × n complex-valued matrix functions,

smoothly differentiable in their variables. We wish to explore the solution of the
overdetermined linear system

∂v

∂y
= U(x, y)v,

∂v

∂x
= V (x, y)v ,

for some twice smoothly differentiable vector function v(x, y).

Prove that, if the overdetermined system holds, then the functions U and V obey
the zero curvature representation

∂U

∂x
− ∂V

∂y
+ UV − V U = 0 .

Let u = u(x, y) and

U =

[
iλ iū
iu −iλ

]
, V =

[
2iλ2 − i|u|2 2iλū+ ūy
2iλu− uy −2iλ2 + i|u|2

]
,

where subscripts denote derivatives, ū is the complex conjugate of u and λ is a constant.
Find the compatibility condition on the function u so that U and V obey the zero curvature
representation.

Paper 2, Section II

32C Integrable Systems
Consider the Hamiltonian system

p′ = −∂H

∂q
, q′ =

∂H

∂p
,

where H = H(p,q).

When is the transformation P = P(p,q), Q = Q(p,q) canonical?

Prove that, if the transformation is canonical, then the equations in the new variables
(P,Q) are also Hamiltonian, with the same Hamiltonian function H.

Let P = C−1p + Bq, Q = Cq, where C is a symmetric nonsingular matrix.
Determine necessary and sufficient conditions on C for the transformation to be canonical.
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Paper 1, Section II

32C Integrable Systems
Quoting carefully all necessary results, use the theory of inverse scattering to derive

the 1-soliton solution of the KdV equation

ut = 6uux − uxxx .
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Paper 3, Section II

21F Linear Analysis
State the Stone–Weierstrass Theorem for real-valued functions.

State Riesz’s Lemma.

Let K be a compact, Hausdorff space and let A be a subalgebra of C(K) separating
the points of K and containing the constant functions. Fix two disjoint, non-empty, closed
subsets E and F of K.

(i) If x ∈ E show that there exists g ∈ A such that g(x) = 0, 0 6 g < 1 on K, and g > 0
on F . Explain briefly why there is M ∈ N such that g > 2

M on F .

(ii) Show that there is an open cover U1, U2, . . . , Um of E, elements g1, g2, . . . , gm of A and
positive integers M1,M2, . . . ,Mm such that

0 6 gr < 1 on K, gr > 2
Mr

on F, gr <
1

2Mr
on Ur

for each r = 1, 2, . . . ,m.

(iii) Using the inequality

1−Nt 6 (1− t)N 6 1

Nt
(0 < t < 1, N ∈ N) ,

show that for sufficiently large positive integers n1, n2, . . . , nm, the element

hr = 1− (1− gnr
r )M

nr
r

of A satisfies

0 6 hr 6 1 on K, hr 6 1
4 on Ur, hr >

(
3
4

) 1
m on F

for each r = 1, 2, . . . ,m.

(iv) Show that the element h = h1 · h2 · · · · · hm − 1
2 of A satisfies

−1
2 6 h 6 1

2 on K, h 6 −1
4 on E, h > 1

4 on F.

Now let f ∈ C(K) with ‖f‖ 6 1. By considering the sets {x ∈ K : f(x) 6 −1
4} and

{x ∈ K : f(x) > 1
4}, show that there exists h ∈ A such that ‖f − h‖ 6 3

4 . Deduce that A
is dense in C(K).

Part II, 2013 List of Questions [TURN OVER



56

Paper 4, Section II

22F Linear Analysis
Let T : X → X be a bounded linear operator on a complex Banach space X. Define

the spectrum σ(T ) of T . What is an approximate eigenvalue of T ? What does it mean to
say that T is compact?

Assume now that T is compact. Show that if λ is in the boundary of σ(T ) and
λ 6= 0, then λ is an eigenvalue of T . [You may use without proof the result that every λ
in the boundary of σ(T ) is an approximate eigenvalue of T .]

Let T : H → H be a compact Hermitian operator on a complex Hilbert space H.
Prove the following:

(a) If λ ∈ σ(T ) and λ 6= 0, then λ is an eigenvalue of T .

(b) σ(T ) is countable.

Paper 2, Section II

22F Linear Analysis
Let X be a Banach space. Let T : X → ℓ∞ be a bounded linear operator. Show

that there is a bounded sequence (fn)
∞
n=1 in X∗ such that Tx = (fnx)

∞
n=1 for all x ∈ X.

Fix 1 < p < ∞. Define the Banach space ℓp and briefly explain why it is separable.
Show that for x ∈ ℓp there exists f ∈ ℓ∗p such that ‖f‖ = 1 and f(x) = ‖x‖p. [You may
use Hölder’s inequality without proof.]

Deduce that ℓp embeds isometrically into ℓ∞.

Paper 1, Section II

22F Linear Analysis
State and prove the Closed Graph Theorem. [You may assume any version of the

Baire Category Theorem provided it is clearly stated. If you use any other result from the
course, then you must prove it.]

Let X be a closed subspace of ℓ∞ such that X is also a subset of ℓ1. Show that
the left-shift L : X → ℓ1, given by L(x1, x2, x3, . . . ) = (x2, x3, . . . ), is bounded when X is
equipped with the sup-norm.
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Paper 2, Section II

16G Logic and Set Theory
Explain what is meant by a chain-complete poset. State the Bourbaki–Witt fixed-

point theorem for such posets.

A poset P is called directed if every finite subset of P (including the empty subset)
has an upper bound in P ; P is called directed-complete if every subset of P which is
directed (in the induced ordering) has a least upper bound in P . Show that the set of all
chains in an arbitrary poset P , ordered by inclusion, is directed-complete.

Given a poset P , let [P → P ] denote the set of all order-preserving maps P → P ,
ordered pointwise (i.e. f 6 g if and only if f(x) 6 g(x) for all x). Show that [P → P ] is
directed-complete if P is.

Now suppose P is directed-complete, and that f : P → P is order-preserving and
inflationary. Show that there is a unique smallest set C ⊆ [P → P ] satisfying

(a) f ∈ C;

(b) C is closed under composition (i.e. g, h ∈ C ⇒ g ◦ h ∈ C); and

(c) C is closed under joins of directed subsets.

Show that

(i) all maps in C are inflationary;

(ii) C is directed;

(iii) if g =
∨

C, then all values of g are fixed points of f ;

(iv) for every x ∈ P , there exists y ∈ P with x 6 y = f(y).
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Paper 3, Section II

16G Logic and Set Theory
Explain carefully what is meant by syntactic entailment and semantic entailment in

the propositional calculus. State the Completeness Theorem for the propositional calculus,
and deduce the Compactness Theorem.

Suppose P , Q and R are pairwise disjoint sets of primitive propositions, and let
φ ∈ L(P ∪Q) and ψ ∈ L(Q∪R) be propositional formulae such that (φ⇒ ψ) is a theorem
of the propositional calculus. Consider the set

X = {χ ∈ L(Q) | φ ⊢ χ} .

Show that X ∪ {¬ψ} is inconsistent, and deduce that there exists χ ∈ L(Q) such that
both (φ ⇒ χ) and (χ ⇒ ψ) are theorems. [Hint: assuming X ∪ {¬ψ} is consistent, take
a suitable valuation v of Q ∪R and show that

{φ} ∪ {q ∈ Q | v(q) = 1} ∪ {¬q | q ∈ Q, v(q) = 0}

is inconsistent. The Deduction Theorem may be assumed without proof.]

Paper 4, Section II

16G Logic and Set Theory
State the Axiom of Foundation and the Principle of ∈-Induction, and show that

they are equivalent in the presence of the other axioms of ZF set theory. [You may assume
the existence of transitive closures.]

Given a model (V,∈) for all the axioms of ZF except Foundation, show how to define
a transitive class R which, with the restriction of the given relation ∈, is a model of ZF.

Given a model (V,∈) of ZF, indicate briefly how one may modify the relation ∈ so
that the resulting structure (V,∈′) fails to satisfy Foundation, but satisfies all the other
axioms of ZF. [You need not verify that all the other axioms hold in (V,∈′).]
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Paper 1, Section II

16G Logic and Set Theory
Write down the recursive definitions of ordinal addition, multiplication and expo-

nentiation.

Given that F : On → On is a strictly increasing function-class (i.e. α < β implies
F (α) < F (β)), show that α 6 F (α) for all α.

