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SECTION I

1D Numbers and Sets

(i) Find integers x and y such that 18x+ 23y = 101.

(ii) Find an integer x such that x ≡ 3 (mod 18) and x ≡ 2 (mod 23).

2D Numbers and Sets

What is an equivalence relation on a set X? If R is an equivalence relation on X,

what is an equivalence class of R? Prove that the equivalence classes of R form a partition

of X.

Let R and S be equivalence relations on a set X. Which of the following are always

equivalence relations? Give proofs or counterexamples as appropriate.

(i) The relation V on X given by xV y if both xRy and xSy.

(ii) The relation W on X given by xWy if xRy or xSy.

3B Dynamics and Relativity
Two particles of masses m1 and m2 have position vectors r1 and r2 respectively.

Particle 2 exerts a force F12(r) on particle 1 (where r = r1− r2) and there are no external
forces.

Prove that the centre of mass of the two-particle system will move at constant speed
along a straight line.

Explain how the two-body problem of determining the motion of the system may
be reduced to that of a single particle moving under the force F12.

Suppose now that m1 = m2 = m and that

F12 = −Gm2

r3
r

is gravitational attraction. Let C be a circle fixed in space. Is it possible (by suitable
choice of initial conditions) for the two particles to be traversing C at the same constant
angular speed? Give a brief reason for your answer.
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4B Dynamics and Relativity
Let S and S′ be inertial frames in 2-dimensional spacetime with coordinate systems

(t, x) and (t′, x′) respectively. Suppose that S′ moves with positive velocity v relative to
S and the spacetime origins of S and S′ coincide. Write down the Lorentz transformation
relating the coordinates of any event relative to the two frames.

Show that events which occur simultaneously in S are not generally seen to be
simultaneous when viewed in S′.

In S two light sources A and B are at rest and placed a distance d apart. They
simultaneously each emit a photon in the positive x direction. Show that in S′ the photons

are separated by a constant distance d

√
c+ v

c− v
.
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SECTION II

5D Numbers and Sets

Let X be a set, and let f and g be functions from X to X. Which of the following

are always true and which can be false? Give proofs or counterexamples as appropriate.

(i) If fg is the identity map then gf is the identity map.

(ii) If fg = g then f is the identity map.

(iii) If fg = f then g is the identity map.

How (if at all) do your answers change if we are given that X is finite?

Determine which sets X have the following property: if f is a function from X to

X such that for every x ∈ X there exists a positive integer n with fn(x) = x, then there

exists a positive integer n such that fn is the identity map. [Here fn denotes the n-fold

composition of f with itself.]

6D Numbers and Sets

State Fermat’s Theorem and Wilson’s Theorem.

For which prime numbers p does the equation x2 ≡ −1 (mod p) have a solution?

Justify your answer.

For a prime number p, and an integer x that is not a multiple of p, the order of x

(mod p) is the least positive integer d such that xd ≡ 1 (mod p). Show that if x has order

d and also xk ≡ 1 (mod p) then d must divide k.

For a positive integer n, let Fn = 22
n
+ 1. If p is a prime factor of Fn, determine

the order of 2 (mod p). Hence show that the Fn are pairwise coprime.

Show that if p is a prime of the form 4k + 3 then p cannot be a factor of any Fn.

Give, with justification, a prime p of the form 4k+1 such that p is not a factor of any Fn.

7D Numbers and Sets

Prove that each of the following numbers is irrational:

(i)
√
2 +

√
3

(ii) e

(iii) The real root of the equation x3 + 4x− 7 = 0

(iv) log2 3.
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8D Numbers and Sets

Show that there is no injection from the power-set of R to R. Show also that there

is an injection from R2 to R.

Let X be the set of all functions f from R to R such that f(x) = x for all but finitely

many x. Determine whether or not there exists an injection from X to R.

9B Dynamics and Relativity
Let (r, θ) be polar coordinates in the plane. A particle of mass m moves in the

plane under an attractive force of mf(r) towards the origin O. You may assume that the
acceleration a is given by

a = (r̈ − rθ̇2)r̂+
1

r

d

dt
(r2θ̇)θ̂

where r̂ and θ̂ are the unit vectors in the directions of increasing r and θ respectively, and
the dot denotes d/dt.

