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1/I/1H Number Theory

Define the continued fraction of a real number α.

Compute the continued fraction of
√

19.

2/I/1H Number Theory

What does it mean for a positive definite quadratic form with integer coefficients
to be reduced?

Show that there are precisely three reduced forms of this type with discriminant
equal to −23.

Which odd primes are properly represented by some positive definite binary
quadratic form (with integer coefficients) of discriminant −23?

3/I/1H Number Theory

Prove that, for all x > 2, we have∑
p6x

1
p
> log log x− 1

2
.

[You may assume that, for 0 < u < 1,

− log(1− u)− u < u2

2(1− u)
.]

3/II/11H Number Theory

State the reciprocity law for the Jacobi symbol.

Let a be an odd integer > 1, which is not a square. Prove that there exists a
positive integer n such that n ≡ 1 mod 4 and(n

a

)
= −1.

Prove further that there exist infinitely many prime numbers p such that(
a

p

)
= −1.
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4/I/1H Number Theory

Let p be an odd prime number. Assuming that the multiplicative group of Z/pZ is
cyclic, prove that the multiplicative group of units of Z/pnZ is cyclic for all n > 1.

Find an integer a such that its residue class in Z/11nZ generates the multiplicative
group of units for all n > 1.

4/II/11H Number Theory

Let N > 1 be an integer, which is not a square, and let pk/qk (k = 1, 2, . . .) be the
convergents to

√
N . Prove that

|p2
k − q2

kN | < 2
√
N (k = 1, 2, . . .).

Explain briefly how this result can be used to generate a factor base B, and a set of
B-numbers which may lead to a factorization of N .
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1/I/2F Topics in Analysis

Let P0, P1, P2, . . . be non-zero orthogonal polynomials on an interval [a, b] such that
the degree of Pj is equal to j for every j = 0, 1, 2, . . . , where the orthogonality is with
respect to the inner product < f, g > =

∫ b
a
fg . If f is any continuous function on [a, b]

orthogonal to P0, P1, . . . , Pn−1 and not identically zero, prove that f must have at least
n distinct zeros in (a, b).

2/II/11F Topics in Analysis

Let L : C([0, 1])→ C([0, 1]) be an operator satisfying the conditions

(i) Lf > 0 for any f ∈ C([0, 1]) with f > 0,

(ii) L(af + bg) = aLf + bLg for any f, g ∈ C([0, 1]) and a, b ∈ R and

(iii) Zf ⊆ ZLf for any f ∈ C([0, 1]), where Zf denotes the set of zeros of f .

Prove that there exists a function h ∈ C([0, 1]) with h > 0 such that Lf = hf for
every f ∈ C([0, 1]).

2/I/2F Topics in Analysis

(a) State Brouwer’s fixed point theorem in the plane and prove that the statement is
equivalent to non-existence of a continuous retraction of the closed disk D to its boundary
∂D.

(b) Use Brouwer’s fixed point theorem to prove that there is a complex number z
in the closed unit disc such that z6 − z5 + 2z2 + 6z + 1 = 0.
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3/II/12F Topics in Analysis

(a) State Liouville’s theorem on approximation of algebraic numbers by rationals.

(b) Consider the continued fraction expression

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

in which the coefficients an are all positive integers forming an unbounded set. Let pn

qn
be

the nth convergent. Prove that ∣∣∣∣x− pn
qn

∣∣∣∣ 6 1
qnqn+1

and use this inequality together with Liouville’s theorem to deduce that x2 is irrational.

[ You may assume without proof that, for n = 1, 2, 3, . . .,(
pn+1 pn
qn+1 qn

)
=
(
pn pn−1

qn qn−1

)(
an+1 1

1 0

)
.]

3/I/2F Topics in Analysis

(a) State the Baire category theorem in its closed sets version.

(b) Let fn : R → R be a continuous function for each n = 1, 2, 3, . . . and suppose
that there is a function f : R → R such that fn(x) → f(x) for each x ∈ R. Prove that
for each ε > 0, there exists an integer N0 and a non-empty open interval I ⊂ R such that
|fn(x)− f(x)| 6 ε for all n > N0 and x ∈ I.

[Hint: consider, for N = 1, 2, 3, . . ., the sets

QN = {x ∈ R : |fn(x)− fm(x)| 6 ε : ∀n,m > N}.]

4/I/2F Topics in Analysis

(a) State Runge’s theorem on uniform approximation of analytic functions by
polynomials.

(b) Suppose f is analytic on

Ω = {z ∈ C : |z| < 1} \ {z ∈ C : Im(z) = 0, Re(z) 6 0}.
Prove that there exists a sequence of polynomials which converges to f uniformly on
compact subsets of Ω.
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1/I/3G Geometry of Group Actions

Prove that an isometry of Euclidean space R3 is an affine transformation.