Show that every ordinal α has a unique representation in the form

α = ωα1.a1 + ωα2.a2 + · · ·+ ωαn.an ,

where n ∈ ω, α > α1 > α2 > · · · > αn, and a1, a2, . . . , an ∈ ω \ {0}.
Under what conditions can an ordinal α be represented in the form

ωβ1.b1 + ωβ2.b2 + · · ·+ ωβm.bm ,

where β1 < β2 < · · · < βm and b1, b2, . . . , bm ∈ ω \ {0}? Justify your answer.

[The laws of ordinal arithmetic (associative, distributive, etc.) may be assumed
without proof.]
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Paper 4, Section I

6A Mathematical Biology
A model of two populations competing for resources takes the form

dn1

dt
= r1n1(1− n1 − a12n2) ,

dn2

dt
= r2n2(1− n2 − a21n1) ,

where all parameters are positive. Give a brief biological interpretation of a12, a21, r1 and
r2. Briefly describe the dynamics of each population in the absence of the other.

Give conditions for there to exist a steady-state solution with both populations
present (that is, n1 > 0 and n2 > 0), and give conditions for this solution to be stable.

In the case where there exists a solution with both populations present but the
solution is not stable, what is the likely long-term outcome for the biological system?
Explain your answer with the aid of a phase diagram in the (n1, n2) plane.

Paper 3, Section I

6A Mathematical Biology
An immune system creates a burst of N new white blood cells with probability b

per unit time. White blood cells die with probability d each per unit time. Write down
the master equation for Pn(t), the probability that there are n white blood cells at time t.

Given that n = n0 initially, find an expression for the mean of n.

Show that the variance of n has the form Ae−2dt +Be−dt+C and find A, B and C.

If the immune system were modified to produce k times as many cells per burst but
with probability per unit time divided by a factor k, how would the mean and variance of
the number of cells change?
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Paper 2, Section I

6A Mathematical Biology
The population density n(a, t) of individuals of age a at time t satisfies

∂n(a, t)

∂t
+

∂n(a, t)

∂a
= −µ(a)n(a, t),

with

n(0, t) =

∫ ∞

0
b(a)n(a, t)da,

where µ(a) is the age-dependent death rate and b(a) is the birth rate per individual of age
a.

Seek a similarity solution of the form n(a, t) = eγtr(a) and show that

r(a) = r(0)e−γa−
∫ a
0 µ(s)ds, r(0) =

∫ ∞

0
b(s)r(s)ds.

Show also that if

φ(γ) =

∫ ∞

0
b(a)e−γa−

∫ a
0
µ(s)dsda = 1,

then there is such a similarity solution. Give a biological interpretation of φ(0).

Suppose now that all births happen at age a∗, at which time an individual produces
B offspring, and that the death rate is constant with age (i.e. µ(a) = µ). Find the
similarity solution and give the condition for this to represent a growing population.

Paper 1, Section I

6A Mathematical Biology
In a discrete-time model, a proportion µ of mature bacteria divides at each time

step. When a mature bacterium divides it is destroyed and two new immature bacteria
are produced. A proportion λ of the immature bacteria matures at each time step, and
a proportion k of mature bacteria dies at each time step. Show that this model may be
represented by the equations

at+1 = at + 2µbt − λat ,

bt+1 = bt − µbt + λat − kbt .

Give an expression for the general solution to these equations and show that the
population may grow if µ > k.

At time T , the population is treated with an antibiotic that completely stops
bacteria from maturing, but otherwise has no direct effects. Explain what will happen to
the population of bacteria afterwards, and give expressions for at and bt for t > T in terms
of aT , bT , µ and k.
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Paper 3, Section II

13A Mathematical Biology
An activator-inhibitor system is described by the equations

∂u

∂t
=

∂2u

∂x2
+ u− uv + au2 ,

∂v

∂t
= d

∂2v

∂x2
+ u2 − buv ,

where a, b, d > 0.

Find and sketch the range of a, b for which the spatially homogeneous system has
a stable stationary solution with u > 0 and v > 0.

Considering spatial perturbations of the form cos(kx) about the solution found
above, find conditions for the system to be unstable. Sketch this region in the (d, b) plane
for fixed a ∈ (0, 1).

Find kc, the critical wavenumber at the onset of the instability, in terms of a and b.

Paper 2, Section II

13A Mathematical Biology
The concentration c(x, t) of insects at position x at time t satisfies the nonlinear

diffusion equation
∂c

∂t
=

∂

∂x

(
cm

∂c

∂x

)
,

with m > 0. Find the value of α which allows a similarity solution of the form
c(x, t) = tαf(ξ), with ξ = tαx.

Show that

f(ξ) =

{ [
αm
2 (ξ2 − ξ0

2)
]1/m

for − ξ0 < ξ < ξ0 ,
0 otherwise,

where ξ0 is a constant. From the original partial differential equation, show that the total
number of insects c0 does not change in time. From this result, find a general expression
relating ξ0 and c0. Find a closed-form solution for ξ0 in the case m = 2.
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Paper 4, Section II

20H Number Fields
State Dedekind’s criterion. Use it to factor the primes up to 5 in the ring of integers

OK of K = Q(
√
65). Show that every ideal in OK of norm 10 is principal, and compute

the class group of K.

Paper 2, Section II

20H Number Fields

(i) State Dirichlet’s unit theorem.

(ii) Let K be a number field. Show that if every conjugate of α ∈ OK has absolute value
at most 1 then α is either zero or a root of unity.

(iii) Let k = Q(
√
3) and K = Q(ζ) where ζ = eiπ/6 = (i+

√
3)/2. Compute NK/k(1+ ζ).

Show that
O∗

K = {(1 + ζ)mu : 0 6 m 6 11, u ∈ O∗
k}.

Hence or otherwise find fundamental units for k and K.
[You may assume that the only roots of unity in K are powers of ζ.]

Paper 1, Section II

20H Number Fields
Let f ∈ Z[X] be a monic irreducible polynomial of degree n. Let K = Q(α), where

α is a root of f .

(i) Show that if disc(f) is square-free then OK = Z[α].

(ii) In the case f(X) = X3 − 3X − 25 find the minimal polynomial of β = 3/(1−α) and
hence compute the discriminant of K. What is the index of Z[α] in OK?
[Recall that the discriminant of X3 + pX + q is −4p3 − 27q2.]
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Paper 1, Section I

1I Number Theory
State and prove Gauss’s Lemma for the Legendre symbol

(
a
p

)
. For which odd primes

p is 2 a quadratic residue modulo p? Justify your answer.

Paper 4, Section I

1I Number Theory
Let s = σ + it with σ, t ∈ R. Define the Riemann zeta function ζ(s) for σ > 1.

Show that for σ > 1,

ζ(s) =
∏

p

(1− p−s)−1 ,

where the product is taken over all primes. Deduce that there are infinitely many primes.

Paper 3, Section I

1I Number Theory
State the Chinese Remainder Theorem.

A composite number n is defined to be a Carmichael number if bn−1 ≡ 1 mod n
whenever (b, n) = 1. Show that a composite n is Carmichael if and only if n is square-free
and (p − 1) divides (n − 1) for all prime factors p of n. [You may assume that, for p an

odd prime and α > 1 an integer,
(
Z/pαZ

)×
is a cyclic group.]

Show that if n = (6t + 1)(12t + 1)(18t + 1) with all three factors prime, then n is
Carmichael.

Paper 2, Section I

1I Number Theory
Define Euler’s totient function φ(n), and show that

∑
d|n φ(d) = n. Hence or

otherwise prove that for any prime p the multiplicative group
(
Z/pZ)× is cyclic.
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Paper 4, Section II

11I Number Theory
(i) What is meant by the continued fraction expansion of a real number θ? Suppose

that θ has continued fraction [a0, a1, a2, . . . ]. Define the convergents pn/qn to θ and give
the recurrence relations satisfied by the pn and qn. Show that the convergents pn/qn do
indeed converge to θ.

[You need not justify the basic order properties of finite continued fractions.]

(ii) Find two solutions in strictly positive integers to each of the equations

x2 − 10y2 = 1 and x2 − 11y2 = 1 .

Paper 3, Section II

11I Number Theory
Define equivalence of binary quadratic forms and show that equivalent forms have

the same discriminant.

Show that an integer n is properly represented by a binary quadratic form of
discriminant d if and only if x2 ≡ d mod 4n is soluble in integers. Which primes are
represented by a form of discriminant −20?

