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SECTION I

1C Differential Equations

The size of the population of ducks living on the pond of a certain Cambridge college

is governed by the equation
dN

dt
= αN − N2,

where N = N(t) is the number of ducks at time t and α is a positive constant. Given that

N(0) = 2α, find N(t). What happens as t → ∞?

2C Differential Equations

Solve the differential equation

d2y

dx2
− 5

dy

dx
+ 6y = e3x

subject to the conditions y = dy/dx = 0 when x = 0.

3F Probability

Consider a pair of jointly normal random variables X1, X2, with mean values µ1,

µ2, variances σ2
1 , σ2

2 and correlation coefficient ρ with |ρ| < 1.

(a) Write down the joint probability density function for (X1,X2).

(b) Prove that X1, X2 are independent if and only if ρ = 0.

4F Probability

Prove the law of total probability: if A1, . . ., An are pairwise disjoint events with

P(Ai) > 0, and B ⊆ A1 ∪ . . . ∪ An then P(B) =
n
∑

i=1
P(Ai)P(B|Ai).

There are n people in a lecture room. Their birthdays are independent random

variables, and each person’s birthday is equally likely to be any of the 365 days of the

year. By using the bound 1 − x 6 e−x for 0 6 x 6 1, prove that if n > 29 then the

probability that at least two people have the same birthday is at least 2/3.

[In calculations, you may take
√

1 + 8 × 365 ln 3 = 56.6.]
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SECTION II

5C Differential Equations

Consider the first-order ordinary differential equation

dy

dx
= f1(x)y + f2(x)yp, (∗)

where y > 0 and p is a positive constant with p 6= 1. Let u = y1−p. Show that u satisfies

du

dx
= (1 − p)[f1(x)u + f2(x)].

Hence, find the general solution of equation (∗) when f1(x) = 1, f2(x) = x.

Now consider the case f1(x) = 1, f2(x) = −α2, where α is a non-zero constant. For

p > 1 find the two equilibrium points of equation (∗), and determine their stability. What

happens when 0 < p < 1?

6C Differential Equations

Consider the second-order ordinary differential equation

ẍ + 2kẋ + ω2x = 0 ,

where x = x(t) and k and ω are constants with k > 0. Calculate the general solution in
the cases (i) k < ω, (ii) k = ω, (iii) k > ω.

Now consider the system

ẍ + 2kẋ + ω2x =

{

a when ẋ > 0

0 when ẋ 6 0

with x(0) = x1, ẋ(0) = 0, where a and x1 are positive constants. In the case k < ω
find x(t) in the ranges 0 6 t 6 π/p and π/p 6 t 6 2π/p, where p =

√
ω2 − k2. Hence,

determine the value of x1 for which x(t) is periodic. For k > ω can x(t) ever be periodic?
Justify your answer.
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7C Differential Equations

Consider the differential equation

x
d2y

dx2
+ (c − x)

dy

dx
− y = 0 ,

where c is a constant with 0 < c < 1. Determine two linearly independent series solutions

about x = 0, giving an explicit expression for the coefficient of the general term in each

series.

Determine the solution of

x
d2y

dx2
+ (c − x)

dy

dx
− y = x

for which y(0) = 0 and dy/dx is finite at x = 0.

8C Differential Equations

(a) The function y(x, t) satisfies the forced wave equation

∂2y

∂x2
− ∂2y

∂t2
= 4

with initial conditions y(x, 0) = sinx and ∂y/∂t(x, 0) = 0. By making the change of

variables u = x + t and v = x − t, show that

∂2y

∂u∂v
= 1 .

Hence, find y(x, t).

(b) The thickness of an axisymmetric drop of liquid spreading on a flat surface satisfies

∂h

∂t
=

1

r

∂

∂r

(

rh3 ∂h

∂r

)

,

where h = h(r, t) is the thickness of the drop, r is the radial coordinate on the surface

and t is time. The drop has radius R(t). The boundary conditions are that ∂h/∂r = 0 at

r = 0 and h(r, t) ∝ (R(t) − r)1/3 as r → R(t).

Show that

M =

∫ R(t)

0
rhdr

is independent of time. Given that h(r, t) = f(r/tα)t−1/4 for some function f (which need

not be determined) and that R(t) is proportional to tα, find α.

Part IA, Paper 2



5

9F Probability

I throw two dice and record the scores S1 and S2. Let X be the sum S1 + S2 and
Y the difference S1 − S2.

