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SECTION I

1I Number Theory
Define the discriminant of the binary quadratic form f(x, y) = ax2 + bxy + cy2.

Assuming that this form is positive definite, define what it means for f to be reduced.

Show that there are precisely two reduced positive definite binary quadratic forms
of discriminant −35.

2F Topics in Analysis
State and prove Liouville’s theorem concerning approximation of algebraic numbers by
rationals.

3G Geometry and Groups

Let A be a Möbius transformation acting on the Riemann sphere. Show that, if A

is not loxodromic, then there is a disc ∆ in the Riemann sphere with A(∆) = ∆. Describe

all such discs for each Möbius transformation A.

Hence, or otherwise, show that the group G of Möbius transformations generated

by

A : z 7→ iz and B : z 7→ 2z

does not map any disc onto itself.

Describe the set of points of the Riemann sphere at which G acts discontinuously.

What is the quotient of this set by the action of G?

4G Coding and Cryptography
Describe the RSA system with public key (N, e) and private key d. Give a simple

example of how the system is vulnerable to a homomorphism attack. Explain how a
signature system prevents such an attack.
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5K Statistical Modelling
Consider the linear model

Yi = β0 + β1xi1 + β2xi2 + εi,

for i = 1, 2, . . . , n, where the εi are independent and identically distributed with N(0, σ2)
distribution. What does it mean for the pair β1 and β2 to be orthogonal? What does it
mean for all the three parameters β0, β1 and β2 to be mutually orthogonal? Give necessary
and sufficient conditions on (xi1)

n
i=1, (xi2)

n
i=1 so that β0, β1 and β2 are mutually orthogonal.

If β0, β1, β2 are mutually orthogonal, find the joint distribution of the corresponding
maximum likelihood estimators β̂0, β̂1 and β̂2.

6C Mathematical Biology
Consider a model of insect dispersal in two dimensions given by

∂C

∂t
=

1

r

∂

∂r

(
rDC

∂C

∂r

)
,

where r is a radial coordinate, t is time, C(r, t) is the density of insects and D is a constant
coefficient such that DC is a diffusivity.

Show that under suitable assumptions

2π

∫ ∞

0
rC dr = N ,

where N is constant, and interpret this condition.

Suppose that after a long time the form of C depends only on r, t, D and N (and
is thus independent of any detailed form of the initial condition). Show that there is a
solution of the form

C(r, t) =

(
N

Dt

)1/2

g

(
r

(NDt)1/4

)
,

and deduce that the function g(ξ) satisfies

d

dξ

(
ξg

dg

dξ
+

1

4
ξ2g

)
= 0 .

Show that this equation has a continuous solution with g > 0 for ξ < ξ0 and g = 0
for ξ > ξ0, and determine ξ0. Hence determine the area within which C(r, t) > 0 as a
function of t.
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7D Dynamical Systems
State without proof Lyapunov’s first theorem, carefully defining all the terms that

you use.

Consider the dynamical system

ẋ = −2x+ y − xy + 3y2 − xy2 + x3 ,

ẏ = −2y − x− y2 − 3xy + 2x2y .

By choosing a Lyapunov function V (x, y) = x2+y2, prove that the origin is asymptotically
stable.

By factorising the expression for V̇ , or otherwise, show that the basin of attraction
of the origin includes the set V < 7/4.

8E Further Complex Methods
The Beta function, denoted by B(z1, z2), is defined by

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, z1, z2 ∈ C ,

where Γ(z) denotes the Gamma function. It can be shown that

B(z1, z2) =

∫ ∞

0

vz2−1 dv

(1 + v)z1+z2
, Re z1 > 0 , Re z2 > 0 .

By computing this integral for the particular case of z1+z2 = 1, and by employing analytic
continuation, deduce that Γ(z) satisfies the functional equation

Γ(z)Γ(1− z) =
π

sinπz
, z ∈ C.
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9A Classical Dynamics
The motion of a particle of charge q and mass m in an electromagnetic field with

scalar potential φ(r, t) and vector potential A(r, t) is characterized by the Lagrangian

L =
mṙ2

2
− q(φ− ṙ ·A).

