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SECTION I

1I Number Theory
Define what it means for the composite natural number N to be a pseudoprime to

the base b.

Find the number of bases (less than 21) to which 21 is a pseudoprime. [You may, if
you wish, assume the Chinese Remainder Theorem.]

2F Topics in Analysis
Let A1, A2, . . . , An be real numbers and suppose that x1, x2, . . . , xn ∈ [−1, 1] are distinct.
Suppose that the formula ∫ 1

−1
p(x) dx =

n∑

j=1

Ajp(xj)

is valid for every polynomial p of degree 6 2n− 1. Prove the following:

(i) Aj > 0 for each j = 1, 2, . . . , n.

(ii)
∑n

j=1Aj = 2.

(iii) x1, x2, . . . , xn are the roots of the Legendre polynomial of degree n.

[You may assume standard orthogonality properties of the Legendre polynomials.]

3G Geometry and Groups

Explain briefly how to extend a Möbius transformation

T : z 7→ az + b

cz + d
with ad− bc = 1

from the boundary of the upper half-space R3
+ to give a hyperbolic isometry T̃ of the

upper half-space. Write down explicitly the extension of the transformation z 7→ λ2z for

any constant λ ∈ C \ {0}.
Show that, if T̃ has an axis, which is a hyperbolic line that is mapped onto itself

by T̃ with the orientation preserved, then T̃ moves each point of this axis by the same

hyperbolic distance, ℓ say. Prove that

ℓ = 2

∣∣∣∣ log
∣∣∣ 12

(
a+ d+

√
(a+ d)2 − 4

)∣∣∣
∣∣∣∣ .
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4G Coding and Cryptography
Describe the BB84 protocol for quantum key exchange.

Suppose we attempt to implement the BB84 protocol but cannot send single
photons. Instead we send K photons at a time all with the same polarization. An enemy
can separate one of these photons from the other K − 1. Explain briefly how the enemy
can intercept the key exchange without our knowledge.

Show that an enemy can find our common key if K = 3. Can she do so when K = 2
(with suitable equipment)?

5K Statistical Modelling
Define the concepts of an exponential dispersion family and the corresponding

variance function. Show that the family of Poisson distributions with parameter λ > 0
is an exponential dispersion family. Find the corresponding variance function and deduce
from it expressions for E(Y ) and Var(Y ) when Y ∼ Pois(λ). What is the canonical link
function in this case?

6C Mathematical Biology
The master equation describing the evolution of the probability P (n, t) that a

population has n members at time t takes the form

∂P (n, t)

∂t
= b(n− 1)P (n − 1, t)− [b(n) + d(n)]P (n, t) + d(n + 1)P (n + 1, t) , (1)

where the functions b(n) and d(n) are both positive for all n.

From (1) derive the corresponding Fokker–Planck equation in the form

∂P (x, t)

∂t
= − ∂

∂x
{a1(x)P (x, t)} + 1

2

∂2

∂x2
{a2(x)P (x, t)} , (2)

making clear any assumptions that you make and giving explicit forms for a1(x) and a2(x).

Assume that (2) has a steady state solution Ps(x) and that a1(x) is a decreasing
function of x with a single zero at x0. Under what circumstances may Ps(x) be
approximated by a Gaussian centred at x0 and what is the corresponding estimate of
the variance?
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7D Dynamical Systems
Describe the different types of bifurcation from steady states of a one-dimensional

map of the form xn+1 = f(xn), and give examples of simple equations exhibiting each
type.

Consider the map xn+1 = αx2n(1− xn), 0 < xn < 1. What is the maximum value of
α for which the interval is mapped into itself?

Show that as α increases from zero to its maximum value there is a saddle-node
bifurcation and a period-doubling bifurcation, and determine the values of α for which
they occur.

8E Further Complex Methods
Use the Laplace kernel method to write integral representations in the complex

t-plane for two linearly independent solutions of the confluent hypergeometric equation

z
d2w(z)

dz2
+ (c− z)

dw(z)

dz
− aw(z) = 0 ,

in the case that Re(z) > 0, Re(c) > Re(a) > 0, a and c− a are not integers.

9A Classical Dynamics
Consider a one-dimensional dynamical system with generalized coordinate and

momentum (q, p).

(a) Define the Poisson bracket {f, g} of two functions f(q, p, t) and g(q, p, t).

(b) Find the Poisson brackets {q, q}, {p, p} and {q, p}.