Deduce that a finite group of isometries of R3 has a common fixed point.

1/II/11G Geometry of Group Actions

What is meant by an inversion in a circle in C ∪ {∞} ? Show that a composition
of two inversions is a Möbius transformation.

Hence, or otherwise, show that if C+ and C− are two disjoint circles in C, then the
composition of the inversions in C+ and C− has two fixed points.

2/I/3G Geometry of Group Actions

State a theorem classifying lattices in R2. Define a frieze group.

Show there is a frieze group which is isomorphic to Z but is not generated by a
translation, and draw a picture whose symmetries are this group.

3/I/3G Geometry of Group Actions

Let dimH denote the Hausdorff dimension of a set in Rn. Prove that if dimH(F ) < 1
then F is totally disconnected.

[You may assume that if f : Rn → Rm is a Lipschitz map then

dimH(f(F )) 6 dimH(F ).]

4/I/3G Geometry of Group Actions

Define the hyperbolic metric (in the sense of metric spaces) on the 3-ball.

Given a finite set in hyperbolic 3-space, show there is at least one closed ball of
minimal radius containing that set.
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4/II/12G Geometry of Group Actions

What does it mean for a subgroup G of the Möbius group to be discrete?

Show that a discrete group necessarily acts properly discontinuously in hyperbolic
3-space.

[You may assume that a discrete subgroup of a matrix group is a closed subset.]

Part II 2008



8

1/I/4G Coding and Cryptography

Define the entropy H(X) of a random variable X that takes no more than N
different values. What are the maximum and the minimum values for the entropy for a
fixed value of N? Explain when the maximum and minimum are attained. You should
prove any inequalities that you use.

2/I/4G Coding and Cryptography

Describe briefly the Shannon–Fano and Huffman binary codes for a finite alphabet.
Find examples of such codes for the alphabet A = {a, b, c, d} when the four letters are
taken with probabilities 0.4, 0.3, 0.2 and 0.1 respectively.

1/II/12G Coding and Cryptography

State Shannon’s Noisy Coding Theorem for a binary symmetric channel.

Define the mutual information of two discrete random variables X and Y . Prove
that the mutual information is symmetric and non-negative. Define also the information
capacity of a channel.

A channel transmits numbers chosen from the alphabet A = {0, 1, 2} and has
transition matrix  1− 2β β β

β 1− 2β β
β β 1− 2β


for a number β with 0 6 β 6 1

3 . Calculate the information capacity of the channel.

3/I/4G Coding and Cryptography

Define the Hamming code h : F4
2 → F7

2 and prove that the minimum distance
between two distinct code words is 3. Explain how the Hamming code allows one error to
be corrected.

A new code c : F4
2 → F8

2 is obtained by using the Hamming code for the first 7 bits
and taking the last bit as a check digit on the previous 7. Find the minimum distance
between two distinct code words for this code. How many errors can this code detect?
How many errors can it correct?
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2/II/12G Coding and Cryptography

Describe the Rabin cipher with modulus N , explaining how it can be deciphered
by the intended recipient and why it is difficult for an interceptor to decipher it.

The Bursars’ Committee decides to communicate using Rabin ciphers to maintain
confidentiality. The secretary of the committee encrypts a message, thought of as a positive
integer m, using the Rabin cipher with modulus N (with 0 < m < N) and publishes both
the encrypted message and the modulus. A foolish bursar deciphers this message to read
it but then encrypts it again using a Rabin cipher with a different modulus N ′ (with
m < N ′) and publishes the newly encrypted message and N ′. The president of CUSU,
who happens to be a talented mathematician, knows that this has happened. Explain
how the president can work out what the original message was using the two different
encrypted versions.

Can the president of CUSU also decipher other messages sent out by the Bursars’
Committee?

4/I/4G Coding and Cryptography

What is a binary cyclic code of length N? What is the generator polynomial for
such a cyclic code? Prove that the generator polynomial is a factor of XN − 1 over the
field F2.

Find all the binary cyclic codes of length 5 .
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1/I/5J Statistical Modelling

Consider the following Binomial generalized linear model for data y1, . . . , yn, with
logit link function. The data y1, . . . , yn are regarded as observed values of independent
random variables Y1, . . . , Yn, where

Yi ∼ Bin(1, µi), log
µi

1− µi = β>xi, i = 1, . . . , n,

where β is an unknown p-dimensional parameter, and where x1, . . . , xn are known p-
dimensional explanatory variables. Write down the likelihood function for y = (y1, . . . , yn)
under this model.

