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SECTION I

1I Number Theory

(i) Prove that there are infinitely many primes.

(ii) Prove that arbitrarily large gaps can occur between consecutive primes.

2F Topics in Analysis

(a) Let γ : [0, 1] → C \ {0} be a continuous map such that γ(0) = γ(1). Define the
winding number w(γ; 0) of γ about the origin. State precisely a theorem about
homotopy invariance of the winding number.

(b) Let B = {z ∈ C : |z| 6 1} and let f : B → C be a continuous map satisfying

|f(z)− z| 6 1

for each z ∈ ∂B.

(i) For 0 6 t 6 1, let γ(t) = f(e2πit). If γ(t) 6= 0 for each t ∈ [0, 1], prove that
w(γ; 0) = 1.

[Hint: Consider a suitable homotopy between γ and the map γ1(t) = e2πit,
0 6 t 6 1.]

(ii) Deduce that f(z) = 0 for some z ∈ B.

3G Geometry and Groups

Define inversion in a circle Γ on the Riemann sphere. You should show from your

definition that inversion in Γ exists and is unique.

Prove that the composition of an even number of inversions is a Möbius transfor-

mation of the Riemann sphere and that every Möbius transformation is the composition

of an even number of inversions.

4G Coding and Cryptography
Describe a scheme for sending messages based on quantum theory which is not

vulnerable to eavesdropping. You may ignore engineering problems.

Part II, Paper 4
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5J Statistical Modelling
The numbers of ear infections observed among beach and non-beach (mostly pool)

swimmers were recorded, along with explanatory variables: frequency, location, age, and
sex. The data are aggregated by group, with a total of 24 groups defined by the explanatory
variables.

freq F = frequent, NF = infrequent
loc NB = non-beach, B = beach
age 15-19, 20-24, 24-29
sex F = female, M = male
count the number of infections reported over a fixed time period
n the total number of swimmers

The data look like this:

count n freq loc sex age

1 68 31 F NB M 15-19

2 14 4 F NB F 15-19

3 35 12 F NB M 20-24

4 16 11 F NB F 20-24

[...]

23 5 15 NF B M 25-29

24 6 6 NF B F 25-29

Let µj denote the expected number of ear infections of a person in group j. Explain
why it is reasonable to model countj as Poisson with mean njµj .

We fit the following Poisson model:

log(E(countj)) = log(njµj) = log(nj) + xjβ,

where log(nj) is an offset, i.e. an explanatory variable with known coefficient 1.

R produces the following (abbreviated) summary for the main effects model:

Call:

glm(formula = count ~ freq + loc + age + sex, family = poisson, offset = log(n))

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.48887 0.12271 3.984 6.78e-05 ***

freqNF -0.61149 0.10500 -5.823 5.76e-09 ***

locNB 0.53454 0.10668 5.011 5.43e-07 ***

age20-24 -0.37442 0.12836 -2.917 0.00354 **

age25-29 -0.18973 0.13009 -1.458 0.14473

sexM -0.08985 0.11231 -0.800 0.42371

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

[...]
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Why are expressions freqF, locB, age15-19, and sexF not listed?

Suppose that we plan to observe a group of 20 female, non-frequent, beach
swimmers, aged 20-24. Give an expression (using the coefficient estimates from the model
fitted above) for the expected number of ear infections in this group.

Now, suppose that we allow for interaction between variables age and sex. Give the
R command for fitting this model. We test for the effect of this interaction by producing
the following (abbreviated) ANOVA table:

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 18 51.714

2 16 44.319 2 7.3948 0.02479 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Briefly explain what test is performed, and what you would conclude from it. Does
either of these models fit the data well?

6B Mathematical Biology
A neglected flower garden contains Mn marigolds in the summer of year n. On

average each marigold produces γ seeds through the summer. Seeds may germinate after
one or two winters. After three winters or more they will not germinate. Each winter a
fraction 1−α of all seeds in the garden are eaten by birds (with no preference to the age of
the seed). In spring a fraction µ of seeds that have survived one winter and a fraction ν of
seeds that have survived two winters germinate. Finite resources of water mean that the
number of marigolds growing to maturity from S germinating seeds is N (S), where N (S)
is an increasing function such that N (0) = 0, N ′(0) = 1, N ′(S) is a decreasing function
of S and N (S) → Nmax as S → ∞.

