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SECTION I

1F Groups, Rings and Modules
Suppose that A is an integral domain containing a field K and that A is finite-

dimensional as a K-vector space. Prove that A is a field.

2E Analysis II
Suppose f is a uniformly continuous mapping from a metric space X to a metric

space Y . Prove that f(xn) is a Cauchy sequence in Y for every Cauchy sequence xn in X.

Let f be a continuous mapping between metric spaces and suppose that f has the
property that f(xn) is a Cauchy sequence whenever xn is a Cauchy sequence. Is it true
that f must be uniformly continuous? Justify your answer.

3G Metric and Topological Spaces
Let X,Y be topological spaces, and suppose Y is Hausdorff.

(i) Let f, g : X → Y be two continuous maps. Show that the set

E(f, g) := {x ∈ X | f(x) = g(x)} ⊂ X

is a closed subset of X.

(ii) Let W be a dense subset of X. Show that a continuous map f : X → Y is
determined by its restriction f |W to W .
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4D Complex Methods
Write down the function ψ(u, v) that satisfies

∂2ψ

∂u2
+
∂2ψ

∂v2
= 0 , ψ(−1

2 , v) = −1, ψ(12 , v) = 1 .

The circular arcs C1 and C2 in the complex z-plane are defined by

|z + 1| = 1, z 6= 0 and |z − 1| = 1, z 6= 0 ,

respectively. You may assume without proof that the mapping from the complex z-plane
to the complex ζ-plane defined by

ζ =
1

z

takes C1 to the line u = −1
2 and C2 to the line u = 1

2 , where ζ = u + iv, and that the
region D in the z-plane exterior to both the circles |z+1| = 1 and |z− 1| = 1 maps to the
region in the ζ-plane given by −1

2 < u < 1
2 .

Use the above mapping to solve the problem

∇2φ = 0 in D, φ = −1 on C1 and φ = 1 on C2.

5F Geometry
Let R(x, θ) denote anti-clockwise rotation of the Euclidean plane R2 through an

angle θ about a point x.

Show that R(x, θ) is a composite of two reflexions.

Assume θ, φ ∈ (0, π). Show that the composite R(y, φ) · R(x, θ) is also a rotation
R(z, ψ). Find z and ψ.

6D Variational Principles
Find, using a Lagrange multiplier, the four stationary points in R3 of the function

x2 + y2 + z2 subject to the constraint x2 + 2y2 − z2 = 1. By considering the situation
geometrically, or otherwise, identify the nature of the constrained stationary points.

How would your answers differ if, instead, the stationary points of the function
x2 + 2y2 − z2 were calculated subject to the constraint x2 + y2 + z2 = 1?
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7A Methods
The Fourier transform h̃(k) of the function h(x) is defined by

h̃(k) =

∞∫

−∞

h(x)e−ikxdx.

(i) State the inverse Fourier transform formula expressing h(x) in terms of h̃(k).

(ii) State the convolution theorem for Fourier transforms.

(iii) Find the Fourier transform of the function f(x) = e−|x|. Hence show that the
convolution of the function f(x) = e−|x| with itself is given by the integral expression

2

π

∞∫

−∞

eikx

(1 + k2)2
dk.

8C Quantum Mechanics
A particle of mass m and energy E, incident from x = −∞, scatters off a delta

function potential at x = 0. The time independent Schrödinger equation is

− ~2

2m

d2ψ

dx2
+ Uδ(x)ψ = Eψ

where U is a positive constant. Find the reflection and transmission probabilities.

9H Markov Chains
Let (Xn)n>0 be a Markov chain with state space S.

(i) What does it mean to say that (Xn)n>0 has the strong Markov property? Your answer
should include the definition of the term stopping time.

(ii) Show that

P(Xn = i at least k times |X0 = i) =
[
P(Xn = i at least once |X0 = i)

]k

for a state i ∈ S. You may use without proof the fact that (Xn)n>0 has the strong Markov
property.
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SECTION II

10G Linear Algebra
(i) Let A be an n × n complex matrix and f(X) a polynomial with complex

coefficients. By considering the Jordan normal form of A or otherwise, show that if the
eigenvalues of A are λ1, . . . , λn then the eigenvalues of f(A) are f(λ1), . . . , f(λn).