Show that the maximum likelihood estimate β̂ satisfies an equation of the form
X>y = X>µ̂, where X is the p × n matrix with rows x>1 , . . . , x

>
n , and where µ̂ =

(µ̂1, . . . , µ̂n), with µ̂i a function of xi and β̂, which you should specify.

Define the deviance D(y; µ̂) and find an explicit expression for D(y; µ̂) in terms of
y and µ̂ in the case of the model above.

Part II 2008



11

1/II/13J Statistical Modelling

Consider performing a two-way analysis of variance (ANOVA) on the following
data:

> Y[,,1] Y[,,2] Y[,,3]

[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 2.72 6.66 [1,] -5.780 1.7200 [1,] -2.2900 0.158

[2,] 4.88 5.98 [2,] -4.600 1.9800 [2,] -3.1000 1.190

[3,] 3.49 8.81 [3,] -1.460 2.1500 [3,] -2.6300 1.190

[4,] 2.03 6.26 [4,] -1.780 0.7090 [4,] -0.2400 1.470

[5,] 2.39 8.50 [5,] -2.610 -0.5120 [5,] 0.0637 2.110

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, and comment on the hypothesis
tests which are performed under the summary and anova commands.

> K <- dim(Y)[1]

> I <- dim(Y)[2]

> J <- dim(Y)[3]

> c(I,J,K)

[1] 2 3 10

> y <- as.vector(Y)

> a <- gl(I, K, length(y))

> b <- gl(J, K * I, length(y))

> fit1 <- lm(y ~ a + b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7673 0.3032 12.43 < 2e-16 ***

a2 3.4542 0.3032 11.39 3.27e-16 ***

b2 -6.3215 0.3713 -17.03 < 2e-16 ***

b3 -5.8268 0.3713 -15.69 < 2e-16 ***

> anova(fit1)

Part II 2008



12

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 129.83 3.272e-16 ***

b 2 494.39 247.19 179.31 < 2.2e-16 ***

Residuals 56 77.20 1.38

The following R code fits a similar model. Briefly explain the difference between
this model and the one above. Based on the output of the anova call below, say whether
you prefer this model over the one above, and explain your preference.

> fit2 <- lm(y ~ a * b)

> anova(fit2)

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 125.6367 1.033e-15 ***

b 2 494.39 247.19 173.5241 < 2.2e-16 ***

a:b 2 0.27 0.14 0.0963 0.9084

Residuals 54 76.93 1.42

Finally, explain what is being calculated in the code below and give the value that
would be obtained by the final line of code.

> n <- I * J * K

> p <- length(coef(fit2))

> p0 <- length(coef(fit1))

> PY <- fitted(fit2)

> P0Y <- fitted(fit1)

> ((n - p)/(p - p0)) * sum((PY - P0Y)^2)/sum((y - PY)^2)
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2/I/5J Statistical Modelling

Suppose that we want to estimate the angles α, β and γ (in radians, say) of the
triangle ABC, based on a single independent measurement of the angle at each corner.
Suppose that the error in measuring each angle is normally distributed with mean zero
and variance σ2. Thus, we model our measurements yA, yB , yC as the observed values of
random variables

YA = α+ εA, YB = β + εB , YC = γ + εC ,

where εA, εB , εC are independent, each with distribution N(0, σ2). Find the maximum
likelihood estimate of α based on these measurements.

Can the assumption that εA, εB , εC ∼ N(0, σ2) be criticized? Why or why not?

3/I/5J Statistical Modelling

Consider the linear model Y = Xβ + ε. Here, Y is an n-dimensional vector of
observations, X is a known n× p matrix, β is an unknown p-dimensional parameter, and
ε ∼ Nn(0, σ2I), with σ2 unknown. Assume that X has full rank and that p� n. Suppose
that we are interested in checking the assumption ε ∼ Nn(0, σ2I). Let Ŷ = Xβ̂, where
β̂ is the maximum likelihood estimate of β. Write in terms of X an expression for the
projection matrix P = (pij : 1 6 i, j 6 n) which appears in the maximum likelihood
equation Ŷ = Xβ̂ = PY .

Find the distribution of ε̂ = Y − Ŷ , and show that, in general, the components of
ε̂ are not independent.

A standard procedure used to check our assumption on ε is to check whether the
studentized fitted residuals

η̂i =
ε̂i

σ̃
√

1− pii , i = 1, . . . , n,

look like a random sample from an N(0, 1) distribution. Here,

σ̃2 =
1

n− p ||Y −Xβ̂||
2.

Say, briefly, how you might do this in R.