(c) Assuming Hamilton’s equations of motion prove that

df

dt
= {f,H}+ ∂f

∂t
.

(d) State the condition for a transformation (q, p) → (Q,P ) to be canonical in terms of
the Poisson brackets found in (b). Use this to determine whether or not the following
transformations are canonical:

(i) Q = sin q, P = p−a
cos q ,

(ii) Q = cos q, P = p−a
sin q ,

where a is constant.

Part II, Paper 4
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10E Cosmology
The number density of a species ⋆ of non-relativistic particles of mass m, in

equilibrium at temperature T and chemical potential µ, is

n⋆ = g⋆

(
2πmkT

h2

)3/2

e(µ−mc2)/kT ,

where g⋆ is the spin degeneracy. During primordial nucleosynthesis, deuterium, D, forms
through the nuclear reaction

p+ n ↔ D ,

where p and n are non-relativistic protons and neutrons. Write down the relationship
between the chemical potentials in equilibrium.

Using the fact that gD = 4, and explaining the approximations you make, show that

nD

nnnp
≈

(
h2

πmpkT

)3/2

exp

(
BD

kT

)
,

where BD is the deuterium binding energy, i.e. BD = (mn +mp −mD)c
2.

Let X⋆ = n⋆/nB where nB is the baryon number density of the universe. Using the
fact that nγ ∝ T 3, show that

XD

XnXp
∝ T 3/2η exp

(
BD

kT

)
,

where η is the baryon asymmetry parameter

η =
nB

nγ
.

Briefly explain why primordial deuterium does not form until temperatures well below
kT ∼ BD.
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SECTION II

11I Number Theory
Let f : N → R be a function, where N denotes the (positive) natural numbers.

Define what it means for f to be a multiplicative function.

Prove that if f is a multiplicative function, then the function g : N → R defined by

g(n) =
∑

d|n
f(d)

is also multiplicative.

Define the Möbius function µ. Is µ multiplicative? Briefly justify your answer.

Compute ∑

d|n
µ(d)

for all positive integers n.

Define the Riemann zeta function ζ for complex numbers s with ℜ(s) > 1.

Prove that if s is a complex number with ℜ(s) > 1, then

1

ζ(s)
=

∞∑

n=1

µ(n)

ns
.

12G Geometry and Groups

Define the Hausdorff dimension of a subset of the Euclidean plane.

Let ∆ be a closed disc of radius r0 in the Euclidean plane. Define a sequence of

sets Kn ⊆ ∆, n = 1, 2, . . . , as follows: K1 = ∆ and for each n > 1 a subset Kn+1 ⊂ Kn is

produced by replacing each component disc Γ of Kn by three disjoint, closed discs inside Γ

with radius at most cn times the radius of Γ. Let K be the intersection of the sets Kn.

Show that if the factors cn converge to a limit c with 0 < c < 1, then the Hausdorff

dimension of K is at most log 1
3/ log c.
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13K Statistical Modelling
Let (X1, Y1), . . . , (Xn, Yn) be jointly independent and identically distributed with

Xi ∼ N(0, 1) and conditional on Xi = x, Yi ∼ N(xθ, 1), i = 1, 2, . . . , n.

(a) Write down the likelihood of the data (X1, Y1), . . . , (Xn, Yn), and find the maxi-
mum likelihood estimate θ̂ of θ. [You may use properties of conditional probabil-
ity/expectation without providing a proof.]

(b) Find the Fisher information I(θ) for a single observation, (X1, Y1).

(c) Determine the limiting distribution of
√
n(θ̂ − θ). [You may use the result on

the asymptotic distribution of maximum likelihood estimators, without providing a
proof.]

(d) Give an asymptotic confidence interval for θ with coverage (1−α) using your answers
to (b) and (c).

(e) Define the observed Fisher information. Compare the confidence interval in part (d)
with an asymptotic confidence interval with coverage (1−α) based on the observed
Fisher information.

(f) Determine the exact distribution of
(∑n

i=1X
2
i

)1/2
(θ̂− θ) and find the true coverage

probability for the interval in part (e). [Hint. Condition on X1,X2, . . . ,Xn and
use the following property of conditional expectation: for U, V random vectors, any
suitable function g, and x ∈ R,

P{g(U, V ) 6 x} = E[P{g(U, V ) 6 x|V }].]

14D Dynamical Systems
What is meant by the statement that a continuous map of an interval I into itself

has a horseshoe? State without proof the properties of such a map.