(ii) Let B =




a d c b
b a d c
c b a d
d c b a


. Write B as B = f(A) for a polynomial f with

A =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


, and find the eigenvalues of B.

[Hint: compute the powers of A.]

11F Groups, Rings and Modules
Suppose that A is a matrix over Z. What does it mean to say that A can be brought

to Smith normal form?

Show that the structure theorem for finitely generated modules over Z (which you
should state) follows from the existence of Smith normal forms for matrices over Z.

Bring the matrix

(
−4 −6
2 2

)
to Smith normal form.

Suppose that M is the Z-module with generators e1, e2, subject to the relations

−4e1 + 2e2 = −6e1 + 2e2 = 0 .

Describe M in terms of the structure theorem.
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12E Analysis II
Consider a map f : Rn → Rm.

Assume f is differentiable at x and let Dxf denote the derivative of f at x. Show
that

Dxf(v) = lim
t→0

f(x+ tv)− f(x)

t

for any v ∈ Rn.

Assume now that f is such that for some fixed x and for every v ∈ Rn the limit

lim
t→0

f(x+ tv)− f(x)

t

exists. Is it true that f is differentiable at x? Justify your answer.

LetMk denote the set of all k×k real matrices which is identified with Rk2 . Consider
the function f : Mk → Mk given by f(A) = A3. Explain why f is differentiable. Show
that the derivative of f at the matrix A is given by

DAf(H) = HA2 +AHA+A2H

for any matrix H ∈ Mk. State carefully the inverse function theorem and use it to prove
that there exist open sets U and V containing the identity matrix such that given B ∈ V
there exists a unique A ∈ U such that A3 = B.

13E Complex Analysis
Let g : C → C be a continuous function such that

∫

Γ
g(z) dz = 0

for any closed curve Γ which is the boundary of a rectangle in C with sides parallel to the
real and imaginary axes. Prove that g is analytic.

Let f : C → C be continuous. Suppose in addition that f is analytic at every point
z ∈ C with non-zero imaginary part. Show that f is analytic at every point in C.

Let H be the upper half-plane of complex numbers z with positive imaginary part
ℑ(z) > 0. Consider a continuous function F : H ∪ R → C such that F is analytic on H
and F (R) ⊂ R. Define f : C → C by

f(z) =





F (z) if ℑ(z) > 0

F (z) if ℑ(z) 6 0.

Show that f is analytic.
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14F Geometry
Suppose that η(u) = (f(u), 0, g(u)) is a unit speed curve in R3. Show that the

corresponding surface of revolution S obtained by rotating this curve about the z-axis has
Gaussian curvature K = −(d2f/du2)/f .

15A Methods
A uniform stretched string of length L, density per unit length µ and tension T = µc2

is fixed at both ends. Its transverse displacement is given by y(x, t) for 0 6 x 6 L . The
motion of the string is resisted by the surrounding medium with a resistive force per unit

length of −2kµ
∂y

∂t
.

(i) Show that the equation of motion of the string is

∂2y

∂t2
+ 2k

∂y

∂t
− c2

∂2y

∂x2
= 0

provided that the transverse motion can be regarded as small.

(ii) Suppose now that k =
πc

L
. Find the displacement of the string for t > 0 given

the initial conditions

y(x, 0) = A sin
(πx
L

)
and

∂y

∂t
(x, 0) = 0.

(iii) Sketch the transverse displacement at x =
L

2
as a function of time for t > 0.

16C Quantum Mechanics
For an electron in a hydrogen atom, the stationary state wavefunctions are of the

form ψ(r, θ, φ) = R(r)Ylm(θ, φ), where in suitable units R obeys the radial equation

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R+ 2

(
E +

1

r

)
R = 0 .

Explain briefly how the terms in this equation arise.

This radial equation has bound state solutions of energy E = En, where
En = − 1

2n2 (n = 1, 2, 3, . . . ). Show that when l = n − 1, there is a solution of the

form R(r) = rαe−r/n, and determine α. Find the expectation value 〈r〉 in this state.

What is the total degeneracy of the energy level with energy En?
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17C Electromagnetism
Show, using the vacuum Maxwell equations, that for any volume V with surface S,

d

dt

∫

V

(
ǫ0
2
E · E+

1

2µ0
B ·B

)
dV =

∫

S

(
− 1

µ0
E×B

)
· dS .

What is the interpretation of this equation?