This procedure appears to ignore the dependence between the components of ε̂
noted above. What feature of the given set-up makes this reasonable?
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4/I/5J Statistical Modelling

A long-term agricultural experiment had n = 90 grassland plots, each 25m × 25m,
differing in biomass, soil pH, and species richness (the count of species in the whole plot).
While it was well-known that species richness declines with increasing biomass, it was not
known how this relationship depends on soil pH. In the experiment, there were 30 plots of
“low pH”, 30 of “medium pH” and 30 of “high pH”. Three lines of the data are reproduced
here as an aid.

> grass[c(1,31, 61), ]

pH Biomass Species

1 high 0.4692972 30

31 mid 0.1757627 29

61 low 0.1008479 18

Briefly explain the commands below. That is, explain the models being fitted.

> fit1 <- glm(Species ~ Biomass, family = poisson)

> fit2 <- glm(Species ~ pH + Biomass, family = poisson)

> fit3 <- glm(Species ~ pH * Biomass, family = poisson)

Let H1, H2 and H3 denote the hypotheses represented by the three models and fits.
Based on the output of the code below, what hypotheses are being tested, and which of
the models seems to give the best fit to the data? Why?

> anova(fit1, fit2, fit3, test = "Chisq")

Analysis of Deviance Table

Model 1: Species ~ Biomass

Model 2: Species ~ pH + Biomass

Model 3: Species ~ pH * Biomass

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 88 407.67

2 86 99.24 2 308.43 1.059e-67

3 84 83.20 2 16.04 3.288e-04

Finally, what is the value obtained by the following command?

> mu.hat <- exp(predict(fit2))

> -2 * (sum(dpois(Species, mu.hat, log = TRUE)) - sum(dpois(Species,

+ Species, log = TRUE)))
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4/II/13J Statistical Modelling

Consider the following generalized linear model for responses y1, . . . , yn as a function
of explanatory variables x1, . . . , xn, where xi = (xi1, . . . , xip)> for i = 1, . . . , n. The
responses are modelled as observed values of independent random variables Y1, . . . , Yn,
with

Yi ∼ ED(µi, σ2
i ), g(µi) = x>i β, σ2

i = σ2ai,

Here, g is a given link function, β and σ2 are unknown parameters, and the ai are treated
as known.

[Hint: recall that we write Y ∼ ED(µ, σ2) to mean that Y has density function of
the form

f(y;µ, σ2) = a(σ2, y) exp
{

1
σ2

[θ(µ)y −K(θ(µ))]
}

for given functions a and θ.]

[ You may use without proof the facts that, for such a random variable Y ,

E(Y ) = K ′(θ(µ)), var(Y ) = σ2K ′′(θ(µ)) ≡ σ2V (µ).]

Show that the score vector and Fisher information matrix have entries:

Uj(β) =
n∑
i=1

(yi − µi)xij
σ2
i V (µi)g′(µi)

, j = 1, . . . , p,

and

ijk(β) =
n∑
i=1

xijxik
σ2
i V (µi)(g′(µi))2

, j, k = 1, . . . , p.

How do these expressions simplify when the canonical link is used?

Explain briefly how these two expressions can be used to obtain the maximum
likelihood estimate β̂ for β.
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1/I/6B Mathematical Biology

A gene product with concentration g is produced by a chemical S of concentration s,
is autocatalysed and degrades linearly according to the kinetic equation

dg

dt
= f(g, s) = s+ k

g2

1 + g2
− g,

where k > 0 is a constant.

First consider the case s = 0. Show that if k > 2 there are two positive steady
states, and determine their stability. Sketch the reaction rate f(g, 0).

Now consider s > 0. Show that there is a single steady state if s exceeds a critical
value. If the system starts in the steady state g = 0 with s = 0 and then s is increased
sufficiently before decreasing back to zero, show that a biochemical switch can be achieved
to a state g = g2, whose value you should determine.
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2/I/6B Mathematical Biology

The population dynamics of a species is governed by the discrete model

Nt+1 = f(Nt) = Nt exp
[
r

(
1− Nt

K

)]
,

where r and K are positive constants.

Determine the steady states and their eigenvalues. Show that a period-doubling
bifurcation occurs at r = 2.

Show graphically that the maximum possible population after t = 0 is

Nmax = f(K/r).

2/II/13B Mathematical Biology

Consider the nonlinear equation describing the invasion of a population u(x, t)

ut = muxx + f(u), (1)

with m > 0, f(u) = −u (u− r)(u− 1) and 0 < r < 1 a constant.

(a) Considering time-dependent spatially homogeneous solutions, show that there
are two stable and one unstable uniform steady states.

(b) In the case r = 1
2 , find the stationary ‘front’ which has

u→ 1 as x→ −∞ and u→ 0 as x→∞. (2)

[Hint: f(u) = F ′(u) where F (u) = − 1
4u

2(1− u)2 + 1
6 (r − 1

2 )u2(2u− 3).]