Show that Mn satisfies the equation

Mn+1 = N (αµγMn + νγα2(1− µ)Mn−1) .

Write down an equation for the number M∗ of marigolds in a steady state. Show
graphically that there are two solutions, one with M∗ = 0 and the other with M∗ > 0 if

αµγ + νγα2(1− µ) > 1 .

Show that the M∗ = 0 steady-state solution is unstable to small perturbations in this case.
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7C Dynamical Systems

(i) Explain the use of the energy balance method for describing approximately the
behaviour of nearly Hamiltonian systems.

(ii) Consider the nearly Hamiltonian dynamical system

ẍ+ ǫẋ(−1 + αx2 − βx4) + x = 0 , 0 < ǫ ≪ 1 ,

where α and β are positive constants. Show that, for sufficiently small ǫ, the system
has periodic orbits if α2 > 8β, and no periodic orbits if α2 < 8β. Show that in the
first case there are two periodic orbits, and determine their approximate size and
their stability.

What can you say about the existence of periodic orbits when α2 = 8β?

[You may assume that

∫ 2π

0
sin2 t dt = π ,

∫ 2π

0
sin2 t cos2 t dt =

π

4
,

∫ 2π

0
sin2 t cos4 t dt =

π

8
.

]

8E Further Complex Methods
Let F (z) be defined by

F (z) =

∫ ∞

0

e−zt

1 + t2
dt, | arg z| < π

2
.

Let F̃ (z) be defined by

F̃ (z) = P
∫ ∞e−

iπ
2

0

e−zζ

1 + ζ2
dζ , 0 < arg z < π ,

where P denotes principal value integral and the contour is the negative imaginary axis.

By computing F (z)− F̃ (z), obtain a formula for the analytic continuation of F (z)
for π

2 6 arg z < π.
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9C Classical Dynamics

(i) A dynamical system is described by the Hamiltonian H(qi, pi). Define the Poisson
bracket {f, g} of two functions f(qi, pi, t), g(qi, pi, t). Assuming the Hamiltonian
equations of motion, find an expression for df/dt in terms of the Poisson bracket.

(ii) A one-dimensional system has the Hamiltonian

H = p2 +
1

q2
.

Show that u = pq− 2Ht is a constant of the motion. Deduce the form of (q(t), p(t))
along a classical path, in terms of the constants u and H.

10E Cosmology
The equilibrium number density of fermions at temperature T is

n =
4πgs
h3

∫ ∞

0

p2dp

exp[(ǫ(p)− µ)/kT ] + 1
,

where gs is the spin degeneracy and ǫ(p) = c
√

p2 +m2c2. For a non-relativistic gas with
pc ≪ mc2 and kT ≪ mc2−µ, show that the number density becomes

n = gs

(
2πmkT

h2

)3/2

exp[(µ −mc2)/kT ] . (∗)

[You may assume that
∫∞
0 dxx2e−x2/α = (

√
π/4) α3/2 for α > 0.]

Before recombination, equilibrium is maintained between neutral hydrogen, free
electrons, protons and photons through the interaction

p+ e− ↔ H + γ .

Using the non-relativistic number density (∗), deduce Saha’s equation relating the electron
and hydrogen number densities,

n2
e

nH
≈

(
2πmekT

h2

)3/2

exp(−I/kT ) ,

where I = (mp + me − mH)c2 is the ionization energy of hydrogen. State clearly any
assumptions you have made.
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SECTION II

11I Number Theory

(i) Prove the law of reciprocity for the Jacobi symbol. You may assume the law of
reciprocity for the Legendre symbol.

(ii) Let n be an odd positive integer which is not a square. Prove that there exists an

odd prime p with
(
n
p

)
= −1.

12G Geometry and Groups

Define a lattice in R2 and the rank of such a lattice.

Let Λ be a rank 2 lattice in R2. Choose a vector w1 ∈ Λ \ {0} with ||w1|| as
small as possible. Then choose w2 ∈ Λ \ Zw1 with ||w2|| as small as possible. Show that

Λ = Zw1 + Zw2.