Define the property of chaos of such a map according to Glendinning.

A continuous map f : I → I has a periodic orbit of period 5, in which the elements
xj, j = 1, . . . , 5 satisfy xj < xj+1, j = 1, . . . , 4 and the points are visited in the order
x1 → x3 → x4 → x2 → x5 → x1. Show that the map is chaotic. [The Intermediate Value
theorem can be used without proof.]
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15A Classical Dynamics
A homogenous thin rod of mass M and length l is constrained to rotate in a

horizontal plane about its centre O. A bead of mass m is set to slide along the rod
without friction. The bead is attracted to O by a force resulting in a potential kx2/2,
where x is the distance from O.

(a) Identify suitable generalized coordinates and write down the Lagrangian of the system.

(b) Identify all conserved quantities.

(c) Derive the equations of motion and show that one of them can be written as

mẍ = −∂Veff(x)

∂x
,

where the form of the effective potential Veff(x) should be found explicitly.

(d) Sketch the effective potential. Find and characterize all points of equilibrium.

(e) Find the frequencies of small oscillations around the stable equilibria.

16H Logic and Set Theory
State and prove Hartogs’ lemma. [You may assume the result that any well-ordered

set is isomorphic to a unique ordinal.]

Let a and b be sets such that there is a bijection a ⊔ b → a × b. Show, without
assuming the Axiom of Choice, that there is either a surjection b → a or an injection
b → a. By setting b = γ(a) (the Hartogs ordinal of a) and considering (a ⊔ b) × (a ⊔ b),
show that the assertion ‘For all infinite cardinals m, we have m2 = m’ implies the Axiom
of Choice. [You may assume the Cantor–Bernstein theorem.]

Part II, Paper 4
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17F Graph Theory
(a) Show that every finite tree of order at least 2 has a leaf. Hence, or otherwise,

show that a tree of order n > 1 must have precisely n− 1 edges.

(b) Let G be a graph. Explain briefly why |G|/α(G) 6 χ(G) 6 ∆(G) + 1.

Let k = χ(G), and assume k > 2. By induction on |G|, or otherwise, show that G
has a subgraph H with δ(H) > k − 1. Hence, or otherwise, show that if T is a tree of
order k then T ⊆ G.

(c) Let s, t > 2 be integers, let n = (s − 1)(t − 1) + 1 and let T be a tree of order
t. Show that whenever the edges of the complete graph Kn are coloured blue and yellow
then it must contain either a blue Ks or a yellow T .

Does this remain true if Kn is replaced by Kn−1? Justify your answer.

[The independence number α(G) of a graph G is the size of the largest set W ⊆ V (G)
of vertices such that no edge of G joins two points of W . Recall that χ(G) is the chromatic
number and δ(G),∆(G) are respectively the minimal/maximal degrees of vertices in G. ]

18H Galois Theory
Let F = C(X1, . . . ,Xn) be a field of rational functions in n variables over C, and

let s1, . . . , sn be the elementary symmetric polynomials:

sj :=
∑

{i1,...,ij}⊂{1,...,n}
Xi1 · · ·Xij ∈ F (1 6 j 6 n) ,

and let K = C(s1, . . . , sn) be the subfield of F generated by s1, . . . , sn. Let 1 6 m 6 n,
and Y := X1 + · · · + Xm ∈ F . Let K(Y ) be the subfield of F generated by Y over K.
Find the degree [K(Y ) : K].

[Standard facts about the fields F,K and Galois extensions can be quoted without proof,
as long as they are clearly stated.]

19H Representation Theory
Write an essay on the finite-dimensional representations of SU(2), including a proof

of their complete reducibility, and a description of the irreducible representations and the
decomposition of their tensor products.
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20F Number Fields
Let K = Q(

√
p,
√
q) where p and q are distinct primes with p ≡ q ≡ 3 (mod 4). By

computing the relative traces TrK/k(θ) where k runs through the three quadratic subfields
of K, show that the algebraic integers θ in K have the form

θ =
1

2
(a+ b

√
p) +

1

2
(c+ d

√
p)
√
q ,

where a, b, c, d are rational integers. Show further that if c and d are both even then a and
b are both even. Hence prove that an integral basis for K is

1 ,
√
p ,

1 +
√
pq

2
,

√
p+

√
q

2
.

Calculate the discriminant of K.