What does it mean for a positive definite form to be reduced? Find all reduced
forms of discriminant −20. For each member of your list find the primes less than 100
represented by the form.
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Paper 4, Section II

39C Numerical Analysis
Consider the solution of the two-point boundary value problem

(2− sinπx)u′′ + u = 1, −1 6 x 6 1,

with periodic boundary conditions at x = −1 and x = 1. Construct explicitly the
linear algebraic system that arises from the application of a spectral method to the above
equation.

The Fourier coefficients of u are defined by

ûn =
1

2

∫ 1

−1
u(τ)e−iπnτ dτ.

Prove that the computation of the Fourier coefficients for the truncated system with
−N/2 + 1 6 n 6 N/2 (where N is an even and positive integer, and assuming that
ûn = 0 outside this range of n) reduces to the solution of a tridiagonal system of algebraic
equations, which you should specify.

Explain the term convergence with spectral speed and justify its validity for the
derived approximation of u.
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Paper 2, Section II

39C Numerical Analysis
Consider the advection equation ut = ux on the unit interval x ∈ [0, 1] and t > 0,

where u = u(x, t), subject to the initial condition u(x, 0) = ϕ(x) and the boundary
condition u(1, t) = 0, where ϕ is a given smooth function on [0, 1].

(i) We commence by discretising the advection equation above with finite differences
on the equidistant space-time grid {(m∆x, n∆t), m = 0, . . . ,M + 1, n = 0, . . . , T}
with ∆x = 1/(M + 1) and ∆t > 0. We obtain an equation for unm ≈ u(m∆x, n∆t)
that reads

un+1
m = unm +

1

2
µ(unm+1 − unm−1), m = 1, . . . ,M, n ∈ Z+,

with the condition un0 = 0 for all n ∈ Z+ and µ = ∆t/∆x.

What is the order of approximation (that is, the order of the local error) in space
and time of the above discrete solution to the exact solution of the advection
equation? Write the scheme in matrix form and deduce for which choices of µ this
approximation converges to the exact solution. State (without proof) any theorems
you use. [You may use the fact that for a tridiagonal M ×M matrix




α β 0 0

−β
. . .

. . . 0

0
. . .

. . . β
0 0 −β α




the eigenvalues are given by λℓ = α+ 2iβ cos ℓπ
M+1 .]

(ii) How does the order change when we replace the central difference approximation
of the first derivative in space by forward differences, that is unm+1 − unm instead of
(unm+1 − unm−1)/2? For which choices of µ is this new scheme convergent?

(iii) Instead of the approximation in (i) we consider the following method for numerically
solving the advection equation,

un+1
m = µ(unm+1 − unm−1) + un−1

m ,

where we additionally assume that u1m is given. What is the order of this method
for a fixed µ?
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Paper 3, Section II

40C Numerical Analysis

(i) Suppose that A is a real n×n matrix, and that w ∈ Rn and λ1 ∈ R are given so that
Aw = λ1w. Further, let S be a non-singular matrix such that Sw = ce1, where e1 is
the first coordinate vector and c 6= 0. Let Â = SAS−1. Prove that the eigenvalues
of A are λ1 together with the eigenvalues of the bottom right (n − 1) × (n − 1)
submatrix of Â.

(ii) Suppose again that A is a real n × n matrix, and that two linearly independent
vectors v,w ∈ Rn are given such that the linear subspace L{v,w} spanned by v
and w is invariant under the action of A, that is

x ∈ L{v,w} ⇒ Ax ∈ L{v,w}.

Denote by V an n× 2 matrix whose two columns are the vectors v and w, and let
S be a non-singular matrix such that R = SV is upper triangular, that is

R = SV = S ×




v1 w1

v2 w2
...

...
vn wn


 =




r11 r12
0 r22
0 0
...

...
0 0




.

Again, let Â = SAS−1. Prove that the eigenvalues of A are the eigenvalues of the
top left 2 × 2 submatrix of Â together with the eigenvalues of the bottom right
(n− 2)× (n− 2) submatrix of Â.
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Paper 1, Section II

40C Numerical Analysis
Let

A(α) =




1 α α
α 1 α
α α 1


 , α ∈ R .

(i) For which values of α is A(α) positive definite?

(ii) Formulate the Gauss–Seidel method for the solution x ∈ R3 of a system

A(α)x = b ,

with A(α) as defined above and b ∈ R3. Prove that the Gauss–Seidel method
converges to the solution of the above system whenever A is positive definite. [You
may state and use the Householder–John theorem without proof.]

(iii) For which values of α does the Jacobi iteration applied to the solution of the above
system converge?
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Paper 4, Section II

28K Optimization and Control
Given r, ρ, µ, T , all positive, it is desired to choose u(t) > 0 to maximize

µx(T ) +

∫ T

0
e−ρt log u(t) dt

subject to ẋ(t) = rx(t)− u(t), x(0) = 10.

Explain what Pontryagin’s maximum principle guarantees about a solution to this
problem.

Show that no matter whether x(T ) is constrained or unconstrained there is a
constant α such that the optimal control is of the form u(t) = αe−(ρ−r)t. Find an expression
for α under the constraint x(T ) = 5.

Show that if x(T ) is unconstrained then α = (1/µ)e−rT .

Paper 3, Section II

28K Optimization and Control
A particle follows a discrete-time trajectory in R2 given by

(
xt+1

yt+1

)
=

(
1 1
0 1

)(
xt
yt

)
+

(
t
1

)
ut +

(
ǫt
0

)
,

where {ǫt} is a white noise sequence with Eǫt = 0 and Eǫ2t = v. Given (x0, y0), we wish

to choose {ut}9t=0 to minimize C = E
[
x210 +

∑9
t=0 u

2
t

]
.

Show that for some {at} this problem can be reduced to one of controlling a scalar
state ξt = xt + atyt.

Find, in terms of x0, y0, the optimal u0. What is the change in minimum C
achievable when the system starts in (x0, y0) as compared to when it starts in (0, 0)?

Consider now a trajectory starting at (x−1, y−1) = (11,−1). What value of u−1 is
optimal if we wish to minimize 5u2−1 + C?
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Paper 2, Section II

29K Optimization and Control
Suppose {xt}t>0 is a Markov chain. Consider the dynamic programming equation

Fs(x) = max
{
r(x), βE

[
Fs−1(x1) | x0 = x

]}
, s = 1, 2, . . . ,

with r(x) > 0, β ∈ (0, 1), and F0(x) = 0. Prove that:

(i) Fs(x) is nondecreasing in s;

(ii) Fs(x) 6 F (x), where F (x) is the value function of an infinite-horizon problem that
you should describe;

(iii) F∞(x) = lims→∞ Fs(x) = F (x).

A coin lands heads with probability p. A statistician wishes to choose between:
H0 : p = 1/3 and H1 : p = 2/3, one of which is true. Prior probabilities of H1 and H0 in
the ratio x : 1 change after one toss of the coin to ratio 2x : 1 (if the toss was a head) or
to ratio x : 2 (if the toss was a tail). What problem is being addressed by the following
dynamic programming equation?

F (x) = max
{

1
1+x ,

x
1+x , β

[(
1

1+x
2
3 +

x
1+x

1
3

)
F (x/2) +

(
1

1+x
1
3 + x

1+x
2
3

)
F (2x)

]}
.

Prove that G(x) = (1 + x)F (x) is a convex function of x.

By sketching a graph of G, describe the form of the optimal policy.
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Paper 4, Section II

30C Partial Differential Equations
(i) Show that an arbitrary C2 solution of the one-dimensional wave equation

utt − uxx = 0 can be written in the form u = F (x− t) +G(x+ t).

Hence, deduce the formula for the solution at arbitrary t > 0 of the Cauchy problem

utt − uxx = 0 , u(0, x) = u0(x) , ut(0, x) = u1(x) , (∗)

where u0, u1 are arbitrary Schwartz functions.

Deduce from this formula a theorem on finite propagation speed for the one-
dimensional wave equation.

(ii) Define the Fourier transform of a tempered distribution. Compute the Fourier
transform of the tempered distribution Tt ∈ S ′(R) defined for all t > 0 by the function

Tt(y) =

{
1
2 if |y| 6 t,

0 if |y| > t,

that is, 〈Tt , f 〉 = 1
2

∫ +t
−t f(y) dy for all f ∈ S(R). By considering the Fourier transform

in x, deduce from this the formula for the solution of (∗) that you obtained in part (i) in
the case u0 = 0.
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Paper 3, Section II

30C Partial Differential Equations
Define the parabolic boundary ∂parΩT of the domain ΩT = [0, 1]× (0, T ] for T > 0.