(a) Show that the Euler–Lagrange equation is invariant under the gauge transformation

φ → φ− ∂Λ

∂t
, A → A+∇Λ,

for an arbitrary function Λ(r, t).

(b) Derive the equations of motion in terms of the electric and magnetic fields E(r, t) and
B(r, t).

[Recall that B = ∇×A and E = −∇φ− ∂A
∂t .]

10E Cosmology
For an ideal Fermi gas in equilibrium at temperature T and chemical potential µ,

the average occupation number of the kth energy state, with energy Ek, is

n̄k =
1

e(Ek−µ)/kBT + 1
.

Discuss the limit T → 0. What is the Fermi energy ǫF ? How is it related to the Fermi
momentum pF ? Explain why the density of states with momentum between p and p+ dp
is proportional to p2dp and use this fact to deduce that the fermion number density at
zero temperature takes the form

n ∝ p3F .

Consider an ideal Fermi gas that, at zero temperature, is either (i) non-relativistic
or (ii) ultra-relativistic. In each case show that the fermion energy density ǫ takes the
form

ǫ ∝ nγ ,

for some constant γ which you should compute.
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SECTION II

11I Number Theory
Let p be an odd prime. Prove that the multiplicative groups (Z/pnZ)× are cyclic

for n > 2. [You may assume that the multiplicative group (Z/pZ)× is cyclic.]

Find an integer which generates (Z/7nZ)× for all n > 1, justifying your answer.

12F Topics in Analysis
State Brouwer’s fixed point theorem on the plane, and also an equivalent version of

it concerning continuous retractions. Prove the equivalence of the two statements.

Let f : R2 → R2 be a continuous map with the property that |f(x)| 6 1 whenever
|x| = 1. Show that f has a fixed point. [Hint. Compose f with the map that sends x to
the nearest point to x inside the closed unit disc.]

Part II, Paper 3
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13C Mathematical Biology
Consider the two-variable reaction-diffusion system

∂u

∂t
= a− u+ u2v +∇2u ,

∂v

∂t
= b− u2v + d∇2v ,

where a, b and d are positive constants.

Show that there is one possible spatially homogeneous steady state with u > 0 and
v > 0 and show that it is stable to small-amplitude spatially homogeneous disturbances
provided that γ < β, where

γ =
b− a

b+ a
and β = (a+ b)2.

Now assuming that the condition γ < β is satisfied, investigate the stability of
the homogeneous steady state to spatially varying perturbations by considering the time-
dependence of disturbances whose spatial form is such that ∇2u = −k2u and ∇2v = −k2v,
with k constant. Show that such disturbances vary as ept, where p is one of the roots of

p2 + (β − γ + dk2 + k2)p+ dk4 + (β − dγ)k2 + β.

By comparison with the stability condition for the homogeneous case above, give a
simple argument as to why the system must be stable if d = 1.

Show that the boundary between stability and instability (as some combination of
β, γ and d is varied) must correspond to p = 0.

Deduce that dγ > β is a necessary condition for instability and, furthermore, that
instability will occur for some k if

d >
β

γ

{
1 +

2

γ
+ 2

√
1

γ
+

1

γ2

}
.

Deduce that the value of k2 at which instability occurs as the stability boundary is
crossed is given by

k2 =

√
β

d
.
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14D Dynamical Systems
Consider the dynamical system

ẍ− (a− bx)ẋ+ x− x2 = 0, a, b > 0 . (1)

(a) Show that the fixed point at the origin is an unstable node or focus, and that
the fixed point at x = 1 is a saddle point.

(b) By considering the phase plane (x, ẋ), or otherwise, show graphically that the
maximum value of x for any periodic orbit is less than one.

(c) By writing the system in terms of the variables x and z = ẋ− (ax− bx2/2), or
otherwise, show that for any periodic orbit C

∮

C
(x− x2)(2ax− bx2) dt = 0 . (2)

Deduce that if a/b > 1/2 there are no periodic orbits.

(d) If a = b = 0 the system (1) is Hamiltonian and has homoclinic orbit

X(t) =
1

2

(
3 tanh2

(
t

2

)
− 1

)
, (3)

which approaches X = 1 as t → ±∞. Now suppose that a, b are very small and that
we seek the value of a/b corresponding to a periodic orbit very close to X(t). By using
equation (3) in equation (2), find an approximation to the largest value of a/b for a periodic
orbit when a, b are very small.