(c) Now consider travelling-wave solutions to (1) of the form u(x, t) = U(z) where
z = x− vt. Show that U satisfies an equation of the form

mÜ + v U̇ = −V ′(U),

where ˙( ) ≡ d

dz
( ) and ( )′ ≡ d

dU
( ) .

Sketch the form of V (U) for r = 1
2 , r > 1

2 and r < 1
2 . Using conditions (2), show

that
v

∫ ∞
−∞

U̇2 dz = F (1)− F (0).

Deduce how the sign of the travelling-wave velocity v depends on r.
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3/I/6B Mathematical Biology

An allosteric enzyme E reacts with a substrate S to produce a product P according
to the mechanism

S + E
k1



k−1

C1

k2
⇀ E + P

S + C1

k3



k−3

C2

k4
⇀ C1 + P,

where C1 and C2 are enzyme-substrate complexes. With lowercase letters denoting
concentrations, write down a system of differential equations based on the Law of Mass
Action which model this reaction mechanism.

The initial conditions are s = s0, e = e0, c1 = c2 = p = 0. Using u = s/s0,
vi = ci/e0, τ = k1e0t and ε = e0/s0, show that the nondimensional reaction mechanism
reduces to

du

dτ
= f(u, v1, v2) and ε

dvi
dτ

= gi(u, v1, v2) for i = 1, 2,

finding expressions for f , g1 and g2.

3/II/13B Mathematical Biology

Consider the activator-inhibitor system in the fast-inhibitor limit

ut = Duxx − u (u− r)(u− 1)− ρ (v − u),

0 = vxx − (v − u),

where D is small, 0 < r < 1 and 0 < ρ < 1.

Examine the linear stability of the state u = v = 0 using perturbations of the
form exp(ikx + σt). Sketch the growth-rate σ as a function of the wavenumber k. Find
the growth-rate of the most unstable wave, and so determine the boundary in the r-ρ
parameter plane which separates stable and unstable modes.

Show that the system is unchanged under the transformation u→ 1−u, v → 1− v
and r → 1 − r. Hence write down the equation for the boundary between stable and
unstable modes of the state u = v = 1.
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4/I/6B Mathematical Biology

A semi-infinite elastic filament lies along the positive x-axis in a viscous fluid. When
it is perturbed slightly to the shape y = h(x, t), it evolves according to

ζ ht = −Ahxxxx ,

where ζ characterises the viscous drag and A the bending stiffness. Motion is forced by
boundary conditions

h = h0 cos(ωt) and hxx = 0 at x = 0, while h → 0 as x → ∞.

Use dimensional analysis to find the characteristic length `(ω) of the disturbance.
Show that the steady oscillating solution takes the form

h(x, t) = h0 Re
[
e iωtF (η)

]
with η = x/`,

finding the ordinary differential equation for F .

Find two solutions for F which decay as x→∞. Without solving explicitly for the
amplitudes, show that h(x, t) is the superposition of two travelling waves which decay with
increasing x, one with crests moving to the left and one to the right. Which dominates?
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1/I/7A Dynamical Systems

Sketch the phase plane of the system

ẋ = y,

ẏ = −x+ x2 − ky,

(i) for k = 0 and (ii) for k = 1/10. Include in your sketches any trajectories that are the
separatrices of a saddle point. In case (ii) shade the domain of stability of the origin.

3/II/14A Dynamical Systems

Define the Poincaré index of a simple closed curve, not necessarily a trajectory, and
the Poincaré index of an isolated fixed point x0 for a dynamical system ẋ = f(x) in R2.
State the Poincaré index of a periodic orbit.

Consider the system
ẋ = y + ax− bx3,

ẏ = x3 − x,
where a and b are constants and a 6= 0.

(a) Find and classify the fixed points, and state their Poincaré indices.

(b) By considering a suitable function H(x, y), show that any periodic orbit Γ
satisfies ∮

Γ

(x− x3)(ax− bx3)dt = 0,

where x(t) is evaluated along the orbit.

(c) Deduce that if b/a < 1 then the second-order differential equation

ẍ− (a− 3bx2)ẋ+ x− x3 = 0

has no periodic solutions.

Part II 2008



21

2/I/7A Dynamical Systems

Explain the difference between a stationary bifurcation and an oscillatory bifurca-
tion for a fixed point x0 of a dynamical system ẋ = f(x;µ) in Rn with a real parameter
µ.

The normal form of a Hopf bifurcation in polar coordinates is

ṙ = µr − ar3 +O(r5),

θ̇ = ω + cµ− br2 +O(r4),

where a, b, c and ω are constants, a 6= 0, and ω > 0. Sketch the phase plane near the
bifurcation for each of the cases (i) µ < 0 < a, (ii) 0 < µ, a, (iii) µ, a < 0 and (iv)
a < 0 < µ.