Suppose that w1 is the unit vector

(
1

0

)
. Draw the region of possible values for w2.

Suppose that Λ also equals Zv1 + Zv2. Prove that

v1 = aw1 + bw2 and v2 = cw1 + dw2 ,

for some integers a, b, c, d with ad− bc = ±1.

13J Statistical Modelling
Consider the general linear model Y = Xβ + ǫ, where the n × p matrix X has

full rank p 6 n, and where ǫ has a multivariate normal distribution with mean zero
and covariance matrix σ2In. Write down the likelihood function for β, σ2 and derive the
maximum likelihood estimators β̂, σ̂2 of β, σ2. Find the distribution of β̂. Show further
that β̂ and σ̂2 are independent.
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14C Dynamical Systems

(i) State and prove Lyapunov’s First Theorem, and state (without proof) La Salle’s
Invariance Principle. Show by example how the latter result can be used to prove
asymptotic stability of a fixed point even when a strict Lyapunov function does not
exist.

(ii) Consider the system

ẋ = −x+ 2y + x3 + 2x2y + 2xy2 + 2y3 ,

ẏ = −y − x− 2x3 +
1

2
x2y − 3xy2 + y3 .

Show that the origin is asymptotically stable and that the basin of attraction of the
origin includes the region x2 + 2y2 < 2/3.

Part II, Paper 4
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15C Classical Dynamics
Given a Hamiltonian system with variables (qi, pi), i = 1, . . . , n, state the definition

of a canonical transformation
(qi, pi) → (Qi, Pi) ,

where Q = Q(q,p, t) and P = P(q,p, t). Write down a matrix equation that is equivalent
to the condition that the transformation is canonical.

Consider a harmonic oscillator of unit mass, with Hamiltonian

H =
1

2
(p2 + ω2q2) .

Write down the Hamilton–Jacobi equation for Hamilton’s principal function S(q,E, t),
and deduce the Hamilton–Jacobi equation

1

2

[(
∂W

∂q

)2

+ ω2q2

]
= E (1)

for Hamilton’s characteristic function W (q,E).

Solve (1) to obtain an integral expression for W , and deduce that, at energy E,

S =
√
2E

∫
dq

√(
1− ω2q2

2E

)
− Et . (2)

Let α = E, and define the angular coordinate

β =

(
∂S

∂E

)

q,t

.

You may assume that (2) implies

t+ β =

(
1

ω

)
arcsin

(
ωq√
2E

)
.

Deduce that

p =
∂S

∂q
=

∂W

∂q
=

√
(2E − ω2q2) ,

from which
p =

√
2E cos[ω(t+ β)] .

Hence, or otherwise, show that the transformation from variables (q, p) to (α, β) is
canonical.
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16H Logic and Set Theory

Define the sets Vα for ordinals α. Show that each Vα is transitive. Show also that

Vα ⊆ Vβ whenever α 6 β. Prove that every set x is a member of some Vα.

For which ordinals α does there exist a set x such that the power-set of x has rank

α? [You may assume standard properties of rank.]

17F Graph Theory

(i) Given a positive integer k, show that there exists a positive integer n such that,
whenever the edges of the complete graph Kn are coloured with k colours, there
exists a monochromatic triangle.

Denote the least such n by f(k). Show that f(k) 6 3 · k! for all k.

(ii) You may now assume that f(2) = 6 and f(3) = 17.

Let H denote the graph of order 4 consisting of a triangle together with one extra
edge. Given a positive integer k, let g(k) denote the least positive integer n such
that, whenever the edges of the complete graph Kn are coloured with k colours,
there exists a monochromatic copy of H. By considering the edges from one vertex
of a monochromatic triangle in K7, or otherwise, show that g(2) 6 7. By exhibiting
a blue-yellow colouring of the edges of K6 with no monochromatic copy of H, show
that in fact g(2) = 7.

What is g(3)? Justify your answer.