21G Algebraic Topology
State and prove the Lefschetz fixed-point theorem. Hence show that the n-sphere

Sn does not admit a topological group structure for any even n > 0. [The existence and
basic properties of simplicial homology with rational coefficients may be assumed.]
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22G Linear Analysis
Let X be a Banach space and suppose that T : X → X is a bounded linear operator.

What is an eigenvalue of T ? What is the spectrum σ(T ) of T ?

Let X = C[0, 1] be the space of continuous real-valued functions f : [0, 1] → R
endowed with the sup norm. Define an operator T : X → X by

Tf(x) =

∫ 1

0
G(x, y)f(y) dy,

where

G(x, y) =

{
y(x− 1) if y 6 x,

x(y − 1) if x 6 y.

Prove the following facts about T :

(i) Tf(0) = Tf(1) = 0 and the second derivative (Tf)′′(x) is equal to f(x) for x ∈ (0, 1);

(ii) T is compact;

(iii) T has infinitely many eigenvalues;

(iv) 0 is not an eigenvalue of T ;

(v) 0 ∈ σ(T ).

[The Arzelà–Ascoli theorem may be assumed without proof.]

23I Algebraic Geometry

Let X be a smooth projective curve of genus 2, defined over the complex numbers.

Show that there is a morphism f : X → P1 which is a double cover, ramified at six points.

Explain briefly why X cannot be embedded into P2.

For any positive integer n, show that there is a smooth affine plane curve which is

a double cover of A1 ramified at n points.

[State clearly any theorems that you use.]
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24I Differential Geometry
For manifolds X,Y ⊂ Rn, define the terms tangent space to X at a point x ∈ X

and derivative dfx of a smooth map f : X → Y . State the Inverse Function Theorem for
smooth maps between manifolds without boundary.

Now let X be a submanifold of Y and f : X → Y the inclusion map. By considering
the map f−1 : f(X) → X, or otherwise, show that dfx is injective for each x ∈ X.

Show further that there exist local coordinates around x and around y = f(x) such
that f is given in these coordinates by

(x1, . . . , xl) ∈ Rl 7→ (x1, . . . , xl, 0, . . . , 0) ∈ Rk ,

where l = dimX and k = dimY . [You may assume that any open ball in Rl is
diffeomorphic to Rl.]

25J Probability and Measure
State and prove Fatou’s lemma. [You may use the monotone convergence theorem.]

For (E, E , µ) a measure space, define L1 := L1(E, E , µ) to be the vector space of µ-
integrable functions on E, where functions equal almost everywhere are identified. Prove
that L1 is complete for the norm ‖ · ‖1,

‖f‖1 :=
∫

E
|f |dµ, f ∈ L1.

[You may assume that ‖ · ‖1 indeed defines a norm on L1.] Give an example of a measure
space (E, E , µ) and of a sequence fn ∈ L1 that converges to f almost everywhere such that
f /∈ L1.

Now let

D := {f ∈ L1 : f > 0 almost everywhere ,

∫

E
fdµ = 1} .

If a sequence fn ∈ D converges to f in L1, does it follow that f ∈ D? If fn ∈ D converges
to f almost everywhere, does it follow that f ∈ D? Justify your answers.
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26K Applied Probability
(a) Define the Moran model and Kingman’s n-coalescent. State and prove a theorem

which describes the relationship between them. [You may use without proof a construction
of the Moran model for all −∞ < t < ∞.]

(b) Let θ > 0. Suppose that a population of N > 2 individuals evolves according
to the rules of the Moran model. Assume also that each individual in the population
undergoes a mutation at constant rate u = θ/(N − 1). Each time a mutation occurs, we
assume that the allelic type of the corresponding individual changes to an entirely new
type, never seen before in the population. Let p(θ) be the homozygosity probability, i.e.,
the probability that two individuals sampled without replacement from the population
have the same genetic type. Give an expression for p(θ).

(c) Let q(θ) denote the probability that a sample of size n consists of one allelic
type (monomorphic population). Show that q(θ) = E(exp{−(θ/2)Ln}), where Ln denotes
the sum of all the branch lengths in the genealogical tree of the sample — that is,
Ln =

∑n
i=2 i(τi − τi−1), where τi is the first time that the genealogical tree of the sample

has i lineages. Deduce that

q(θ) =
(n − 1)!∏n−1
i=1 (θ + i)

.