Let R be the radius and T the period of the limit cycle when one exists. Sketch
how R varies with µ for the case when the limit cycle is subcritical. Find the leading-order
approximation to dT/dµ for |µ| � 1.

4/II/14A Dynamical Systems

Explain the difference between a hyperbolic and a nonhyperbolic fixed point x0 for
a dynamical system ẋ = f(x) in Rn.

Consider the system in R2, where µ is a real parameter,

ẋ = x(µ− x+ y2),

ẏ = y(1− x− y2).

Show that the fixed point (µ, 0) has a bifurcation when µ = 1, while the fixed points
(0,±1) have a bifurcation when µ = −1.

[The fixed point at (0,−1) should not be considered further.]

Analyse each of the bifurcations at (µ, 0) and (0, 1) in turn as follows. Make a
change of variable of the form X = x − x0(µ), ν = µ − µ0. Identify the (non-extended)
stable and centre linear subspaces at the bifurcation in terms of X and Y . By finding
the leading-order approximation to the extended centre manifold, construct the evolution
equation on the extended centre manifold, and determine the type of bifurcation. Sketch
the local bifurcation diagram, showing which fixed points are stable.

[Hint: the leading-order approximation to the extended centre manifold of the
bifurcation at (0, 1) is Y = aX for some coefficient a.]

Show that there is another fixed point in y > 0 for µ < 1, and that this fixed point
connects the two bifurcations.
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3/I/7A Dynamical Systems

State the normal-form equations for (i) a saddle-node bifurcation, (ii) a transcritical
bifurcation and (iii) a pitchfork bifurcation, for a one-dimensional map xn+1 = F (xn;µ).

Consider a period-doubling bifurcation of the form

xn+1 = −xn + α+ βxn + γx2
n + δx3

n +O(x4
n),

where xn = O(µ1/2), α, β = O(µ), and γ, δ = O(1) as µ→ 0. Show that

Xn+2 = Xn + µ̂Xn −AX3
n +O(X4

n),

where Xn = xn − 1
2α, and the parameters µ̂ and A are to be identified in terms of α, β,

γ and δ. Deduce the condition for the bifurcation to be supercritical.

4/I/7A Dynamical Systems

Let F : I → I be a continuous one-dimensional map of an interval I ⊂ R. State
when F is chaotic according to Glendinning’s definition.

Prove that if F has a 3-cycle then F 2 has a horseshoe.

[You may assume the Intermediate Value Theorem.]
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1/I/8C Further Complex Methods

The function F is defined by

F (z) =
∫ ∞

0

tz−1

(t+ 1)2
dt.

For which values of z does the integral converge?

Show that, for these values,

F (z) =
π(1− z)
sin(πz)

.

2/I/8C Further Complex Methods

The Beta function is defined for Re z > 0 by

B(z, q) =
∫ 1

0

tq−1(1− t)z−1dt (Re q > 0)

and by analytic continuation elsewhere in the complex z-plane.

Show that (
z + q

z

)
B(z + 1, q) = B(z, q)

and explain how this result can be used to obtain the analytic continuation of B(z, q).
Hence show that B(z, q) is analytic except for simple poles and find the residues at the
poles.
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3/I/8C Further Complex Methods

What is the effect of the Möbius transformation z → z

z − 1
on the points z = 0,

z =∞ and z = 1?

By considering

(z − 1)−aP

 0 ∞ 1
0 a 0 z(z − 1)−1

1− c c− b b− a

 ,

or otherwise, show that (z − 1)−aF (a, c− b; c; z(z − 1)−1) is a branch of the P -function

P

 0 ∞ 1
0 a 0 z

1− c b c− a− b

 .

Give a linearly independent branch.

1/II/14C Further Complex Methods

Show that under the change of variable z = sin2 x the equation

d2w

dx2
+ n2w = 0

becomes
d2w

dz2
+

2z − 1
2z(z − 1)

dw

dz
− n2

4(z − 1)z
w = 0.

Show that this is a Papperitz equation and that the corresponding P -function is

P


0 ∞ 1
0 1

2n 0 z
1
2 − 1

2n
1
2

 .

Deduce that F ( 1
2n,− 1

2n; 1
2 ; sin2 x) = cosnx.
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4/I/8C Further Complex Methods

The Hilbert transform f̂ of a function f is defined by

f̂(t) =
1
π
P
∫ ∞
−∞

f(τ)
t− τ dτ,

where P denotes the Cauchy principal value.

Show that the Hilbert transform of
sin t
t

is
1− cos t

t
.