Part II, Paper 4
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18H Galois Theory
Let K be a field of characteristic 0, and let P (X) = X4 + bX2 + cX + d be an

irreducible quartic polynomial over K. Let α1, α2, α3, α4 be its roots in an algebraic
closure of K, and consider the Galois group Gal(P ) (the group Gal(F/K) for a splitting
field F of P over K) as a subgroup of S4 (the group of permutations of α1, α2, α3, α4).

Suppose that Gal(P ) contains V4 = {1, (12)(34), (13)(24), (14)(23)}.

(i) List all possible Gal(P ) up to isomorphism. [Hint: there are 4 cases, with orders 4,
8, 12 and 24.]

(ii) Let Q(X) be the resolvent cubic of P , i.e. a cubic in K[X] whose roots are
−(α1 + α2)(α3 + α4), −(α1 + α3)(α2 + α4) and −(α1 + α4)(α2 + α3). Construct
a natural surjection Gal(P ) → Gal(Q), and find Gal(Q) in each of the four cases
found in (i).

(iii) Let ∆ ∈ K be the discriminant of Q. Give a criterion to determine Gal(P ) in terms
of ∆ and the factorisation of Q in K[X].

(iv) Give a specific example of P where Gal(P ) is abelian.
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19I Representation Theory
Define the groups SU(2) and SO(3).

Show that G = SU(2) acts on the vector space of 2×2 complex matrices of the form

V =

{
A =

(
a b
c −a

)
∈ M2(C) : A+At = 0

}

by conjugation. Denote the corresponding representation of SU(2) on V by ρ.

Prove the following assertions about this action:

(i) The subspace V is isomorphic to R3.

(ii) The pairing (A,B) 7→ −tr(AB) defines a positive definite non-degenerate SU(2)-
invariant bilinear form.

(iii) The representation ρ maps G into SO(3). [You may assume that for any compact
group H, and any n ∈ N, there is a continuous group homomorphism H → O(n) if
and only if H has an n-dimensional representation over R.]

Write down an orthonormal basis for V and use it to show that ρ is surjective with
kernel {±I}.

Use the isomorphism SO(3) ∼= G/{±I} to write down a list of irreducible rep-
resentations of SO(3) in terms of irreducibles for SU(2). [Detailed explanations are not
required.]

20F Number Fields

(i) Prove that the ring of integers OK in a real quadratic field K contains a non-trivial
unit. Any general results about lattices and convex bodies may be assumed.

(ii) State the general version of Dirichlet’s unit theorem.

(iii) Show that for K = Q(
√
7), 8 + 3

√
7 is a fundamental unit in OK .

[You may not use results about continued fractions unless you prove them.]

Part II, Paper 4



13

21H Algebraic Topology
State the Mayer–Vietoris theorem, and use it to calculate, for each integer q > 1, the

homology group of the space Xq obtained from the unit disc B2 ⊆ C by identifying pairs
of points (z1, z2) on its boundary whenever zq1 = zq2. [You should construct an explicit
triangulation of Xq.]

Show also how the theorem may be used to calculate the homology groups of the
suspension SK of a connected simplicial complex K in terms of the homology groups of K,
and of the wedge union X∨Y of two connected polyhedra. Hence show that, for any finite
sequence (G1, G2, . . . , Gn) of finitely-generated abelian groups, there exists a polyhedron
X such that H0(X) ∼= Z, Hi(X) ∼= Gi for 1 6 i 6 n and Hi(X) = 0 for i > n. [You may
assume the structure theorem which asserts that any finitely-generated abelian group is
isomorphic to a finite direct sum of (finite or infinite) cyclic groups.]

22G Linear Analysis
State Urysohn’s Lemma. State and prove the Tietze Extension Theorem.

Let X,Y be two topological spaces. We say that the extension property holds if,
whenever S ⊆ X is a closed subset and f : S → Y is a continuous map, there is a
continuous function f̃ : X → Y with f̃ |S = f .

For each of the following three statements, say whether it is true or false. Briefly
justify your answers.

1. If X is a metric space and Y = [−1, 1] then the extension property holds.

2. If X is a compact Hausdorff space and Y = R then the extension property holds.

3. If X is an arbitrary topological space and Y = [−1, 1] then the extension property
holds.

23H Algebraic Geometry

Let X be a smooth projective curve over an algebraically closed field k.