Let u = u(x, t) be a smooth real-valued function on ΩT which satisfies the inequality

ut − auxx + bux + cu 6 0 .

Assume that the coefficients a, b and c are smooth functions and that there exist positive
constants m,M such that m 6 a 6 M everywhere, and c > 0. Prove that

max
(x,t)∈ΩT

u(x, t) 6 max
(x,t)∈∂parΩT

u+(x, t) . (∗)

[Here u+ = max{u, 0} is the positive part of the function u.]

Consider a smooth real-valued function φ on ΩT such that

φt − φxx − (1− φ2)φ = 0 , φ(x, 0) = f(x)

everywhere, and φ(0, t) = 1 = φ(1, t) for all t > 0. Deduce from (∗) that if f(x) 6 1 for
all x ∈ [0, 1] then φ(x, t) 6 1 for all (x, t) ∈ ΩT . [Hint: Consider u = φ2 − 1 and compute
ut − uxx.]
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Paper 1, Section II

30C Partial Differential Equations
(i) Discuss briefly the concept of well-posedness of a Cauchy problem for a partial

differential equation.

Solve the Cauchy problem

∂2u+ x1∂1u = au2 , u(x1, 0) = φ(x1) ,

where a ∈ R, φ ∈ C1(R) and ∂i denotes the partial derivative with respect to xi for
i = 1, 2.

For the case a = 0 show that the solution satisfies max
x1∈R

|u(x1, x2)| = ‖φ‖C0 , where

the Cr norm on functions φ = φ(x1) of one variable is defined by

‖φ‖Cr =

r∑

i=0

max
x∈R

|∂i
1φ(x1)|.

Deduce that the Cauchy problem is then well-posed in the uniform metric (i.e. the metric
determined by the C0 norm).

(ii) State the Cauchy–Kovalevskaya theorem and deduce that the following Cauchy
problem for the Laplace equation,

∂2
1u+ ∂2

2u = 0 , u(x1, 0) = 0 , ∂2u(x1, 0) = φ(x1) , (∗)

has a unique analytic solution in some neighbourhood of x2 = 0 for any analytic function
φ = φ(x1). Write down the solution for the case φ(x1) = sin(nx1), and hence give a
sequence of initial data {φn(x1)}∞n=1 with the property that

‖φn‖Cr → 0 , as n → ∞, for each r ∈ N ,

whereas un, the corresponding solution of (∗), satisfies

max
x1∈R

|un(x1, x2)| → +∞ , as n → ∞,

for any x2 6= 0.
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Paper 2, Section II

31C Partial Differential Equations
State the Lax–Milgram lemma.

Let V = V(x1, x2, x3) be a smooth vector field which is 2π-periodic in each
coordinate xj for j = 1, 2, 3. Write down the definition of a weak H1

per solution for
the equation

−∆u+
∑

j

Vj∂ju+ u = f (∗)

to be solved for u = u(x1, x2, x3) given f = f(x1, x2, x3) in H0, with both u and f also
2π-periodic in each co-ordinate. [In this question use the definition

Hs
per =

{
u =

∑

m∈Z3

û(m)eim·x ∈ L2 : ‖u‖2Hs =
∑

m∈Z3

(1 + ‖m‖2)s|û(m)|2 < ∞
}

for the Sobolev spaces of functions 2π-periodic in each coordinate xj and for s = 0, 1, 2, . . . .]

If the vector field is divergence-free, prove that there exists a unique weak H1
per

solution for all such f .

Supposing that V is the constant vector field with components (1, 0, 0), write down
the solution of (∗) in terms of Fourier series and show that there exists C > 0 such that

‖u‖H2 6 C‖f‖H0 .
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Paper 4, Section II

32E Principles of Quantum Mechanics
(i) The creation and annihilation operators for a harmonic oscillator of angular

frequency ω satisfy the commutation relation [a, a†] = 1. Write down an expression for
the Hamiltonian H and number operator N in terms of a and a†. Explain how the space
of eigenstates |n〉, n = 0, 1, 2, . . ., of H is formed, and deduce the eigenenergies for these
states. Show that

a|n〉 = √
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉 .

(ii) The operator Kr is defined to be

Kr =
(a†)rar

r!
,

for r = 0, 1, 2, . . .. Show that Kr commutes with N . Show that if r 6 n, then

Kr|n〉 =
n!

(n− r)!r!
|n〉 ,

and Kr|n〉 = 0 otherwise. By considering the action of Kr on the state |n〉, deduce that

∞∑

r=0

(−1)rKr = |0〉〈0| .

Paper 3, Section II

33E Principles of Quantum Mechanics
A particle moves in one dimension in an infinite square-well potential V (x) = 0 for

|x| < a and ∞ for |x| > a. Find the energy eigenstates. Show that the energy eigenvalues
are given by En = E1n

2 for integer n, where E1 is a constant which you should find.

The system is perturbed by the potential δV = ǫx/a. Show that the energy of the nth

level En remains unchanged to first order in ǫ. Show that the ground-state wavefunction
is

ψ1(x) =
1√
a


cos πx

2a
+

Dǫ

π2E1

∑

n=2,4,...

(−1)An nB

(n2 − 1)C
sin

nπx

2a
+O(ǫ2)


 ,

where A, B, C and D are numerical constants which you should find. Briefly comment
on the conservation of parity in the unperturbed and perturbed systems.
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Paper 2, Section II

33E Principles of Quantum Mechanics
(i) In units where ~ = 1, angular momentum states |j m〉 obey

J2|j m〉 = j(j + 1)|j m〉, J3|j m〉 = m|j m〉.

Use the algebra of angular momentum [Ji, Jj ] = iǫijkJk to derive the following in
terms of J2, J± = J1 ± iJ2 and J3:

(a) [J2, Ji];

(b) [J3, J±];

(c) [J2, J±].

(ii) Find J+J− in terms of J2 and J3. Thus calculate the quantum numbers of the state
J±|j m〉 in terms of j and m. Derive the normalisation of the state J−|j m〉. Therefore,
show that

〈j j − 1|J j−1
+ J j

−|j j〉 =
√
A (2j − 1)!,

finding A in terms of j.

(iii) Consider the combination of a spinless particle with an electron of spin 1/2 and
orbital angular momentum 1. Calculate the probability that the electron has a spin of
+1/2 in the z−direction if the combined system has an angular momentum of +1/2 in the
z−direction and a total angular momentum of +3/2. Repeat the calculation for a total
angular momentum of +1/2.
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Paper 1, Section II

33E Principles of Quantum Mechanics
Consider a composite system of several identical particles. Describe how the multi-

particle state is constructed from single-particle states. For the case of two identical
particles, describe how considering the interchange symmetry leads to the definition of
bosons and fermions.

Consider two non-interacting, identical particles, each with spin 1. The single-
particle, spin-independent Hamiltonian H(x̂i, p̂i) has non-degenerate eigenvalues En and
wavefunctions ψn(xi) where i = 1, 2 labels the particle and n = 0, 1, 2, 3, . . .. In terms of
these single-particle wavefunctions and single-particle spin states |1〉, |0〉 and | − 1〉, write
down all of the two-particle states and energies for:

(i) the ground state;

(ii) the first excited state.

Assume now that En is a linear function of n. Find the degeneracy of the N th

energy level of the two-particle system for:

(iii) N even;

(iv) N odd.
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Paper 4, Section II

27K Principles of Statistics
Assuming only the existence and properties of the univariate normal distribution,

define Np(µ,Σ), the multivariate normal distribution with mean (row-)vector µ and
dispersion matrix Σ; and Wp(ν; Σ), the Wishart distribution on integer ν > 1 degrees
of freedom and with scale parameter Σ. Show that, if X ∼ Np(µ,Σ), S ∼ Wp(ν; Σ), and

b (1 × q), A (p × q) are fixed, then b +XA ∼ Nq(b + µA,Φ), ATSA ∼ Wp(ν; Φ), where

Φ = ATΣA.

The random (n × p) matrix X has rows that are independently distributed as
Np(M,Σ), where both parameters M and Σ are unknown. Let X := n−11TX, where
1 is the (n × 1) vector of 1s; and Sc := XTΠX, with Π := In − n−111T. State the joint
distribution of X and Sc given the parameters.