(a) Show that l = r2θ̇ is a constant of the motion. Introducing u = 1/r show that

ṙ = −l
du

dθ
and derive the geometric orbit equation

l2u2
(
d2u

dθ2
+ u

)
= f

(1
u

)
.

(b) Suppose now that

f(r) =
3r + 9

r3

and that initially the particle is at distance r0 = 1 from O, moving with speed v0 = 4 in
a direction making angle π/3 with the radial vector pointing towards O.

Show that l = 2
√
3 and find u as a function of θ. Hence or otherwise show that the

particle returns to its original position after one revolution about O and then flies off to
infinity.
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10B Dynamics and Relativity

For any frame S and vector A, let
[dA
dt

]
S
denote the derivative of A relative to

S. A frame of reference S′ rotates with constant angular velocity ω with respect to an
inertial frame S and the two frames have a common origin O. [You may assume that for

any vector A,
[dA
dt

]
S
=

[dA
dt

]
S′

+ ω ×A.]

(a) If r(t) is the position vector of a point P from O, show that

[
d2r

dt2

]

S

=

[
d2r

dt2

]

S′
+ 2ω × v′ + ω × (ω × r)

where v′ =
[dr
dt

]
S′

is the velocity in S′.

Suppose now that r(t) is the position vector of a particle of mass m moving under
a conservative force F = −∇φ and a force G that is always orthogonal to the velocity v′

in S′. Show that the quantity

E =
1

2
mv′.v′ + φ− m

2
(ω × r).(ω × r)

is a constant of the motion. [You may assume that ∇ [(ω × r).(ω × r)] = −2ω× (ω × r).]

(b) A bead slides on a frictionless circular hoop of radius a which is forced to rotate
with constant angular speed ω about a vertical diameter. Let θ(t) denote the angle between
the line from the centre of the hoop to the bead and the downward vertical. Using the
results of (a), or otherwise, show that

θ̈ +
(g
a
− ω2 cos θ

)
sin θ = 0.

Deduce that if ω2 > g/a there are two equilibrium positions θ = θ0 off the axis of rotation,
and show that these are stable equilibria.
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11B Dynamics and Relativity
(a) State the parallel axis theorem for moments of inertia.

(b) A uniform circular disc D of radius a and total mass m can turn frictionlessly
about a fixed horizontal axis that passes through a point A on its circumference and is
perpendicular to its plane. Initially the disc hangs at rest (in constant gravity g) with
its centre O being vertically below A. Suppose the disc is disturbed and executes free

oscillations. Show that the period of small oscillations is 2π

√
3a

2g
.

(c) Suppose now that the disc is released from rest when the radius OA is vertical
with O directly above A. Find the angular velocity and angular acceleration of O about
A when the disc has turned through angle θ. Let R denote the reaction force at A on the
disc. Find the acceleration of the centre of mass of the disc. Hence, or otherwise, show
that the component of R parallel to OA is mg(7 cos θ − 4)/3.

12B Dynamics and Relativity
(a) Define the 4-momentum P of a particle of rest mass m and 3-velocity v, and the

4-momentum of a photon of frequency ν (having zero rest mass) moving in the direction
of the unit vector e.

Show that if P1 and P2 are timelike future-pointing 4-vectors then P1.P2 > 0
(where the dot denotes the Lorentz-invariant scalar product). Hence or otherwise show
that the law of conservation of 4-momentum forbids a photon to spontaneously decay into
an electron-positron pair. [Electrons and positrons have equal rest masses m > 0.]

(b) In the laboratory frame an electron travelling with velocity u collides with a
positron at rest. They annihilate, producing two photons of frequencies ν1 and ν2 that
move off at angles θ1 and θ2 to u, in the directions of the unit vectors e1 and e2 respectively.
By considering 4-momenta in the laboratory frame, or otherwise, show that

1 + cos(θ1 + θ2)

cos θ1 + cos θ2
=

√
γ − 1

γ + 1

where γ =

(
1− u2

c2

)−1/2

.

END OF PAPER
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