20H Markov Chains

A Markov chain $(X_n)_{n \ge 0}$ has as its state space the integers, with

$$p_{i,i+1} = p, \quad p_{i,i-1} = q = 1 - p,$$

and $p_{ij} = 0$ otherwise. Assume p > q.

Let $T_j = \inf\{n \ge 1 : X_n = j\}$ if this is finite, and $T_j = \infty$ otherwise. Let V_0 be the total number of hits on 0, and let $V_0(n)$ be the total number of hits on 0 within times $0, \ldots, n-1$. Let

$$h_{i} = P(V_{0} > 0 \mid X_{0} = i)$$

$$r_{i}(n) = E[V_{0}(n) \mid X_{0} = i]$$

$$r_{i} = E[V_{0} \mid X_{0} = i].$$

- (i) Quoting an appropriate theorem, find, for every i, the value of h_i .
- (ii) Show that if $(x_i, i \in \mathbb{Z})$ is any non-negative solution to the system of equations

$$x_0 = 1 + px_1 + qx_{-1},$$

 $x_i = qx_{i-1} + px_{i+1},$ for all $i \neq 0,$

then $x_i \ge r_i(n)$ for all *i* and *n*.

- (iii) Show that $P(V_0(T_1) \ge k \mid X_0 = 1) = q^k$ and $E[V_0(T_1) \mid X_0 = 1] = q/p$.
- (iv) Explain why $r_{i+1} = (q/p)r_i$ for i > 0.
- (v) Find r_i for all i.