2/II/14C Further Complex Methods

(i) The function f is defined by

f(z) =
∫
C

tz−1dt ,

where C is the circle |t| = r, described anti-clockwise starting on the positive real axis and
where the value of tz−1 at each point on C is determined by analytic continuation along
C with arg t = 0 at the starting point. Verify by direct integration that f is an entire
function, the values of which depend on r.

(ii) The function J is defined by

J(z) =
∫
γ

et(t2 − 1)zdt,

where γ is a figure of eight, starting at t = 0, looping anti-clockwise round t = 1 and
returning to t = 0, then looping clockwise round t = −1 and returning again to t = 0.
The value of (t2−1)z is determined by analytic continuation along γ with arg(t2−1) = −π
at the start. Show that, for Re z > −1,

J(z) = −2i sinπz I(z),

where

I(z) =
∫ 1

−1

et(t2 − 1)zdt.

Explain how this provides the analytic continuation of I(z). Classify the singular points
of the analytically continued function, commenting on the points z = 0, 1, . . . .

Explain briefly why the analytic continuation could not be obtained by this method
if γ were replaced by the circle |t| = 2.
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1/I/9A Classical Dynamics

The action for a system with generalized coordinates qi(t) for a time interval [t1, t2]
is given by

S =
∫ t2

t1

L(qi, q̇i, t)dt,

where L is the Lagrangian. The end point values qi(t1) and qi(t2) are fixed.

Derive Lagrange’s equations from the principle of least action by considering the
variation of S for all possible paths.

Define the momentum pi conjugate to qi. Derive a condition for pi to be a constant
of the motion.

A symmetric top moves under the action of a potential V (θ). The Lagrangian is
given by

L =
1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2

− V,

where the generalized coordinates are the Euler angles (θ, φ, ψ) and the principal moments
of inertia are I1 and I3.

Show that ω3 = ψ̇+ φ̇ cos θ is a constant of the motion and give expressions for two
others. Show further that it is possible for the top to move with both θ and φ̇ constant
provided these satisfy the condition

I1φ̇
2 sin θ cos θ − I3ω3φ̇ sin θ =

dV

dθ
.

Part II 2008



27

2/II/15B Classical Dynamics

A particle of mass m, charge e and position vector r = (x1, x2, x3) ≡ q moves in a
magnetic field whose vector potential is A. Its Hamiltonian is given by

H(p,q) =
1

2m

(
p− eA

c

)2

.

Write down Hamilton’s equations and use them to derive the equations of motion for the
charged particle.

Define the Poisson bracket [F,G] for general F (p,q) and G(p,q). Show that for
motion governed by the above Hamiltonian

[mẋi, xj ] = −δij , and [mẋi,mẋj ] =
e

c

(
∂Aj
∂xi
− ∂Ai
∂xj

)
.

Consider the vector potential to be given by A = (0, 0, F (r)), where r =
√
x2

1 + x2
2.

Use Hamilton’s equations to show that p3 is constant and that circular motion at radius
r with angular frequency Ω is possible provided that

Ω2 = −
(
p3 − eF

c

)
e

m2cr

dF

dr
.
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2/I/9A Classical Dynamics

A system of N particles i = 1, 2, 3, . . . , N , with mass mi, moves around a circle of
radius a. The angle between the radius to particle i and a fixed reference radius is θi. The
interaction potential for the system is

V =
1
2
k

N∑
j=1

(θj+1 − θj)2,

where k is a constant and θN+1 = θ1 + 2π.

The Lagrangian for the system is

L =
1
2
a2

N∑
j=1

mj θ̇
2
j − V.

Write down the equation of motion for particle i and show that the system is in equilibrium
when the particles are equally spaced around the circle.

Show further that the system always has a normal mode of oscillation with zero
frequency. What is the form of the motion associated with this?

Find all the frequencies and modes of oscillation when N = 2, m1 = km/a2 and
m2 = 2km/a2, where m is a constant.
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3/I/9E Classical Dynamics

Writing x = (p1, p2, p3, . . . , pn, q1, q2, q3, . . . , qn), Hamilton’s equations may be
written in the form

ẋ = J
∂H

∂x
,

where the 2n× 2n matrix

J =
(

0 −I
I 0

)
,

and I and 0 denote the n× n unit and zero matrices respectively.

Explain what is meant by the statement that the transformation x→ y,

(p1, p2, p3, . . . , pn, q1, q2, q3, . . . , qn)→ (P1, P2, P3, . . . , Pn, Q1, Q2, Q3, . . . , Qn),

is canonical, and show that the condition for this is that

J = J JJ T ,

where J is the Jacobian matrix with elements

Jij =
∂yi
∂xj

.