Now suppose n > p and Σ is positive definite. Hotelling’s T 2 is defined as

T 2 := n(X −M)
(
S
c)−1

(X −M)T

where S
c
:= Sc/ν with ν := (n − 1). Show that, for any values of M and Σ,

(
ν − p+ 1

νp

)
T 2 ∼ F p

ν−p+1 ,

the F distribution on p and ν − p+ 1 degrees of freedom.

[You may assume that:

1. If S ∼ Wp(ν; Σ) and a is a fixed (p × 1) vector, then

aTΣ−1a

aTS−1a
∼ χ2

ν−p+1.

2. If V ∼ χ2
p, W ∼ χ2

λ are independent, then

V/p

W/λ
∼ F p

λ . ]
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Paper 3, Section II

27K Principles of Statistics
What is meant by a convex decision problem? State and prove a theorem to the

effect that, in a convex decision problem, there is no point in randomising. [You may use
standard terms without defining them.]

The sample space, parameter space and action space are each the two-point set
{1, 2}. The observable X takes value 1 with probability 2/3 when the parameter Θ = 1,
and with probability 3/4 when Θ = 2. The loss function L(θ, a) is 0 if a = θ, otherwise 1.
Describe all the non-randomised decision rules, compute their risk functions, and plot
these as points in the unit square. Identify an inadmissible non-randomised decision rule,
and a decision rule that dominates it.

Show that the minimax rule has risk function (8/17, 8/17), and is Bayes against a
prior distribution that you should specify. What is its Bayes risk? Would a Bayesian with
this prior distribution be bound to use the minimax rule?

Paper 1, Section II

28K Principles of Statistics
When the real parameter Θ takes value θ, variables X1,X2, . . . arise independently

from a distribution Pθ having density function pθ(x) with respect to an underlying
measure µ. Define the score variable Un(θ) and the information function In(θ) for
estimation of Θ based on Xn := (X1, . . . ,Xn), and relate In(θ) to i(θ) := I1(θ).

State and prove the Cramér–Rao inequality for the variance of an unbiased estimator
of Θ. Under what conditions does this inequality become an equality? What is the form
of the estimator in this case? [You may assume Eθ{Un(θ)} = 0, varθ{Un(θ)} = In(θ), and
any further required regularity conditions, without comment.]

Let Θ̂n be the maximum likelihood estimator of Θ based on Xn. What is the
asymptotic distribution of n

1
2 (Θ̂n −Θ) when Θ = θ?

Suppose that, for each n, Θ̂n is unbiased for Θ, and the variance of n
1
2 (Θ̂n − Θ) is

exactly equal to its asymptotic variance. By considering the estimator αΘ̂k + (1 − α)Θ̂n,
or otherwise, show that, for k < n, covθ(Θ̂k, Θ̂n) = varθ(Θ̂n).
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Paper 2, Section II

28K Principles of Statistics
Describe theWeak Sufficiency Principle (WSP) and the Strong Sufficiency Principle

(SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.

A parameter Φ has a prior distribution which is normal with mean 0 and precision
(inverse variance) hΦ. Given Φ = φ, further parameters Θ := (Θi : i = 1, . . . , I) have
independent normal distributions with mean φ and precision hΘ. Finally, given both
Φ = φ and Θ = θ := (θ1, . . . , θI), observables X := (Xij : i = 1, . . . , I; j = 1, . . . , J) are
independent, Xij being normal with mean θi, and precision hX . The precision parameters

(hΦ, hΘ, hX) are all fixed and known. Let X := (X1, . . . ,XI), where Xi :=
∑J

j=1Xij/J .

Show, directly from the definition of sufficiency, that X is sufficient for (Φ,Θ). [You may
assume without proof that, if Y1, . . . , Yn have independent normal distributions with the
same variance, and Y := n−1

∑n
i=1 Yi, then the vector (Y1−Y , . . . , Yn−Y ) is independent

of Y .]

For data-values x := (xij : i = 1, . . . , I; j = 1, . . . , J), determine the joint
distribution, Πφ say, of Θ, given X = x and Φ = φ. What is the distribution of Φ,
given Θ = θ and X = x?

Using these results, describe clearly how Gibbs sampling combined with Rao–
Blackwellisation could be applied to estimate the posterior joint distribution of Θ, given
X = x.
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Paper 4, Section II

25K Probability and Measure
State Birkhoff’s almost-everywhere ergodic theorem.

Let (Xn : n ∈ N) be a sequence of independent random variables such that

P(Xn = 0) = P(Xn = 1) = 1/2 .

Define for k ∈ N

Yk =
∞∑

n=1

Xk+n−1/2
n .

What is the distribution of Yk? Show that the random variables Y1 and Y2 are not
independent.

Set Sn = Y1 + · · · + Yn. Show that Sn/n converges as n → ∞ almost surely and
determine the limit. [You may use without proof any standard theorem provided you state
it clearly.]

Paper 3, Section II

25K Probability and Measure
LetX be an integrable random variable with E(X) = 0. Show that the characteristic

function φX is differentiable with φ′
X(0) = 0. [You may use without proof standard

convergence results for integrals provided you state them clearly.]

Let (Xn : n ∈ N) be a sequence of independent random variables, all having the same
distribution as X. Set Sn = X1 + · · ·+Xn. Show that Sn/n → 0 in distribution. Deduce
that Sn/n → 0 in probability. [You may not use the Strong Law of Large Numbers.]

Paper 2, Section II

26K Probability and Measure
Let (fn : n ∈ N) be a sequence of non-negative measurable functions defined on a

measure space (E, E , µ). Show that lim infn fn is also a non-negative measurable function.

State the Monotone Convergence Theorem.

State and prove Fatou’s Lemma.

Let (fn : n ∈ N) be as above. Suppose that fn(x) → f(x) as n → ∞ for all x ∈ E.
Show that

µ(min{fn, f}) → µ(f) .

Deduce that, if f is integrable and µ(fn) → µ(f), then fn converges to f in L1.
[Still assume that fn and f are as above.]
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Paper 1, Section II

26K Probability and Measure
State Dynkin’s π-system/d-system lemma.

Let µ and ν be probability measures on a measurable space (E, E). Let A be a
π-system on E generating E . Suppose that µ(A) = ν(A) for all A ∈ A. Show that µ = ν.

What does it mean to say that a sequence of random variables is independent?

Let (Xn : n ∈ N) be a sequence of independent random variables, all uniformly
distributed on [0, 1]. Let Y be another random variable, independent of (Xn : n ∈ N).
Define random variables Zn in [0, 1] by Zn = (Xn + Y ) mod 1. What is the distribution
of Z1? Justify your answer.

Show that the sequence of random variables (Zn : n ∈ N) is independent.
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Paper 3, Section II

19G Representation Theory
Suppose that (ρ1, V1) and (ρ2, V2) are complex representations of the finite groups

G1 and G2 respectively. Use ρ1 and ρ2 to construct a representation ρ1 ⊗ ρ2 of G1 ×G2

on V1 ⊗ V2 and show that its character satisfies

χρ1⊗ρ2(g1, g2) = χρ1(g1)χρ2(g2)

for each g1 ∈ G1, g2 ∈ G2.

Prove that if ρ1 and ρ2 are irreducible then ρ1⊗ρ2 is irreducible as a representation
of G1 × G2. Moreover, show that every irreducible complex representation of G1 × G2

arises in this way.

Is it true that every complex representation of G1 ×G2 is of the form ρ1 ⊗ ρ2 with
ρi a complex representation of Gi for i = 1, 2? Justify your answer.

Paper 2, Section II

19G Representation Theory
Recall that a regular icosahedron has 20 faces, 30 edges and 12 vertices. Let G be

the group of rotational symmetries of a regular icosahedron.

Compute the conjugacy classes of G. Hence, or otherwise, construct the character
table of G. Using the character table explain why G must be a simple group.

[You may use any general theorems provided that you state them clearly.]

Paper 4, Section II

19G Representation Theory
State and prove Burnside’s paqb-theorem.
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Paper 1, Section II

19G Representation Theory
State and prove Maschke’s Theorem for complex representations of finite groups.

Without using character theory, show that every irreducible complex representation
of the dihedral group of order 10, D10, has dimension at most two. List the irreducible
complex representations of D10 up to isomorphism.