27K Principles of Statistics
For i = 1, . . . , n, the pairs (Xi, Yi) have independent bivariate normal distributions,

with E(Xi) = µX , E(Yi) = µY , var(Xi) = var(Yi) = φ, and corr(Xi, Yi) = ρ. The means
µX , µY are known; the parameters φ > 0 and ρ ∈ (−1, 1) are unknown.

Show that the joint distribution of all the variables belongs to an exponential family,
and identify the natural sufficient statistic, natural parameter, and mean-value parameter.
Hence or otherwise, find the maximum likelihood estimator ρ̂ of ρ.

Let Ui := Xi + Yi, Vi := Xi − Yi. What is the joint distribution of (Ui, Vi)?

Show that the distribution of

(1 + ρ̂)/(1− ρ̂)

(1 + ρ)/(1− ρ)

is Fn
n . Hence describe a (1−α)-level confidence interval for ρ. Briefly explain what would

change if µX and µY were also unknown.

[Recall that the distribution F ν1
ν2 is that of (W1/ν1)/(W2/ν2), where, independently for

j = 1 and j = 2, Wj has the chi-squared distribution with νj degrees of freedom.]
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28J Optimization and Control
A factory has a tank of capacity 3m3 in which it stores chemical waste. Each week

the factory produces, independently of other weeks, an amount of waste that is equally
likely to be 0, 1, or 2 m3. If the amount of waste exceeds the remaining space in the tank
then the excess must be specially handled at a cost of £C per m3. The tank may be
emptied or not at the end of each week. Emptying costs £D, plus a variable cost of £α
for each m3 of its content. It is always emptied when it ends the week full.

It is desired to minimize the average cost per week. Write down equations from
which one can determine when it is optimal to empty the tank.

Find the average cost per week of a policy π, which empties the tank if and only if
its content at the end of the week is 2 or 3m3.

Describe the policy improvement algorithm. Explain why, starting from π, this
algorithm will find an optimal policy in at most three iterations.

Prove that π is optimal if and only if C > α+ (4/3)D.

29J Stochastic Financial Models
In a one-period market, there are n risky assets whose returns at time 1 are given

by a column vector R =
(
R1, . . . , Rn

)′
. The return vector R has a multivariate Gaussian

distribution with expectation µ and non-singular covariance matrix V. In addition, there
is a bank account giving interest r > 0, so that one unit of cash invested at time 0 in the
bank account will be worth Rf = 1 + r units of cash at time 1.

An agent with the initial wealth w invests x = (x1, . . . , xn)
′ in risky assets and keeps

the remainder x0 = w − x · 1 in the bank account. The return on the agent’s portfolio is

Z := x · R+ (w − x · 1)Rf .

The agent’s utility function is u(Z) = − exp(−γZ), where γ > 0 is a parameter.
His objective is to maximize E(u(Z)).

(i) Find the agent’s optimal portfolio and its expected return.

[Hint. Relate E(u(Z)) to E(Z) and Var(Z).]

(ii) Under which conditions does the optimal portfolio that you found in (i) require
borrowing from the bank account?

(iii) Find the optimal portfolio if it is required that all of the agent’s wealth be
invested in risky assets.
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30B Partial Differential Equations
i) State the Lax–Milgram lemma.

ii) Consider the boundary value problem

∆2u−∆u+ u = f in Ω,

u = ∇u · γ = 0 on ∂Ω,

where Ω is a bounded domain in Rn with a smooth boundary, γ is the exterior unit normal
vector to ∂Ω, and f ∈ L2(Ω). Show (using the Lax–Milgram lemma) that the boundary
value problem has a unique weak solution in the space

H2
0 (Ω) :=

{
u : Ω → R;u = ∇u · γ = 0 on ∂Ω

}
.

[Hint. Show that

‖∆u‖2L2(Ω) =

n∑

i,j=1

∥∥∥ ∂2u

∂xi∂xj

∥∥∥
2

L2(Ω)
for all u ∈ C∞

0 (Ω),

and then use the fact that C∞
0 (Ω) is dense in H2

0 (Ω).]
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31B Asymptotic Methods
The stationary Schrödinger equation in one dimension has the form

ǫ2
d2ψ

dx2
= −(E − V (x))ψ,

where ǫ can be assumed to be small. Using the Liouville–Green method, show that two
approximate solutions in a region where V (x) < E are

ψ(x) ∼ 1

(E − V (x))1/4
exp

{
± i

ǫ

∫ x

c
(E − V (x′))1/2dx′

}
,

where c is suitably chosen.