State the Riemann–Roch theorem, briefly defining all the terms that appear.

Now suppose X has genus 1, and let P∞ ∈ X.

Compute L(nP∞) for n 6 6. Show that φ3P∞ defines an isomorphism of X with a

smooth plane curve in P2 which is defined by a polynomial of degree 3.
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24I Differential Geometry
Define what is meant by a geodesic. Let S ⊂ R3 be an oriented surface. Define the

geodesic curvature kg of a smooth curve γ : I → S parametrized by arc-length.

Explain without detailed proofs what are the exponential map expp and the geodesic
polar coordinates (r, θ) at p ∈ S. Determine the derivative d(expp)0. Prove that the
coefficients of the first fundamental form of S in the geodesic polar coordinates satisfy

E = 1 , F = 0 , G(0, θ) = 0 , (
√
G)r(0, θ) = 1 .

State the global Gauss–Bonnet formula for compact surfaces with boundary. [You
should identify all terms in the formula.]

Suppose that S is homeomorphic to a cylinder S1 × R and has negative Gaussian
curvature at each point. Prove that S has at most one simple (i.e. without self-
intersections) closed geodesic.

[Basic properties of geodesics may be assumed, if accurately stated.]

25K Probability and Measure

(i) State and prove Fatou’s lemma. State and prove Lebesgue’s dominated convergence
theorem. [You may assume the monotone convergence theorem.]

In the rest of the question, let fn be a sequence of integrable functions on some
measure space (E, E , µ), and assume that fn → f almost everywhere, where f is a
given integrable function. We also assume that

∫
|fn|dµ →

∫
|f |dµ as n → ∞.

(ii) Show that
∫
f+
n dµ →

∫
f+dµ and that

∫
f−
n dµ →

∫
f−dµ, where φ+ = max(φ, 0)

and φ− = max(−φ, 0) denote the positive and negative parts of a function φ.

(iii) Here we assume also that fn > 0. Deduce that
∫
|f − fn|dµ → 0.
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26J Applied Probability
At an M/G/1 queue, the arrival times form a Poisson process of rate λ while service

times S1, S2, . . . are independent of each other and of the arrival times and have a common
distribution G with mean ES1 < +∞.

(i) Show that the random variables Qn giving the number of customers left in the queue
at departure times form a Markov chain.

(ii) Specify the transition probabilities of this chain as integrals in dG(t) involving
parameter λ. [No proofs are needed.]

(iii) Assuming that ρ = λES1 < 1 and the chain (Qn) is positive recurrent, show that
its stationary distribution (πk, k > 0) has the generating function given by

∑

k>0

πks
k =

(1− ρ)(s− 1)g(s)

s− g(s)
, |s| 6 1 ,

for an appropriate function g, to be specified.

(iv) Deduce that, in equilibrium, Qn has the mean value

ρ+
λ2ES2

1

2(1 − ρ)
.
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27K Principles of Statistics
What does it mean to say that a (1× p) random vector ξ has a multivariate normal

distribution?

Suppose ξ = (X,Y ) has the bivariate normal distribution with mean vector
µ = (µX , µY ), and dispersion matrix

Σ =

(
σXX σXY

σXY σY Y

)
.

Show that, with β := σXY /σXX , Y − βX is independent of X, and thus that the
conditional distribution of Y given X is normal with mean µY + β(X − µX) and variance
σY Y ·X := σY Y − σ2

XY /σXX .

For i = 1, . . . , n, ξi = (Xi, Yi) are independent and identically distributed with the
above distribution, where all elements of µ and Σ are unknown. Let

S =

(
SXX SXY

SXY SY Y

)
:=

n∑

i=1

(ξi − ξ)T(ξi − ξ) ,

where ξ := n−1
∑n

i=1 ξi.

The sample correlation coefficient is r := SXY /
√
SXXSY Y . Show that the distribu-

tion of r depends only on the population correlation coefficient ρ := σXY /
√
σXXσY Y .

Student’s t-statistic (on n − 2 degrees of freedom) for testing the null hypothesis
H0 : β = 0 is

t :=
β̂√

SY Y ·X/(n− 2)SXX

,

where β̂ := SXY /SXX and SY Y ·X := SY Y − S2
XY /SXX . Its density when H0 is true is

p(t) = C

(
1 +

t2

n− 2

)−1
2 (n−1)

,

where C is a constant that need not be specified.