[Hint. You may use the fact that (1−X) = 3
2sech

2( t2) = 3 d
dt(tanh(

t
2 ))]

15E Cosmology
In a flat expanding universe with scale factor a(t), average mass density ρ̄ and

average pressure P̄ ≪ ρ̄c2, the fractional density perturbations δk(t) at co-moving
wavenumber k satisfy the equation

δ̈k = −2

(
ȧ

a

)
δ̇k + 4πGρ̄δk −

c2sk
2

a2
δk . (∗)

Discuss briefly the meaning of each term on the right hand side of this equation. What is
the Jeans length λJ , and what is its significance? How is it related to the Jeans mass?

How does the equation (∗) simplify at λ ≫ λJ in a flat universe? Use your result to
show that density perturbations can grow. For a growing density perturbation, how does
δ̇/δ compare to the inverse Hubble time?

Explain qualitatively why structure only forms after decoupling, and why cold dark
matter is needed for structure formation.

Part II, Paper 3



9

16H Logic and Set Theory
Write down either the synthetic or the recursive definitions of ordinal addition and

multiplication. Using your definitions, give proofs or counterexamples for the following
statements:

(i) For all α, β and γ, we have α.(β + γ) = α.β + α.γ.

(ii) For all α, β and γ, we have (α+ β).γ = α.γ + β.γ.

(iii) For all α and β with β > 0, there exist γ and δ with δ < β and α = β.γ + δ.

(iv) For all α and β with β > 0, there exist γ and δ with δ < β and α = γ.β + δ.

(v) For every α, either there exists a cofinal map f : ω → α (that is, one such that
α =

⋃{f(n)+ | n ∈ ω}), or there exists β such that α = ω1.β.

17F Graph Theory
Let H be a graph with at least one edge. Define ex (n;H), where n is an integer

with n > |H|. Without assuming the Erdős–Stone theorem, show that the sequence
ex (n;H)

/(n
2

)
converges as n → ∞.

State precisely the Erdős–Stone theorem. Hence determine, with justification,
limn→∞ ex (n;H)

/(n
2

)
.

Let K be another graph with at least one edge. For each integer n such that
n > max{|H|, |K|}, let

f(n) = max{e(G) : |G| = n;H 6⊂ G and K 6⊂ G}

and let
g(n) = max{e(G) : |G| = n;H 6⊂ G or K 6⊂ G}.

Find, with justification, limn→∞ f(n)
/(

n
2

)
and limn→∞ g(n)

/(
n
2

)
.

18H Galois Theory
Let q = pf (f > 1) be a power of the prime p, and Fq be a finite field consisting of

q elements.

Let N be a positive integer prime to p, and Fq(µN ) be the cyclotomic extension
obtained by adjoining all Nth roots of unity to Fq. Prove that Fq(µN ) is a finite field
with qn elements, where n is the order of the element q mod N in the multiplicative group
(Z/NZ)× of the ring Z/NZ.

Explain why what is proven above specialises to the following fact: the finite field
Fp for an odd prime p contains a square root of −1 if and only if p ≡ 1 (mod 4).

[Standard facts on finite fields and their extensions can be quoted without proof, as
long as they are clearly stated.]
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19H Representation Theory
Show that every complex representation of a finite group G is equivalent to a unitary

representation. Let χ be a character of some finite group G and let g ∈ G. Explain why
there are roots of unity ω1, . . . , ωd such that

χ(gi) = ωi
1 + · · ·+ ωi

d

for all integers i.

For the rest of the question let G be the symmetric group on some finite set. Explain
why χ(g) = χ(gi) whenever i is coprime to the order of g.

Prove that χ(g) ∈ Z.

State without proof a formula for
∑

g∈G χ(g)2 when χ is irreducible. Is there an
irreducible character χ of degree at least 2 with χ(g) 6= 0 for all g ∈ G? Explain your
answer.

[You may assume basic facts about the symmetric group, and about algebraic

integers, without proof. You may also use without proof the fact that
∑

16i6n
gcd(i,n)=1

ωi ∈ Z

for any nth root of unity ω.]