Without deriving connection formulae in detail, describe how one obtains the
condition

1

ǫ

∫ b

a
(E − V (x′))1/2 dx′ =

(
n+

1

2

)
π (∗)

for the approximate energies E of bound states in a smooth potential well. State the
appropriate values of a, b and n.

Estimate the range of n for which (∗) gives a good approximation to the true bound
state energies in the cases

(i) V (x) = |x|,

(ii) V (x) = x2 + λx6 with λ small and positive,

(iii) V (x) = x2 − λx6 with λ small and positive.
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32A Principles of Quantum Mechanics
Setting ~ = 1, the raising and lowering operators J± = J1 ± iJ2 for angular

momentum satisfy

[J3, J± ] = ±J± , J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m± 1〉 ,

where J3|j m〉 = m|j m〉. Find the matrix representation S± for J± in the basis
{|1 1〉, |1 0〉, |1 − 1〉} of j = 1 states. Hence, calculate the matrix representation S of J.

Suppose that the angular momentum of the state v = |1 m〉 is measured in the
direction n = (0, sin θ, cos θ) to be +1. Find the components of v, expressing each
component by a single term consisting of products of powers of sin(θ/2) and cos(θ/2)
multiplied by constants.

Suppose that two measurements of a total angular momentum 1 system are made.
The first is made in the third direction with value +1, and the second measurement is
subsequently immediately made in direction n. What is the probability that the second
measurement is also +1?
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33E Applications of Quantum Mechanics
Consider a one-dimensional crystal lattice of lattice spacing a with the n-th atom

having position rn = na+xn and momentum pn, for n = 0, 1, . . . , N−1. The atoms interact
with their nearest neighbours with a harmonic force and the classical Hamiltonian is

H =
∑

n

p2n
2m

+
1

2
λ(xn − xn−1)

2 ,

where we impose periodic boundary conditions: xN = x0. Show that the normal mode
frequencies for the classical harmonic vibrations of the system are given by

ωl = 2

√
λ

m

∣∣∣∣ sin
(
kla

2

)∣∣∣∣ ,

where kl = 2πl/Na, with l integer and (for N even, which you may assume) −N/2 < l 6
N/2. What is the velocity of sound in this crystal?

Show how the system may be quantized to give the quantum operator

xn(t) = X0(t) +
∑

l 6=0

√
~

2Nmωl

[
ale

−i(ωlt−klna) + a†l e
i(ωlt−klna)

]
,

where a†l and al are creation and annihilation operators, respectively, whose commutation
relations should be stated. Briefly describe the spectrum of energy eigenstates for this
system, stating the definition of the ground state |0〉 and giving the expression for the
energy eigenvalue of any eigenstate.

The Debye–Waller factor e−W (Q) associated with Bragg scattering from this crystal
is defined by the matrix element

e−W (Q) = 〈0|eiQx0(0)|0〉 .

In the case where 〈0|X0|0〉 = 0, calculate W (Q).
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34C Statistical Physics
Non-relativistic electrons of mass m are confined to move in a two-dimensional plane

of area A. Each electron has two spin states. Compute the density of states g(E) and
show that it is constant.

Write down expressions for the number of particles N and the average energy 〈E〉
of a gas of fermions in terms of the temperature T and chemical potential µ. Find an
expression for the Fermi Energy EF in terms of N .

For kBT ≪ EF , you may assume that the chemical potential does not change with
temperature. Compute the low temperature heat capacity of a gas of fermions. [You may
use the approximation that, for large z,

∫ ∞

0

xndx

z−1ex + 1
≈ 1

n+ 1
(log z)n+1 +

π2n

6
(log z)n−1 .]

35B Electrodynamics
The charge and current densities are given by ρ(t,x) 6= 0 and j(t,x) respectively.

The electromagnetic scalar and vector potentials are given by φ(t,x) and A(t,x) respec-
tively. Explain how one can regard jµ = (ρ, j) as a four-vector that obeys the current
conservation rule ∂µj

µ = 0.

In the Lorenz gauge ∂µA
µ = 0, derive the wave equation that relates Aµ = (φ,A)

to jµ and hence show that it is consistent to treat Aµ as a four-vector.

In the Lorenz gauge, with jµ = 0, a plane wave solution for Aµ is given by

Aµ = ǫµ exp(ikνx
ν) ,

where ǫµ, kµ and xµ are four-vectors with

ǫµ = (ǫ0, ǫ), kµ = (k0,k), xµ = (t,x) .