Let V be the set of vertices of a regular pentagon with the usual action of D10.
Explicitly decompose the permutation representation CV into a direct sum of irreducible
subrepresentations.
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Paper 3, Section II

22I Riemann Surfaces
Let Λ = Z+Zλ be a lattice in C where Im(λ) > 0, and let X be the complex torus

C/Λ.

(i) Give the definition of an elliptic function with respect to Λ. Show that there is a
bijection between the set of elliptic functions with respect to Λ and the set of holomorphic
maps from X to the Riemann sphere. Next, show that if f is an elliptic function with
respect to Λ and f−1{∞} = ∅, then f is constant.

(ii) Assume that

f(z) =
1

z2
+

∑

ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)

defines a meromorphic function on C, where the sum converges uniformly on compact
subsets of C\Λ. Show that f is an elliptic function with respect to Λ. Calculate the order
of f .

Let g be an elliptic function with respect to Λ on C, which is holomorphic on C \Λ
and whose only zeroes in the closed parallelogram with vertices {0, 1, λ, λ+ 1} are simple
zeroes at the points

{
1
2 ,

λ
2 ,

1
2 +

λ
2

}
. Show that g is a non-zero constant multiple of f ′.

Paper 2, Section II

23I Riemann Surfaces
(i) Show that the open unit disc D = {z ∈ C : |z| < 1} is biholomorphic to the

upper half-plane H = {z ∈ C : Im(z) > 0}.
(ii) Define the degree of a non-constant holomorphic map between compact con-

nected Riemann surfaces. State the Riemann–Hurwitz formula without proof. Now let
X be a complex torus and f : X → Y a holomorphic map of degree 2, where Y is the
Riemann sphere. Show that f has exactly four branch points.

(iii) List without proof those Riemann surfaces whose universal cover is the Riemann
sphere or C. Now let f : C → C be a holomorphic map such that there are two distinct
elements a, b ∈ C outside the image of f . Assuming the uniformization theorem and the
monodromy theorem, show that f is constant.
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Paper 1, Section II

23I Riemann Surfaces
(i) Let f(z) =

∑∞
n=0 anz

n be a power series with radius of convergence r in (0,∞).
Show that there is at least one point a on the circle C = {z ∈ C : |z| = r}which is a singular
point of f , that is, there is no direct analytic continuation of f in any neighbourhood of a.

(ii) Let X and Y be connected Riemann surfaces. Define the space G of germs
of function elements of X into Y . Define the natural topology on G and the natural
map π : G → X. [You may assume without proof that the topology on G is Hausdorff.]
Show that π is continuous. Define the natural complex structure on G which makes it
into a Riemann surface. Finally, show that there is a bijection between the connected
components of G and the complete holomorphic functions of X into Y .
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Paper 4, Section I

5J Statistical Modelling
The output X of a process depends on the levels of two adjustable variables: A, a

factor with four levels, and B, a factor with two levels. For each combination of a level of
A and a level of B, nine independent values of X are observed.

Explain and interpret the R commands and (abbreviated) output below. In
particular, describe the model being fitted, and describe and comment on the hypothesis
tests performed under the summary and anova commands.

> fit1 <- lm(x ˜ a+b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5445 0.2449 10.39 6.66e-16 ***

a2 -5.6704 0.4859 -11.67 < 2e-16 ***

a3 4.3254 0.3480 12.43 < 2e-16 ***

a4 -0.5003 0.3734 -1.34 0.0923

b2 -3.5689 0.2275 -15.69 < 2e-16 ***

> anova(fit1)

Response: x

Df Sum Sq mean Sq F value Pr(>F)

a 3 71.51 23.84 17.79 1.34e-8 ***

b 1 105.11 105.11 78.44 6.91e-13 ***

Residuals 67 89.56 1.34
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Paper 3, Section I

5J Statistical Modelling
Consider the linear model Y = Xβ + ǫ where Y = (Y1, . . . , Yn)

T, β = (β1, . . . , βp)
T,

and ǫ = (ǫ1, . . . , ǫn)
T, with ǫ1, . . . , ǫn independent N(0, σ2) random variables. The (n× p)

matrix X is known and is of full rank p < n. Give expressions for the maximum likelihood
estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint distribution. Show that
β̂ is unbiased whereas σ̂2 is biased.

Suppose that a new variable Y ∗ is to be observed, satisfying the relationship

Y ∗ = x∗Tβ + ǫ∗ ,

where x∗ (p × 1) is known, and ǫ∗ ∼ N(0, σ2) independently of ǫ. We propose to predict
Y ∗ by Ỹ = x∗Tβ̂. Identify the distribution of

Y ∗ − Ỹ

τ σ̃
,

where

σ̃2 =
n

n− p
σ̂2 ,

τ2 = x∗T(XTX)−1x∗ + 1 .

Paper 2, Section I

5J Statistical Modelling
Consider a linear model Y = Xβ+ǫ, where Y and ǫ are (n×1) with ǫ ∼ Nn(0, σ

2I),
β is (p × 1), and X is (n × p) of full rank p < n. Let γ and δ be sub-vectors of β. What
is meant by orthogonality between γ and δ?

Now suppose

Yi = β0 + β1xi + β2x
2
i + β3P3(xi) + ǫi (i = 1, . . . , n) ,

where ǫ1, . . . , ǫn are independent N(0, σ2) random variables, x1, . . . , xn are real-valued
known explanatory variables, and P3(x) is a cubic polynomial chosen so that β3 is
orthogonal to (β0, β1, β2)

T and β1 is orthogonal to (β0, β2)
T.

Let β̃ = (β0, β2, β1, β3)
T. Describe the matrix X̃ such that Y = X̃β̃ + ǫ. Show that

X̃TX̃ is block diagonal. Assuming further that this matrix is non-singular, show that the
least-squares estimators of β1 and β3 are, respectively,

β̂1 =

∑n
i=1 xiYi∑n
i=1 x

2
i

and β̂3 =

∑n
i=1 P3(xi)Yi∑n
i=1 P3(xi)2

.
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Paper 1, Section I

5J Statistical Modelling
Variables Y1, . . . , Yn are independent, with Yi having a density p(y |µi) governed by

an unknown parameter µi. Define the deviance for a model M that imposes relationships
between the (µi).

From this point on, suppose Yi ∼ Poisson(µi). Write down the log-likelihood of data
y1, . . . , yn as a function of µ1, . . . , µn.

Let µ̂i be the maximum likelihood estimate of µi under model M . Show that the
deviance for this model is given by

2
n∑

i=1

{
yi log

yi
µ̂i

− (yi − µ̂i)

}
.

Now suppose that, underM , log µi = βTxi, i = 1, . . . , n, where x1, . . . , xn are known
p-dimensional explanatory variables and β is an unknown p-dimensional parameter. Show
that µ̂ := (µ̂1, . . . , µ̂n)

T satisfies XTy = XTµ̂, where y = (y1, . . . , yn)
T and X is the (n×p)

matrix with rows xT1 , . . . , x
T
n , and express this as an equation for the maximum likelihood

estimate β̂ of β. [You are not required to solve this equation.]
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Paper 4, Section II

13J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0.

A random variable Y is said to have an inverse Gaussian distribution, with
parameters φ and λ (both positive), if its density function is

f(y;φ, λ) =

√
λ√

2πy3
e
√
λφ exp

{
−1

2

(
λ

y
+ φy

)}
(y > 0).

Show that the family of all inverse Gaussian distributions for Y is of exponential dispersion
family form. Deduce directly the corresponding expressions for E(Y ) and Var(Y ) in terms
of φ and λ. What are the corresponding canonical link function and variance function?

Consider a generalized linear model, M , for independent variables Yi (i = 1, . . . , n),
whose random component is defined by the inverse Gaussian distribution with link function
g(µ) = log(µ): thus g(µi) = xTi β, where β = (β1, . . . , βp)

T is the vector of unknown
regression coefficients and xi = (xi1, . . . , xip)

T is the vector of known values of the
explanatory variables for the ith observation. The vectors xi (i = 1, . . . , n) are linearly
independent. Assuming that the dispersion parameter is known, obtain expressions for
the score function and Fisher information matrix for β. Explain how these can be used to
compute the maximum likelihood estimate β̂ of β.
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Paper 1, Section II

13J Statistical Modelling
A cricket ball manufacturing company conducts the following experiment. Every

day, a bowling machine is set to one of three levels, “Medium”, “Fast” or “Spin”, and
then bowls 100 balls towards the stumps. The number of times the ball hits the stumps
and the average wind speed (in kilometres per hour) during the experiment are recorded,
yielding the following data (abbreviated):

Day Wind Level Stumps

1 10 Medium 26

2 8 Medium 37
...