20G Algebraic Topology
State the Mayer–Vietoris Theorem for a simplicial complex K expressed as the

union of two subcomplexes L and M . Explain briefly how the connecting homomorphism
δ∗ : Hn(K) → Hn−1(L∩M), which appears in the theorem, is defined. [You should include
a proof that δ∗ is well-defined, but need not verify that it is a homomorphism.]

Now suppose that |K| ∼= S3, that |L| is a solid torus S1×B2, and that |L∩M | is the
boundary torus of |L|. Show that δ∗ : H3(K) → H2(L ∩M) is an isomorphism, and hence
calculate the homology groups of M . [You may assume that a generator of H3(K) may
be represented by a 3-cycle which is the sum of all the 3-simplices of K, with ‘matching’
orientations.]
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21G Linear Analysis
State the closed graph theorem.

(i) Let X be a Banach space and Y a vector space. Suppose that Y is endowed with
two norms ‖ · ‖1 and ‖ · ‖2 and that there is a constant c > 0 such that ‖y‖2 > c‖y‖1 for
all y ∈ Y . Suppose that Y is a Banach space with respect to both norms. Suppose that
T : X → Y is a linear operator, and that it is bounded when Y is endowed with the ‖ · ‖1
norm. Show that it is also bounded when Y is endowed with the ‖ · ‖2 norm.

(ii) Suppose that X is a normed space and that (xn)
∞
n=1 ⊆ X is a sequence with∑∞

n=1 |f(xn)| < ∞ for all f in the dual space X∗. Show that there is an M such that

∞∑

n=1

|f(xn)| 6 M‖f‖

for all f ∈ X∗.

(iii) Suppose that X is the space of bounded continuous functions f : R → R with
the sup norm, and that Y ⊆ X is the subspace of continuously differentiable functions
with bounded derivative. Let T : Y → X be defined by Tf = f ′. Show that the graph of
T is closed, but that T is not bounded.

22I Riemann Surfaces
Let Λ be the lattice Z+Zi, X the torus C/Λ, and ℘ the Weierstrass elliptic function

with respect to Λ.

(i) Let x ∈ X be the point given by 0 ∈ Λ. Determine the group

G = {f ∈ Aut(X) | f(x) = x} .

(ii) Show that ℘2 defines a degree 4 holomorphic map h : X → C ∪ {∞}, which is
invariant under the action of G, that is, h(f(y)) = h(y) for any y ∈ X and any f ∈ G.
Identify a ramification point of h distinct from x which is fixed by every element of G.

[If you use the Monodromy theorem, then you should state it correctly. You may
use the fact that Aut(C) = {az + b | a ∈ C \ {0}, b ∈ C}, and may assume without proof
standard facts about ℘.]

23I Algebraic Geometry

Let X ⊂ P2(C) be the projective closure of the affine curve y3 = x4 + 1. Let ω

denote the differential dx/y2. Show that X is smooth, and compute vp(ω) for all p ∈ X.

Calculate the genus of X.
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24I Differential Geometry
For a surface S ⊂ R3, define what is meant by the exponential mapping expp at

p ∈ S, geodesic polar coordinates (r, θ) and geodesic circles.

Let E,F,G be the coefficients of the first fundamental form in geodesic polar
coordinates (r, θ). Prove that limr→0

√
G(r, θ) = 0 and limr→0(

√
G)r(r, θ) = 1. Give

an expression for the Gaussian curvature K in terms of G.

Prove that the Gaussian curvature at a point p ∈ S satisfies

K(p) = lim
r→0

12(πr2 −Ap(r))

πr4
,

where Ap(r) is the area of the region bounded by the geodesic circle of radius r centred
at p.

[You may assume that E = 1, F = 0 and d(expp)0 is an isometry. Taylor’s theorem
with any form of the remainder may be assumed if accurately stated.]

25J Probability and Measure
Carefully state and prove the first and second Borel–Cantelli lemmas.

Now let (An : n ∈ N) be a sequence of events that are pairwise independent ; that
is, P(An ∩ Am) = P(An)P(Am) whenever m 6= n. For N > 1, let SN =

∑N
n=1 1An . Show

that Var(SN ) 6 E(SN).