Express t in terms of r, and hence derive the density of r when ρ = 0.

How could you use the sample correlation r to test the hypothesis ρ = 0?
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28K Optimization and Control
Describe the type of optimal control problem that is amenable to analysis using

Pontryagin’s Maximum Principle.

A firm has the right to extract oil from a well over the interval [0, T ]. The oil can
be sold at price £p per unit. To extract oil at rate u when the remaining quantity of oil
in the well is x incurs cost at rate £u2/x. Thus the problem is one of maximizing

∫ T

0

[
pu(t)− u(t)2

x(t)

]
dt ,

subject to dx(t)/dt = −u(t), u(t) > 0, x(t) > 0. Formulate the Hamiltonian for this
problem.

Explain why λ(t), the adjoint variable, has a boundary condition λ(T ) = 0.

Use Pontryagin’s Maximum Principle to show that under optimal control

λ(t) = p− 1

1/p + (T − t)/4

and

dx(t)

dt
= − 2px(t)

4 + p(T − t)
.

Find the oil remaining in the well at time T , as a function of x(0), p, and T ,

Part II, Paper 4 [TURN OVER



18

29J Stochastic Financial Models
In a two-period model, two agents enter a negotiation at time 0. Agent j knows

that he will receive a random payment Xj at time 1 (j = 1, 2), where the joint distribution
of (X1,X2) is known to both agents, and X1+X2 > 0. At the outcome of the negotiation,
there will be an agreed risk transfer random variable Y which agent 1 will pay to agent
2 at time 1. The objective of agent 1 is to maximize EU1(X1 − Y ), and the objective
of agent 2 is to maximize EU2(X2 + Y ), where the functions Uj are strictly increasing,
strictly concave, C2, and have the properties that

lim
x↓0

U ′
j(x) = +∞ , lim

x↑∞
U ′
j(x) = 0 .

Show that, unless there exists some λ ∈ (0,∞) such that

U ′
1(X1 − Y )

U ′
2(X2 + Y )

= λ almost surely, (∗)

the risk transfer Y could be altered to the benefit of both agents, and so would not be the
conclusion of the negotiation.

Show that, for given λ > 0, the relation (∗) determines a unique risk transfer Y = Yλ,
and that X2 + Yλ is a function of X1 +X2.

30A Partial Differential Equations
Consider the functional

E(u) =
1

2

∫

Ω
|∇u|2 dx+

∫

Ω
F (u, x) dx ,

where Ω is a bounded domain in Rn with smooth boundary and F : R×Ω → R is smooth.
Assume that F (u, x) is convex in u for all x ∈ Ω and that there is a K > 0 such that

−K 6 F (v, x) 6 K
(
|v|2 + 1

)
∀v ∈ R, x ∈ Ω .

(i) Prove that E is well-defined on H1
0 (Ω), bounded from below and strictly convex.

Assume without proof that E is weakly lower-semicontinuous. State this property.
Conclude the existence of a unique minimizer of E.

(ii) Which elliptic boundary value problem does the minimizer solve?
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31A Asymptotic Methods
Determine the range of the integer n for which the equation

d2y

dz2
= zny

has an essential singularity at z = ∞.

Use the Liouville–Green method to find the leading asymptotic approximation to
two independent solutions of

d2y

dz2
= z3y ,

for large |z|. Find the Stokes lines for these approximate solutions. For what range of
arg z is the approximate solution which decays exponentially along the positive z-axis an
asymptotic approximation to an exact solution with this exponential decay?

32D Principles of Quantum Mechanics
The quantum-mechanical observable Q has just two orthonormal eigenstates |1〉 and

|2〉 with eigenvalues −1 and 1, respectively. The operator Q′ is defined by Q′ = Q + ǫT ,
where

T =

(
0 i
−i 0

)
.