...
...

...

50 12 Medium 32

51 7 Fast 31
...

...
...

...

120 3 Fast 28

121 5 Spin 35
...

...
...

...

150 6 Spin 31

Write down a reasonable model for Y1, . . . , Y150, where Yi is the number of times the ball
hits the stumps on the ith day. Explain briefly why we might want to include interactions
between the variables. Write R code to fit your model.

The company’s statistician fitted her own generalized linear model using R, and
obtained the following summary (abbreviated):

>summary(ball)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Wind 0.09055 0.01595 5.676 1.38e-08 ***

LevelFast -0.10005 0.08044 -1.244 0.213570

LevelSpin 0.29881 0.08268 3.614 0.000301 ***

Wind:LevelFast 0.03666 0.02364 1.551 0.120933

Wind:LevelSpin -0.07697 0.02845 -2.705 0.006825 **

Why are LevelMedium and Wind:LevelMedium not listed?

Suppose that, on another day, the bowling machine is set to “Spin”, and the
wind speed is 5 kilometres per hour. What linear function of the parameters should
the statistician use in constructing a predictor of the number of times the ball hits the
stumps that day?

Based on the above output, how might you improve the model? How could you fit
your new model in R?
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Paper 4, Section II

34A Statistical Physics
A classical particle of mass m moving non-relativistically in two-dimensional space is
enclosed inside a circle of radius R and attached by a spring with constant κ to the centre
of the circle. The particle thus moves in a potential

V (r) =

{
1
2κr

2 for r < R ,

∞ for r > R ,

where r2 = x2 + y2. Let the particle be coupled to a heat reservoir at temperature T .

(i) Which of the ensembles of statistical physics should be used to model the system?

(ii) Calculate the partition function for the particle.

(iii) Calculate the average energy 〈E〉 and the average potential energy 〈V 〉 of the particle.
(iv) What is the average energy in:

(a) the limit 1
2κR

2 ≫ kBT (strong coupling)?

(b) the limit 1
2κR

2 ≪ kBT (weak coupling)?

Compare the two results with the values expected from equipartition of energy.
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Paper 3, Section II

35A Statistical Physics
(i) Briefly describe the microcanonical ensemble.

(ii) For quantum mechanical systems the energy levels are discrete. Explain why we can
write the probability distribution in this case as

p({ni}) =
{
const > 0 for E 6 E({ni}) < E +∆E ,

0 otherwise.

What assumption do we make for the energy interval ∆E?

Consider N independent linear harmonic oscillators of equal frequency ω. Their
total energy is given by

E({ni}) =
N∑

i=1

~ω
(
ni +

1

2

)
= M~ω +

N

2
~ω with M =

N∑

i=1

ni .

Here ni = 0, 1, 2, . . . is the excitation number of oscillator i.

(iii) Show that, for fixed N and M , the number gN (M) of possibilities to distribute the
M excitations over N oscillators (i.e. the number of different choices {ni} consistent with
M) is given by

gN (M) =
(M +N − 1)!

M ! (N − 1)!
.

[Hint: You may wish to consider the set of N oscillators plus M−1 “additional” excitations
and what it means to choose M objects from this set.]

(iv) Using the probability distribution of part (ii), calculate the probability distribution
p(E1) for the “first” oscillator as a function of its energy E1 = n1~ω + 1

2~ω.

(v) If ∆E = ~ω ≪ E then exactly one value of M will correspond to a total energy inside
the interval (E,E +∆E). In this case, show that

p(E1) ≈
gN−1(M − n1)

gN (M)
.

Approximate this result in the limit N ≫ 1, M ≫ n1.
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35A Statistical Physics
(i) The first law of thermodynamics is dE = TdS − pdV + µdN , where µ is the chemical
potential. Briefly describe its meaning.

(ii) What is equipartition of energy? Under which conditions is it valid? Write down the
heat capacity CV at constant volume for a monatomic ideal gas.

(iii) Starting from the first law of thermodynamics, and using the fact that for an ideal
gas (∂E/∂V )T = 0, show that the entropy of an ideal gas containing N particles can be
written as

S(T, V ) = N

(∫
cV (T )

T
dT + kB ln

V

N
+ const

)
,

where T and V are temperature and volume of the gas, kB is the Boltzmann constant,
and we define the heat capacity per particle as cV = CV /N .

(iv) The Gibbs free energy G is defined as G = E + pV − TS. Verify that it is a function
of temperature T , pressure p and particle number N . Explain why G depends on the
particle number N through G = µ(T, p)N .

(v) Calculate the chemical potential µ for an ideal gas with heat capacity per particle
cV (T ). Calculate µ for the special case of a monatomic gas.
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Paper 1, Section II

35A Statistical Physics
(i) What is the occupation number of a state i with energy Ei according to the Fermi–Dirac
statistics for a given chemical potential µ?

(ii) Assuming that the energy E is spin independent, what is the number gs of electrons
which can occupy an energy level?

(iii) Consider a semi-infinite metal slab occupying z 6 0 (and idealized to have infinite
extent in the xy plane) and a vacuum environment at z > 0. An electron with momentum
(px, py, pz) inside the slab will escape the metal in the +z direction if it has a sufficiently
large momentum pz to overcome a potential barrier V0 relative to the Fermi energy ǫF,
i.e. if

p2z
2m

> ǫF + V0 ,

where m is the electron mass.

At fixed temperature T , some fraction of electrons will satisfy this condition, which
results in a current density jz in the +z direction (an electron having escaped the metal
once is considered lost, never to return). Each electron escaping provides a contribution
δjz = −evz to this current density, where vz is the velocity and e the elementary charge.

(a) Briefly describe the Fermi–Dirac distribution as a function of energy in the limit
kBT ≪ ǫF, where kB is the Boltzmann constant. What is the chemical potential µ in this
limit?

(b) Assume that the electrons behave like an ideal, non-relativistic Fermi gas and that
kBT ≪ V0 and kBT ≪ ǫF. Calculate the current density jz associated with the electrons
escaping the metal in the +z direction. How could we easily increase the strength of the
current?
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Paper 4, Section II

29J Stochastic Financial Models
Let St := (S1

t , S
2
t , . . . , S

n
t )

T denote the time-t prices of n risky assets in which an
agent may invest, t = 0, 1. He may also invest his money in a bank account, which
will return interest at rate r > 0. At time 0, he knows S0 and r, and he knows that
S1 ∼ N(µ, V ). If he chooses at time 0 to invest cash value θi in risky asset i, express his
wealth w1 at time 1 in terms of his initial wealth w0 > 0, the choices θ := (θ1, . . . , θn)

T,
the value of S1, and r.

Suppose that his goal is to minimize the variance of w1 subject to the requirement
that the mean E(w1) should be at least m, where m > (1 + r)w0 is given. What portfolio
θ should he choose to achieve this?

Suppose instead that his goal is to minimize E(w2
1) subject to the same constraint.

Show that his optimal portfolio is unchanged.

Part II, 2013 List of Questions [TURN OVER



98

Paper 3, Section II

29J Stochastic Financial Models
Suppose that (εt)t=0,1,...,T is a sequence of independent and identically distributed

random variables such that E exp(zε1) < ∞ for all z ∈ R. Each day, an agent receives an
income, the income on day t being εt. After receiving this income, his wealth is wt. From
this wealth, he chooses to consume ct, and invests the remainder wt− ct in a bank account
which pays a daily interest rate of r > 0. Write down the equation for the evolution of wt.

Suppose we are given constants β ∈ (0, 1), AT , γ > 0, and define the functions

U(x) = − exp(−γx), UT (x) = −AT exp(−νx) ,

where ν := γr/(1 + r). The agent’s objective is to attain

V0(w) := supE

{
T−1∑

t=0

βt U(ct) + βT UT (wT )

∣∣∣∣ w0 = w

}
,

where the supremum is taken over all adapted sequences (ct). If the value function is
defined for 0 6 n < T by

Vn(w) = supE

{
T−1∑

t=n

βt−n U(ct) + βT−n UT (wT )

∣∣∣∣ wn = w

}
,

with VT = UT , explain briefly why you expect the Vn to satisfy

Vn(w) = sup
c

[
U(c) + βE

{
Vn+1((1 + r)(w − c) + εn+1)

} ]
. (∗)

Show that the solution to (∗) has the form

Vn(w) = −An exp(−νw) ,

for constants An to be identified. What is the form of the consumption choices that achieve
the supremum in (∗) ?
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29J Stochastic Financial Models
(i) Suppose that the price St of an asset at time t is given by

St = S0 exp{σBt + (r − 1
2σ

2)t },

where B is a Brownian motion, S0 and σ are positive constants, and r is the riskless
rate of interest, assumed constant. In this model, explain briefly why the time-0 price of
a derivative which delivers a bounded random variable Y at time T should be given by
E(e−rTY ). What feature of this model ensures that the price is unique?