Using Chebyshev’s inequality or otherwise, deduce that if
∑∞

n=1 P(An) = ∞, then
limN→∞ SN = ∞ almost surely. Conclude that P(An infinitely often) = 1.
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26K Applied Probability
We consider a system of two queues in tandem, as follows. Customers arrive in the

first queue at rate λ. Each arriving customer is immediately served by one of infinitely
many servers at rate µ1. Immediately after service, customers join a single-server second
queue which operates on a first-come, first-served basis, and has a service rate µ2. After
service in this second queue, each customer returns to the first queue with probability
0 < 1 − p < 1, and otherwise leaves the system forever. A schematic representation is
given below:

λ

µ1

µ2

p

1− p

...

1 2

(a) Let Mt and Nt denote the number of customers at time t in queues number 1
and 2 respectively, including those currently in service at time t. Give the transition rates
of the Markov chain (Mt, Nt)t>0.

(b) Write down an equation satisfied by any invariant measure π for this Markov
chain. Let α > 0 and β ∈ (0, 1). Define a measure π by

π(m,n) := e−αα
m

m!
βn(1− β), m, n ∈ {0, 1, . . .}.

Show that it is possible to find α > 0, β ∈ (0, 1) so that π is an invariant measure of
(Mt, Nt)t>0, if and only if λ < µ2p. Give the values of α and β in this case.

(c) Assume now that λp > µ2. Show that the number of customers is not positive
recurrent.

[Hint. One way to solve the problem is as follows. Assume it is positive recurrent.
Observe that Mt is greater than a M/M/∞ queue with arrival rate λ. Deduce that Nt

is greater than a M/M/1 queue with arrival rate λp and service rate µ2. You may use
without proof the fact that the departure process from the first queue is then, at equilibrium,
a Poisson process with rate λ, and you may use without proof properties of thinned Poisson
processes.]
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27K Principles of Statistics
The parameter vector is Θ ≡ (Θ1,Θ2,Θ3), with Θi > 0, Θ1 + Θ2 + Θ3 = 1.

Given Θ = θ ≡ (θ1, θ2, θ3), the integer random vector X = (X1,X2,X3) has a trinomial
distribution, with probability mass function

p(x | θ) = n!

x1!x2!x3!
θx1
1 θx2

2 θx3
3 ,

(
xi > 0,

3∑

i=1

xi = n

)
. (1)

Compute the score vector for the parameter Θ∗ := (Θ1,Θ2), and, quoting any relevant
general result, use this to determine E(Xi) (i = 1, 2, 3).

Considering (1) as an exponential family with mean-value parameter Θ∗, what is
the corresponding natural parameter Φ ≡ (Φ1,Φ2)?

Compute the information matrix I for Θ∗, which has (i, j)-entry

Iij = −E
(

∂2l

∂θi∂θj

)
(i, j = 1, 2) ,

where l denotes the log-likelihood function, based on X, expressed in terms of (θ1, θ2).

Show that the variance of log(X1/X3) is asymptotic to n−1(θ−1
1 + θ−1

3 ) as n → ∞.
[Hint. The information matrix IΦ for Φ is I−1 and the dispersion matrix of the maximum
likelihood estimator Φ̂ behaves, asymptotically (for n → ∞) as I−1

Φ .]

28J Optimization and Control
A state variable x = (x1, x2) ∈ R2 is subject to dynamics

ẋ1(t) = x2(t)

ẋ2(t) = u(t),

where u = u(t) is a scalar control variable constrained to the interval [−1, 1]. Given an
initial value x(0) = (x1, x2), let F (x1, x2) denote the minimal time required to bring the
state to (0, 0). Prove that

max
u∈[−1,1]

{
−x2

∂F

∂x1
− u

∂F

∂x2
− 1

}
= 0 .

Explain how this equation figures in Pontryagin’s maximum principle.

Use Pontryagin’s maximum principle to show that, on an optimal trajectory, u(t)
only takes the values 1 and −1, and that it makes at most one switch between them.

Show that u(t) = 1, 0 6 t 6 2 is optimal when x(0) = (2,−2).