Defining orthonormal eigenstates of Q′ to be |1′〉 and |2′〉 with eigenvalues q′1, q
′
2, respect-

ively, consider a perturbation to first order in ǫ ∈ R for the states

|1′〉 = a1|1〉+ a2ǫ|2〉 , |2′〉 = b1|2〉+ b2ǫ|1〉 ,

where a1, a2, b1, b2 are complex coefficients. The real eigenvalues are also expanded to
first order in ǫ:

q′1 = −1 + c1ǫ , q′2 = 1 + c2ǫ .

From first principles, find a1, a2, b1, b2, c1, c2.

Working exactly to all orders, find the real eigenvalues q′1, q
′
2 directly. Show that

the exact eigenvectors of Q′ may be taken to be of the form

Aj(ǫ)

(
1

−i(1 +Bq′j)/ǫ

)
,

finding Aj(ǫ) and the real numerical coefficient B in the process.

By expanding the exact expressions, again find a1, a2, b1, b2, c1, c2, verifying the
perturbation theory results above.
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33E Applications of Quantum Mechanics
A particle of charge −e and mass m moves in a magnetic field B(x, t) and in

an electric potential φ(x, t). The time-dependent Schrödinger equation for the particle’s
wavefunction Ψ(x, t) is

i~
(
∂

∂t
− ie

~
φ

)
Ψ = − ~2

2m

(
∇+

ie

~
A

)2

Ψ ,

where A is the vector potential with B = ∇ ∧ A. Show that this equation is invariant
under the gauge transformations

A(x, t) → A(x, t) +∇f(x, t) ,

φ(x, t) → φ(x, t)− ∂
∂tf(x, t) ,

where f is an arbitrary function, together with a suitable transformation for Ψ which
should be stated.

Assume now that ∂Ψ/∂z = 0, so that the particle motion is only in the x and y
directions. Let B be the constant field B = (0, 0, B) and let φ = 0. In the gauge where
A = (−By, 0, 0) show that the stationary states are given by

Ψk(x, t) = ψk(x)e
−iEt/~ ,

with
ψk(x) = eikxχk(y) . (∗)

Show that χk(y) is the wavefunction for a simple one-dimensional harmonic oscillator
centred at position y0 = ~k/eB. Deduce that the stationary states lie in infinitely
degenerate levels (Landau levels) labelled by the integer n > 0, with energy

En = (2n + 1)
~eB
2m

.

A uniform electric field E is applied in the y-direction so that φ = −Ey. Show that
the stationary states are given by (∗), where χk(y) is a harmonic oscillator wavefunction
centred now at

y0 =
1

eB

(
~k −m

E
B

)
.

Show also that the eigen-energies are given by

En,k = (2n + 1)
~eB
2m

+ eEy0 +
mE2

2B2
.

Why does this mean that the Landau energy levels are no longer degenerate in two
dimensions?
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34D Statistical Physics

(i) Define the Gibbs free energy for a gas of N particles with pressure p at a temperature
T . Explain why it is necessarily proportional to the number of particles N in the
system. Given volume V and chemical potential µ, prove that

∂µ

∂p

∣∣∣∣
T

=
V

N
.

(ii) The van der Waals equation of state is

(
p+

aN2

V 2

)
(V −Nb) = NkBT .

Explain the physical significance of the terms with constants a and b. Sketch the
isotherms of the van der Waals equation. Show that the critical point lies at

kBTc =
8a

27b
, Vc = 3bN , pc =

a

27b2
.

(iii) Describe the Maxwell construction to determine the condition for phase equilibrium.
Hence sketch the regions of the van der Waals isotherm at T < Tc that correspond
to metastable and unstable states. Sketch those regions that correspond to stable
liquids and stable gases.

(iv) Show that, as the critical point is approached along the co-existence curve,

Vgas − Vliquid ∼ (Tc − T )1/2 .

Show that, as the critical point is approached along an isotherm,

p− pc ∼ (V − Vc)
3 .

35C Electrodynamics

Suppose that there is a distribution of electric charge given by the charge density

ρ(x). Develop the multipole expansion, up to quadrupole terms, for the electrostatic

potential φ and define the dipole and quadrupole moments of the charge distribution.

A tetrahedron has a vertex at (1, 1, 1) where there is a point charge of strength 3q.