A uniform straight wire, with a circular cross section of radius r, has conductivity
σ and carries a current I. Calculate 1

µ0
E × B at the surface of the wire, and hence find

the flux of 1
µ0
E × B into unit length of the wire. Relate your result to the resistance of

the wire, and the rate of energy dissipation.

18D Fluid Dynamics
Water of constant density ρ flows steadily through a long cylindrical tube, the wall

of which is elastic. The exterior radius of the tube at a distance z along the tube, r(z), is
determined by the pressure in the tube, p(z), according to

r(z) = r0 + b(p(z) − p0),

where r0 and p0 are the radius and pressure far upstream (z → −∞), and b is a positive
constant.

The interior radius of the tube is r(z)− h(z), where h(z), the thickness of the wall,
is a given slowly varying function of z which is zero at both ends of the pipe. The velocity
of the water in the pipe is u(z) and the water enters the pipe at velocity V .

Show that u(z) satisfies

H = 1− v−
1
2 + 1

4k(1− v2) ,

where H =
h

r0
, v =

u

V
and k =

2bρV 2

r0
. Sketch the graph of H against v.

Let Hm be the maximum value of H in the tube. Show that the flow is only possible
if Hm does not exceed a certain critical value Hc. Find Hc in terms of k.

Show that, under conditions to be determined (which include a condition on the
value of k), the water can leave the pipe with speed less than V .
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19B Numerical Analysis
A Gaussian quadrature formula provides an approximation to the integral

∫ 1

−1
(1− x2)f(x) dx ≈

ν∑

k=1

bkf(ck)

which is exact for all f(x) that are polynomials of degree 6 (2ν − 1).

Write down explicit expressions for the bk in terms of integrals, and explain why it
is necessary that the ck are the zeroes of a (monic) polynomial pν of degree ν that satisfies∫ 1
−1(1− x2)pν(x)q(x) dx = 0 for any polynomial q(x) of degree less than ν.

The first such polynomials are p0 = 1, p1 = x, p2 = x2 − 1/5, p3 = x3 − 3x/7. Show
that the Gaussian quadrature formulae for ν = 2, 3 are

ν = 2 :
2

3

[
f(− 1√

5
) + f( 1√

5
)
]
,

ν = 3 :
14

45

[
f(−

√
3
7
) + f(

√
3
7
)
]
+

32

45
f(0).

Verify the result for ν = 3 by considering f(x) = 1, x2, x4.

20H Statistics
Consider the general linear model

Y = Xβ + ǫ

where X is a known n × p matrix, β is an unknown p × 1 vector of parameters, and ǫ
is an n × 1 vector of independent N(0, σ2) random variables with unknown variance σ2.
Assume the p× p matrix XTX is invertible.

(i) Derive the least squares estimator β̂ of β.

(ii) Derive the distribution of β̂. Is β̂ an unbiased estimator of β?

(iii) Show that 1
σ2 ‖Y −Xβ̂‖2 has the χ2 distribution with k degrees of freedom, where k

is to be determined.

(iv) Let β̃ be an unbiased estimator of β of the form β̃ = CY for some p × n matrix C.
By considering the matrix E[(β̂ − β̃)(β̂ − β)T ] or otherwise, show that β̂ and β̂ − β̃ are
independent.

[You may use standard facts about the multivariate normal distribution as well as results
from linear algebra, including the fact that I −X(XTX)−1XT is a projection matrix of
rank n− p, as long as they are carefully stated.]
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21H Optimization
(i) What does it mean to say a set C ⊆ Rn is convex?

(ii) What does it mean to say z is an extreme point of a convex set C?

Let A be an m× n matrix, where n > m. Let b be an m× 1 vector, and let

C = {x ∈ Rn : Ax = b, x > 0}

where the inequality is interpreted component-wise.

(iii) Show that C is convex.

(iv) Let z = (z1, . . . , zn)
T be a point in C with the property that at least m + 1 indices

i are such that zi > 0. Show that z is not an extreme point of C. [Hint: If r > m, then
any set of r vectors in Rm is linearly dependent.]

(v) Now suppose that every set of m columns of A is linearly independent. Let
z = (z1, . . . , zn)

T be a point in C with the property that at most m indices i are such that
zi > 0. Show that z is an extreme point of C.

END OF PAPER
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