Find the optimal control when x(0) = (7,−2).
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29J Stochastic Financial Models
(i) Let F = {Fn}∞n=0 be a filtration. Give the definition of a martingale and a

stopping time with respect to the filtration F .

(ii) State Doob’s optional stopping theorem. Give an example of a martingale M
and a stopping time T such that E(MT ) 6= E(M0).

(iii) Let Sn be a standard random walk on Z, that is, S0 = 0, Sn = X1 + . . . +Xn,
where Xi are i.i.d. and Xi = 1 or −1 with probability 1/2.

Let Ta = inf {n > 0 : Sn = a} where a is a positive integer. Show that for all θ > 0,

E
(
e−θTa

)
=

(
eθ −

√
e2θ − 1

)a
.

Carefully justify all steps in your derivation.

[Hint. For all λ > 0 find θ such that Mn = exp(−θn + λSn) is a martingale. You may
assume that Ta is almost surely finite.]

Let T = Ta ∧ T−a = inf{n > 0 : |Sn| = a}. By introducing a suitable martingale,
compute E(e−θT ).

30B Partial Differential Equations
Consider the nonlinear partial differential equation for a function u(x, t), x ∈ Rn, t > 0,

ut = ∆u− α|∇u|2, (1)

subject to u(x, 0) = u0(x), (2)

where u0 ∈ L∞(Rn).

(i) Find a transformation w := F (u) such that w satisfies the heat equation

wt = ∆w, x ∈ Rn,

if (1) holds for u.

(ii) Use the transformation obtained in (i) (and its inverse) to find a solution to the initial
value problem (1), (2).
[Hint. Use the fundamental solution of the heat equation.]

(iii) The equation (1) is posed on a bounded domain Ω ⊆ Rn with smooth boundary,
subject to the initial condition (2) on Ω and inhomogeneous Dirichlet boundary conditions

u = uD on ∂Ω,

where uD is a bounded function. Use the maximum-minimum principle to prove that
there exists at most one classical solution of this boundary value problem.
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31B Asymptotic Methods
Find the two leading terms in the asymptotic expansion of the Laplace integral

I(x) =

∫ 1

0
f(t)ext

4
dt

as x → ∞, where f(t) is smooth and positive on [0, 1].

32D Integrable Systems
Consider a one-parameter group of transformations acting on R4

(x, y, t, u) −→ (exp (ǫα)x, exp (ǫβ)y, exp (ǫγ)t, exp (ǫδ)u) , (1)

where ǫ is a group parameter and (α, β, γ, δ) are constants.

(a) Find a vector field W which generates this group.

(b) Find two independent Lie point symmetries S1 and S2 of the PDE

(ut − uux)x = uyy, u = u(x, y, t) , (2)

which are of the form (1).

(c) Find three functionally-independent invariants of S1, and do the same for S2. Find
a non-constant function G = G(x, y, t, u) which is invariant under both S1 and S2.

(d) Explain why all the solutions of (2) that are invariant under a two-parameter group
of transformations generated by vector fields

W = u
∂

∂u
+ x

∂

∂x
+

1

2
y
∂

∂y
, V =

∂

∂y
,

are of the form u = xF (t), where F is a function of one variable. Find an ODE for
F characterising these group-invariant solutions.
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33A Principles of Quantum Mechanics
Discuss the consequences of indistinguishability for a quantum mechanical state

consisting of two identical, non-interacting particles when the particles have (a) spin zero,
(b) spin 1/2.

The stationary Schrödinger equation for one particle in the potential

−2e2

4πǫ0r

has normalised, spherically-symmetric real wavefunctions ψn(r) and energy eigenvalues
En with E0 < E1 < E2 < · · · . The helium atom can be modelled by considering two
non-interacting spin 1/2 particles in the above potential. What are the consequences of
the Pauli exclusion principle for the ground state? Write down the two-electron state
for this model in the form of a spatial wavefunction times a spin state. Assuming that
wavefunctions are spherically-symmetric, find the states of the first excited energy level of
the helium atom. What combined angular momentum quantum numbers J,M does each
state have?