At each of the other vertices located at (1,−1,−1), (−1, 1,−1) and (−1,−1, 1) there is a

point charge of strength −q.

What is the dipole moment of this charge distribution?

What is the quadrupole moment?
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36D General Relativity
The metric of the Schwarzschild solution is

ds2 = −
(
1− 2M

r

)
dt2 +

1(
1− 2M

r

)dr2 + r2(dθ2 + sin2 θ dφ2) . (∗)

Show that, for an incoming radial light ray, the quantity

v = t+ r + 2M log
∣∣∣ r

2M
− 1

∣∣∣

is constant.

Express ds2 in terms of r, v, θ and φ. Determine the light-cone structure in these
coordinates, and use this to discuss the nature of the apparent singularity at r = 2M .

An observer is falling radially inwards in the region r < 2M . Assuming that the
metric for r < 2M is again given by (∗), obtain a bound for dτ , where τ is the proper
time of the observer, in terms of dr. Hence, or otherwise, determine the maximum proper
time that can elapse between the events at which the observer crosses r = 2M and is torn
apart at r = 0.

37B Fluid Dynamics II
A viscous fluid flows along a slowly varying thin channel between no-slip surfaces

at y = 0 and y = h(x, t) under the action of a pressure gradient dp/dx. After explaining
the approximations and assumptions of lubrication theory, including a comment on the
reduced Reynolds number, derive the expression for the volume flux

q =

∫ h

0
u dy = − h3

12µ

dp

dx
,

as well as the equation
∂h

∂t
+

∂q

∂x
= 0 .

In peristaltic pumping, the surface h(x, t) has a periodic form in space which
propagates at a constant speed c, i.e. h(x − ct), and no net pressure gradient is applied,
i.e. the pressure gradient averaged over a period vanishes. Show that the average flux
along the channel is given by

〈q〉 = c

(
〈h〉 − 〈h−2〉

〈h−3〉

)
,

where 〈·〉 denotes an average over one period.
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38B Waves
Show that, in the standard notation for one-dimensional flow of a perfect gas, the

Riemann invariants u± 2(c− c0)/(γ − 1) are constant on characteristics C± given by

dx

dt
= u± c .

Such a gas occupies the region x > X(t) in a semi-infinite tube to the right of a
piston at x = X(t). At time t = 0, the piston and the gas are at rest, X = 0, and the
gas is uniform with c = c0. For t > 0 the piston accelerates smoothly in the positive
x-direction. Show that, prior to the formation of a shock, the motion of the gas is given
parametrically by

u(x, t) = Ẋ(τ) on x = X(τ) +
[
c0 +

1
2(γ + 1)Ẋ(τ)

]
(t− τ) ,

in a region that should be specified.

For the case X(t) = 2
3c0t

3/T 2, where T > 0 is a constant, show that a shock first
forms in the gas when

t =
T

γ + 1
(3γ + 1)1/2 .
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39A Numerical Analysis

(i) Consider the Poisson equation

∇2u = f , −1 6 x, y 6 1 ,

with the periodic boundary conditions

u(−1, y) = u(1, y) , ux(−1, y) = ux(1, y) , −1 6 y 6 1 ,

u(x,−1) = u(x, 1) , uy(x,−1) = uy(x, 1) , −1 6 x 6 1

and the normalization condition

∫ 1

−1

∫ 1

−1
u(x, y) dx dy = 0 .

Moreover, f is analytic and obeys the periodic boundary conditions f(−1, y) =
f(1, y), f(x,−1) = f(x, 1), −1 6 x, y 6 1.

Derive an explicit expression of the approximation of a solution u by means of a
spectral method. Explain the term convergence with spectral speed and state its
validity for the approximation of u.

(ii) Consider the second-order linear elliptic partial differential equation

∇ · (a∇u) = f , −1 6 x, y 6 1 ,

with the periodic boundary conditions and normalization condition specified in (i).
Moreover, a and f are given by

a(x, y) = cos(πx) + cos(πy) + 3 , f(x, y) = sin(πx) + sin(πy) .

[Note that a is a positive analytic periodic function.]

Construct explicitly the linear algebraic system that arises from the implementation
of a spectral method to the above equation.

END OF PAPER
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