(a) Suppose that the dice are fair, so the values 1, . . . , 6 are equally likely. Calculate
the mean and variance of both X and Y . Find all the values of x and y at which
the probabilities P(X = x), P(Y = y) are each either greatest or least. Determine
whether the random variables X and Y are independent.

(b) Now suppose that the dice are unfair, and that they give the values 1, . . . , 6 with
probabilities p1, . . . , p6 and q1, . . . , q6, respectively. Write down the values of P(X =
2), P(X = 7) and P(X = 12). By comparing P(X = 7) with

√

P(X = 2) P(X = 12)
and applying the arithmetic-mean–geometric-mean inequality, or otherwise, show
that the probabilities P(X = 2), P(X = 3), . . ., P(X = 12) cannot all be equal.
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10F Probability

No-one in their right mind would wish to be a guest at the Virtual Reality Hotel.

See the diagram below showing a part of the floor plan of the hotel where rooms are

represented by black or white circles. The hotel is built in a shape of a tree: there is one

room (reception) situated at level 0, three rooms at level 1, nine at level 2, and so on.

The rooms are joined by corridors to their neighbours: each room has four neighbours,

apart from the reception, which has three neighbours. Each corridor is blocked with

probability 1/3 and open for passage in both directions with probability 2/3, independently

for different corridors. Every room at level N , where N is a given very large number, has an

open window through which a guest can (and should) escape into the street. An arriving

guest is placed in the reception and then wanders freely, insofar as the blocked corridors

allow.

. . .

. . .

. . .

. . .reception

0 1 2 N

. . .

. . .

. . .

level:

(a) Prove that the probability that the guest will not escape is close to a solution of the

equation φ(t) = t, where φ(t) is a probability-generating function that you should

specify.

(b) Hence show that the guest’s chance of escape is approximately (9 − 3
√

3)/4.
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11F Probability

Let X and Y be two independent uniformly distributed random variables on [0, 1].

Prove that EXk =
1

k + 1
and E(XY )k =

1

(k + 1)2
, and find E(1 − XY )k, where k is a

non-negative integer.

Let (X1, Y1), . . . , (Xn, Yn) be n independent random points of the unit square

S = {(x, y) : 0 6 x, y 6 1}. We say that (Xi, Yi) is a maximal external point if, for each

j = 1, . . . , n, either Xj 6 Xi or Yj 6 Yi. (For example, in the figure below there are three

maximal external points.) Determine the expected number of maximal external points.

.

.
.

.
..
.

.

.
.
. ..

.
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12F Probability

Let A1, A2 and A3 be three pairwise disjoint events such that the union A1∪A2∪A3

is the full event and P(A1), P(A2), P(A3) > 0. Let E be any event with P(E) > 0. Prove
the formula

P(Ai|E) =
P(Ai)P(E|Ai)

∑

j=1,2,3
P(Aj)P(E|Aj)

.

A Royal Navy speedboat has intercepted an abandoned cargo of packets of the
deadly narcotic spitamin. This sophisticated chemical can be manufactured in only three
places in the world: a plant in Authoristan (A), a factory in Bolimbia (B) and the
ultramodern laboratory on board of a pirate submarine Crash (C) cruising ocean waters.
The investigators wish to determine where this particular cargo comes from, but in the
absence of prior knowledge they have to assume that each of the possibilities A, B and C
is equally likely.

It is known that a packet from A contains pure spitamin in 95% of cases and is
contaminated in 5% of cases. For B the corresponding figures are 97% and 3%, and for C
they are 99% and 1%.

Analysis of the captured cargo showed that out of 10000 packets checked, 9800
contained the pure drug and the remaining 200 were contaminated. On the basis of this
analysis, the Royal Navy captain estimated that 98% of the packets contain pure spitamin
and reported his opinion that with probability roughly 0.5 the cargo was produced in B
and with probability roughly 0.5 it was produced in C.

Assume that the number of contaminated packets follows the binomial distribution
Bin(10000, δ/100) where δ equals 5 for A, 3 for B and 1 for C. Prove that the captain’s
opinion is wrong: there is an overwhelming chance that the cargo comes from B.

[Hint: Let E be the event that 200 out of 10000 packets are contaminated. Compare

the ratios of the conditional probabilities P(E|A), P(E|B) and P(E|C). You may find it

helpful that ln 3 ≈ 1.09861 and ln 5 ≈ 1.60944. You may also take ln(1−δ/100) ≈ −δ/100.]

END OF PAPER
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