Assuming standard perturbation theory results, arrive at a multi-dimensional
integral in terms of the one-particle wavefunctions for the first-order correction to the
helium ground state energy, arising from the electron-electron interaction.
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34E Applications of Quantum Mechanics
A simple model of a crystal consists of a 1D linear array of sites at positions x = na,

for all integer n and separation a, each occupied by a similar atom. The potential due to
the atom at the origin is U(x), which is symmetric: U(−x) = U(x). The Hamiltonian,
H0, for the atom at the n-th site in isolation has electron eigenfunction ψn(x) with energy
E0. Write down H0 and state the relationship between ψn(x) and ψ0(x).

The Hamiltonian H for an electron moving in the crystal is H = H0 + V (x). Give
an expression for V (x).

In the tight-binding approximation for this model the ψn are assumed to be
orthonormal, (ψn, ψm) = δnm, and the only non-zero matrix elements of H0 and V are

(ψn,H0ψn) = E0, (ψn, V ψn) = α, (ψn, V ψn±1) = −A ,

where A > 0. By considering the trial wavefunction Ψ(x, t) =
∑

n cn(t)ψn(x), show that
the time-dependent Schrödinger equation governing the amplitudes cn(t) is

i~ċn = (E0 + α)cn −A(cn+1 + cn−1) .

By examining a solution of the form

cn = ei(kna−Et/~) ,

show that E, the energy of the electron in the crystal, lies in a band given by

E = E0 + α− 2A cos ka .

Using the fact that ψ0(x) is a parity eigenstate show that

(ψn, xψn) = na .

The electron in this model is now subject to an electric field E in the direction of
increasing x, so that V (x) is replaced by V (x)−eEx, where−e is the charge on the electron.
Assuming that (ψn, xψm) = 0, n 6= m, write down the new form of the time-dependent
Schrödinger equation for the probability amplitudes cn. Verify that it has solutions of the
form

cn = exp

[
− i

~

∫ t

0
ǫ(t′)dt′ + i

(
k +

eEt
~

)
na

]
,

where

ǫ(t) = E0 + α− 2A cos

[(
k +

eEt
~

)
a

]
.

Use this result to show that the dynamical behaviour of an electron near the bottom of
an energy band is the same as that for a free particle in the presence of an electric field
with an effective mass m∗ = ~2/(2Aa2).
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35C Statistical Physics
A ferromagnet has magnetization order parameter m and is at temperature T . The

free energy is given by

F (T ;m) = F0(T ) +
a

2
(T − Tc)m

2 +
b

4
m4 ,

where a, b and Tc are positive constants. Find the equilibrium value of the magnetization
at both high and low temperatures.

Evaluate the free energy of the ground state as a function of temperature. Hence
compute the entropy and heat capacity. Determine the jump in the heat capacity and
identify the order of the phase transition.

After imposing a background magnetic field B, the free energy becomes

F (T ;m) = F0(T ) +Bm+
a

2
(T − Tc)m

2 +
b

4
m4 .

Explain graphically why the system undergoes a first-order phase transition at low
temperatures as B changes sign.

The spinodal point occurs when the meta-stable vacuum ceases to exist. Determine
the temperature T of the spinodal point as a function of Tc, a, b and B.

36B Electrodynamics
The non-relativistic Larmor formula for the power, P , radiated by a particle of

charge q and mass m that is being accelerated with an acceleration a is

P =
µ0

6π
q2|a|2 .

Starting from the Liénard–Wiechert potentials, sketch a derivation of this result. Explain
briefly why the relativistic generalization of this formula is

P =
µ0

6π

q2

m2

(
dpµ

dτ

dpν

dτ
ηµν

)
,

where pµ is the relativistic momentum of the particle and τ is the proper time along the
worldline of the particle.

A particle of mass m and charge q moves in a plane perpendicular to a constant
magnetic field B. At time t = 0 as seen by an observer O at rest, the particle has energy
E = γm. At what rate is electromagnetic energy radiated by this particle?

At time t according to the observer O, the particle has energy E′ = γ′m. Find an
expression for γ′ in terms of γ and t.
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37B General Relativity
(i) The Schwarzschild metric is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Consider a time-like geodesic xa(τ), where τ is the proper time, lying in the plane θ = π/2.
Use the Lagrangian L = gabẋ

aẋb to derive the equations governing the geodesic, showing
that

r2φ̇ = h ,

with h constant, and hence demonstrate that

d2u

dφ2
+ u =

M

h2
+ 3Mu2 ,

where u = 1/r. State which term in this equation makes it different from an analogous
equation in Newtonian theory.