Derive an expression C(S0,K, T, r, σ) for the time-0 price of a European call option
with strike K and expiry T . Explain the italicized terms.

(ii) Suppose now that the price Xt of an asset at time t is given by

Xt =

n∑

j=1

wj exp{σjBt + (r − 1
2σ

2
j )t },

where the wj and σj are positive constants, and the other notation is as in part (i) above.
Show that the time-0 price of a European call option with strike K and expiry T written
on this asset can be expressed as

n∑

j=1

C(wj, kj , T, r, σj),

where the kj are constants. Explain how the kj are characterized.

Paper 2, Section II

30J Stochastic Financial Models
What does it mean to say that (Yn,Fn)n>0 is a supermartingale?

State and prove Doob’s Upcrossing Inequality for a supermartingale.

Let (Mn,Fn)n60 be a martingale indexed by negative time, that is, for each n 6 0,
Fn−1 ⊆ Fn, Mn ∈ L1(Fn) and E[Mn|Fn−1] = Mn−1. Using Doob’s Upcrossing Inequality,
prove that the limit limn→−∞Mn exists almost surely.
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Paper 4, Section I

2F Topics in Analysis
State the Baire Category Theorem. A set X ⊆ R is said to be a Gδ-set if it is the

intersection of countably many open sets. Show that the set Q of rationals is not a Gδ-set.

[You may assume that the rationals are countable and that R is complete.]

Paper 3, Section I

2F Topics in Analysis
State Brouwer’s fixed point theorem. Let f : R2 → R2 be a continuous function

with the property that |f(x)− x| 6 1 for all x. Show that f is surjective.

Paper 2, Section I

2F Topics in Analysis
(i) Show that for every ǫ > 0 there is a polynomial p : R → R such that | 1x−p(x)| 6 ǫ

for all x ∈ R satisfying 1
2 6 |x| 6 2.

[You may assume standard results provided they are stated clearly.]

(ii) Show that there is no polynomial p : C → C such that |1z − p(z)| < 1 for all
z ∈ C satisfying 1

2 6 |z| 6 2.

Paper 1, Section I

2F Topics in Analysis
Show that sin(1) is irrational. [The angle is measured in radians.]
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Paper 2, Section II

11F Topics in Analysis
(i) Let n > 4 be an integer. Show that

1 +
1

n+ 1
1+ 1

n+...

> 1 +
1

2n
.

(ii) Let us say that an irrational number α is badly approximable if there is some
constant c > 0 such that ∣∣∣∣α− p

q

∣∣∣∣ >
c

q2

for all q > 1 and for all integers p. Show that if the integers an in the continued fraction
expansion α = [a0, a1, a2, . . . ] are bounded then α is badly approximable.

Give, with proof, an example of an irrational number which is not badly approx-
imable.

[Standard facts about continued fractions may be used without proof provided they
are stated clearly.]

Paper 3, Section II

12F Topics in Analysis
Suppose that x0, x1, . . . , xn ∈ [−1, 1] are distinct points. Let f be an infinitely

differentiable real-valued function on an open interval containing [−1, 1]. Let p be the
unique polynomial of degree at most n such that f(xr) = p(xr) for r = 0, 1, . . . , n. Show
that for each x ∈ [−1, 1] there is some ξ ∈ (−1, 1) such that

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn) .

Now take xr = cos 2r+1
2n+2π. Show that

|f(x)− p(x)| 6 1

2n(n+ 1)!
sup

ξ∈[−1,1]
|f (n+1)(ξ)|

for all x ∈ [−1, 1]. Deduce that there is a polynomial p of degree at most n such that

∣∣∣∣
1

3 + x
− p(x)

∣∣∣∣ 6
1

4n+1

for all x ∈ [−1, 1].
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Paper 4, Section II

38C Waves
A wave disturbance satisfies the equation

∂2ψ

∂t2
− c2

∂2ψ

∂x2
+ c2ψ = 0 ,

where c is a positive constant. Find the dispersion relation, and write down the solution
to the initial-value problem for which ∂ψ/∂t(x, 0) = 0 for all x, and ψ(x, 0) is given in the
form

ψ(x, 0) =

∫ ∞

−∞
A(k)eikx dk ,

where A(k) is a real function with A(k) = A(−k), so that ψ(x, 0) is real and even.

Use the method of stationary phase to obtain an approximation to ψ(x, t) for large
t, with x/t taking the constant value V , and 0 6 V < c. Explain briefly why your answer
is inappropriate if V > c.

[You are given that

∫ ∞

−∞
exp(iu2) du = π1/2eiπ/4 . ]

Paper 2, Section II

38C Waves
Show that the equations governing linear elasticity have plane-wave solutions,

distinguishing between P, SV and SH waves.

A semi-infinite elastic medium in y < 0 (where y is the vertical coordinate) with
density ρ and Lamé moduli λ and µ is overlaid by a layer of thickness h (in 0 < y < h)
of a second elastic medium with density ρ′ and Lamé moduli λ′ and µ′. The top surface
at y = h is free, that is, the surface tractions vanish there. The speed of the S-waves
is lower in the layer, that is, c′S

2 = µ′/ρ′ < µ/ρ = cS
2. For a time-harmonic SH-wave

with horizontal wavenumber k and frequency ω, which oscillates in the slow top layer and
decays exponentially into the fast semi-infinite medium, derive the dispersion relation for
the apparent horizontal wave speed c(k) = ω/k:

tan

(
kh

√
(c2/c′S

2)− 1

)
=

µ
√

1− (c2/c2S)

µ′
√
(c2/c′S

2)− 1
. (∗)

Show graphically that for a given value of k there is always at least one real value of c
which satisfies equation (∗). Show further that there are one or more higher modes if√

c2S/c
′
S
2 − 1 > π/kh.
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Paper 3, Section II

39C Waves
The dispersion relation for sound waves of frequency ω in a stationary homogeneous

gas is ω = c0|k|, where c0 is the speed of sound and k is the wavenumber. Derive the
dispersion relation for sound waves of frequency ω in a uniform flow with velocity U.

For a slowly-varying medium with local dispersion relation ω = Ω(k,x, t), derive the
ray-tracing equations

dxi
dt

=
∂Ω

∂ki
,

dki
dt

= − ∂Ω

∂xi
,

dω

dt
=

∂Ω

∂t
,

explaining carefully the meaning of the notation used.

Suppose that two-dimensional sound waves with initial wavenumber (k0, l0, 0) are
generated at the origin in a gas occupying the half-space y > 0. If the gas has a slowly-
varying mean velocity (γy, 0, 0), where γ > 0, show:

(a) that if k0 > 0 and l0 > 0 the waves reach a maximum height (which should be
identified), and then return to the level y = 0 in a finite time;

(b) that if k0 < 0 and l0 > 0 then there is no bound on the height to which the waves
propagate.

Comment briefly on the existence, or otherwise, of a quiet zone.
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Paper 1, Section II

39C Waves
Starting from the equations for the one-dimensional unsteady flow of a perfect gas

of uniform entropy, show that the Riemann invariants

R± = u± 2

γ − 1
(c− c0)

are constant on characteristics C± given by dx/dt = u± c, where u(x, t) is the velocity of
the gas, c(x, t) is the local speed of sound, c0 is a constant and γ is the ratio of specific
heats.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely
long tube. The gas and the piston are initially at rest with c = c0. At time t = 0 the
piston starts moving to the left at a constant velocity V . Find u(x, t) and c(x, t) in the
three regions

(i) c0t 6 x ,
(ii) at 6 x 6 c0t ,
(iii) −V t 6 x 6 at ,

where a = c0− 1
2(γ+1)V . What is the largest value of V for which c is positive throughout

region (iii)? What happens if V exceeds this value?
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