Show that kµk
µ = kµǫ

µ = 0.

Interpret the components of kµ in terms of the frequency and wavelength of the
wave.

Find what residual gauge freedom there is and use it to show that it is possible to
set ǫ0 = 0. What then is the physical meaning of the components of ǫ?

An observer at rest in a frame S measures the angular frequency of a plane wave
travelling parallel to the z-axis to be ω. A second observer travelling at velocity v in S
parallel to the z-axis measures the radiation to have frequency ω′. Express ω′ in terms
of ω.
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36B General Relativity
The metric for a homogenous isotropic universe, in comoving coordinates, can be

written as
ds2 = −dt2 + a2{dr2 + f2[dθ2 + sin2 θ dφ2]} ,

where a = a(t) and f = f(r) are some functions.

Write down expressions for the Hubble parameter H and the deceleration parameter
q in terms of a(η) and h ≡ d log a/dη, where η is conformal time, defined by dη = a−1dt.

The universe is composed of a perfect fluid of density ρ and pressure p = (γ − 1)ρ,
where γ is a constant. Defining Ω = ρ/ρc, where ρc = 3H2/8πG, show that

k

h2
= Ω− 1 , q = αΩ ,

dΩ

dη
= 2qh(Ω − 1) ,

where k is the curvature parameter (k = +1, 0 or −1) and α ≡ 1
2(3γ − 2). Hence deduce

that
dΩ

da
=

2α

a
Ω(Ω− 1)

and

Ω =
1

1−Aa2α
,

where A is a constant. Given that A =
k

2GM
, sketch curves of Ω against a in the case

when γ > 2/3.

[You may assume an Einstein equation, for the given metric, in the form

h2

a2
+

k

a2
=

8

3
πGρ

and the energy conservation equation

dρ

dt
+ 3H(ρ+ p) = 0 .]

37C Fluid Dynamics II
A steady, two-dimensional flow in the region y > 0 takes the form (u, v) =

(Ex,−Ey) at large y, where E is a positive constant. The boundary at y = 0 is rigid
and no-slip. Consider the velocity field u = ∂ψ/∂y, v = −∂ψ/∂x with stream function
ψ = Exδf(η), where η = y/δ and δ = (ν/E)1/2 and ν is the kinematic viscosity. Show
that this velocity field satisfies the Navier–Stokes equations provided that f(η) satisfies

f ′′′ + ff ′′ − (f ′)2 = −1 .

What are the conditions on f at η = 0 and as η → ∞?
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38D Waves
The shallow-water equations

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

describe one-dimensional flow in a channel with depth h(x, t) and velocity u(x, t), where
g is the acceleration due to gravity.

(i) Find the speed c(h) of linearized waves on fluid at rest and of uniform depth.

(ii) Show that the Riemann invariants u± 2c are constant on characteristic curves
C± of slope u± c in the (x, t)-plane.

(iii) Use the shallow-water equations to derive the equation of momentum conser-
vation

∂(hu)

∂t
+

∂I

∂x
= 0 ,

and identify the horizontal momentum flux I.

(iv) A hydraulic jump propagates at constant speed along a straight constant-width
channel. Ahead of the jump the fluid is at rest with uniform depth h0. Behind the jump
the fluid has uniform depth h1 = h0(1 + β), with β > 0. Determine both the speed V of
the jump and the fluid velocity u1 behind the jump.

Express V/c(h0) and (V − u1)/c(h1) as functions of β. Hence sketch the pattern of
characteristics in the frame of reference of the jump.

39D Numerical Analysis

(i) Formulate the conjugate gradient method for the solution of a system Ax = b with
A ∈ Rn×n and b ∈ Rn, n > 0.

(ii) Prove that if the conjugate gradient method is applied in exact arithmetic then, for
any x(0) ∈ Rn, termination occurs after at most n iterations.

(iii) The polynomial p(x) = xm +
∑m−1

i=0 cix
i is the minimal polynomial of the n × n

matrix A if it is the polynomial of lowest degree that satisfies p(A) = 0. [Note
that m 6 n.] Give an example of a 3× 3 symmetric positive definite matrix with a
quadratic minimal polynomial.

Prove that (in exact arithmetic) the conjugate gradient method requires at most m
iterations to calculate the exact solution of Ax = b, where m is the degree of the
minimal polynomial of A.

END OF PAPER
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