(ii) Now consider Kruskal coordinates, in which the Schwarzschild t and r are
replaced by U and V , defined for r > 2M by

U ≡
( r

2M
− 1

)1/2
er/(4M) cosh

(
t

4M

)

V ≡
( r

2M
− 1

)1/2
er/(4M) sinh

(
t

4M

)

and for r < 2M by

U ≡
(
1− r

2M

)1/2
er/(4M) sinh

(
t

4M

)

V ≡
(
1− r

2M

)1/2
er/(4M) cosh

(
t

4M

)
.

Given that the metric in these coordinates is

ds2 =
32M3

r
e−r/(2M)(−dV 2 + dU2) + r2(dθ2 + sin2 θdφ2) ,

where r = r(U, V ) is defined implicitly by

( r

2M
− 1

)
er/(2M) = U2 − V 2 ,

sketch the Kruskal diagram, indicating the positions of the singularity at r = 0, the event
horizon at r = 2M , and general lines of constant r and of constant t.
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38C Fluid Dynamics II
For two Stokes flows u(1)(x) and u(2)(x) inside the same volume V with different

boundary conditions on its boundary S, prove the reciprocal theorem

∫

S
σ
(1)
ij nju

(2)
i dS =

∫

S
σ
(2)
ij nju

(1)
i dS ,

where σ(1) and σ(2) are the stress fields associated with the flows.

When a rigid sphere of radius a translates with velocity U through unbounded fluid
at rest at infinity, it may be shown that the traction per unit area, σ · n, exerted by the
sphere on the fluid has the uniform value 3µU/2a over the sphere surface. Find the drag
on the sphere.

Suppose that the same sphere is now free of external forces and is placed with its
centre at the origin in an unbounded Stokes flow given in the absence of the sphere as
u∗(x). By applying the reciprocal theorem to the perturbation to the flow generated by
the presence of the sphere, and assuming this tends to zero sufficiently rapidly at infinity,
show that the instantaneous velocity of the centre of the sphere is

1

4πa2

∫
u∗(x) dS ,

where the integral is taken over the sphere of radius a.

39D Waves
The function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
+

1

5

∂5φ

∂x5
= 0 ,

where U > 0 is a constant. Find the dispersion relation for waves of frequency ω and
wavenumber k. Sketch a graph showing both the phase velocity c(k) and the group
velocity cg(k), and state whether wave crests move faster or slower than a wave packet.

Suppose that φ(x, 0) is real and given by a Fourier transform as

φ(x, 0) =

∫ ∞

−∞
A(k)eikx dk .

Use the method of stationary phase to obtain an approximation for φ(V t, t) for fixed
V > U and large t. If, in addition, φ(x, 0) = φ(−x, 0), deduce an approximation for the
sequence of times at which φ(V t, t) = 0.

What can be said about φ(V t, t) if V < U? [Detailed calculation is not required in
this case.]

[You may assume that

∫ ∞

−∞
e−au2

du =

√
π

a
for Re(a) > 0, a 6= 0.]

Part II, Paper 3 [TURN OVER



22

40D Numerical Analysis
The inverse discrete Fourier transform F−1

n : Rn → Rn is given by the formula

x = F−1
n y, where xl =

n−1∑

j=0

ωjl
n yj, l = 0, . . . , n− 1 .

Here, ωn = exp(2πi/n) is the primitive root of unity of degree n and n = 2p, p = 1, 2, . . .

(i) Show how to assemble x = F−1
2my in a small number of operations if the Fourier

transforms of the even and odd parts of y,

x(E) = F−1
m y(E), x(O) = F−1

m y(O) ,

are already known.

(ii) Describe the Fast Fourier Transform (FFT) method for evaluating x, and draw a
relevant diagram for n = 8.

(iii) Find the costs of the FFT method for n = 2p (only multiplications count).

(iv) For n = 4 use the FFT method to find x = F−1
4 y when:

(a) y = (1, 1,−1,−1),

(b) y = (1,−1, 1,−1).

END OF PAPER
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