Use this condition to show that for a system with n = 1 the transformation given by

P = p+ 2q, Q =
1
2
q − 1

4
p

is canonical.
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4/II/15B Classical Dynamics

(a) A Hamiltonian system with n degrees of freedom has Hamiltonian H = H(p,q),
where the coordinates q = (q1, q2, q3, . . . , qn) and the momenta p = (p1, p2, p3, . . . , pn)
respectively.

Show from Hamilton’s equations that when H does not depend on time explicitly,
for any function F = F (p,q),

dF

dt
= [F,H] ,

where [F,H] denotes the Poisson bracket.

For a system of N interacting vortices

H(p,q) = −κ
4

N∑
i=1

N∑
j=1
j 6=i

ln
[
(pi − pj)2 + (qi − qj)2

]
,

where κ is a constant. Show that the quantity defined by

F =
N∑
j=1

(q2
j + p2

j )

is a constant of the motion.

(b) The action for a Hamiltonian system with one degree of freedom with
H = H(p, q) for which the motion is periodic is

I =
1

2π

∮
p(H, q)dq.

Show without assuming any specific form for H that the period of the motion T is given
by

2π
T

=
dH

dI
.

Suppose now that the system has a parameter that is allowed to vary slowly with
time. Explain briefly what is meant by the statement that the action is an adiabatic
invariant. Suppose that when this parameter is fixed, H = 0 when I = 0. Deduce that, if
T decreases on an orbit with any I when the parameter is slowly varied, then H increases.
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4/I/9B Classical Dynamics

(a) Show that the principal moments of inertia for an infinitesimally thin uniform
rectangular sheet of mass M with sides of length a and b (with b < a) about its centre of
mass are I1 = Mb2/12, I2 = Ma2/12 and I3 = M(a2 + b2)/12.

(b) Euler’s equations governing the angular velocity (ω1, ω2, ω3) of the sheet as
viewed in the body frame are

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1,

and
I3
dω3

dt
= (I1 − I2)ω1ω2.

A possible solution of these equations is such that the sheet rotates with ω1 = ω3 = 0,
and ω2 = Ω = constant.

By linearizing, find the equations governing small motions in the neighbourhood
of this solution that have (ω1, ω3) 6= 0. Use these to show that there are solutions
corresponding to instability such that ω1 and ω3 are both proportional to exp(βΩt), with
β =

√
(a2 − b2)/(a2 + b2).
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1/I/10E Cosmology

The number density of particles of mass m at equilibrium in the early universe is
given by the integral

n =
4πgs

h3

∫ ∞
0

p2dp

exp[(E(p)− µ)/kT ]∓ 1
,

{− bosons ,
+ fermions,

where E(p) = c
√
p2 +m2c2, µ is the chemical potential, and gs is the spin degeneracy.

Assuming that the particles remain in equilibrium when they become non-relativistic
(kT, µ� mc2), show that the number density can be expressed as

n = gs

(
2πmkT
h2

)3/2

e(µ−mc2)/kT .

[Hint: Recall that
∫∞

0
dx e−σ

2x2
=
√
π/(2σ), (σ > 0).]

At around t = 100 seconds, deuterium D forms through the nuclear fusion of
nonrelativistic protons p and neutrons n via the interaction p + n ↔ D. In equilibrium,
what is the relationship between the chemical potentials of the three species? Show that
the ratio of their number densities can be expressed as

nD
nnnp

≈
(
πmpkT

h2

)−3/2

eBD/kT ,

where the deuterium binding energy is BD = (mn +mp −mD) c2 and you may take
gD = 4. Now consider the fractional densities Xa = na/nB , where nB is the baryon
density of the universe, to re-express the ratio above in the form XD/(XnXp) , which
incorporates the baryon-to-photon ratio η of the universe.

[You may assume that the photon density is nγ = (16πζ(3)/(hc)3)(kT )3.]

Why does deuterium form only at temperatures much lower than that given by
kT ≈ BD ?
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2/I/10E Cosmology

A spherically-symmetric star obeys the pressure-support equation

dP

dr
= −Gmρ

r2
,

where P (r) is the pressure at a distance r from the centre, ρ(r) is the density, and m(r)
is the mass within a sphere of radius r. Show that this implies

d

dr

(
r2

ρ

dP

dr

)
= −4πGr2ρ.

Propose and justify appropriate boundary conditions for the pressure P (r) at the centre
of the star (r = 0) and at its outer edge r = R.

Show that the function

F (r) = P (r) +
Gm2

8πr4

is a decreasing function of r. Deduce that the central pressure Pc ≡ P (0) satisfies

Pc >
GM2

8πR4
,

where M ≡ m(R) is the mass of the star.
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1/II/15E Cosmology

(i) A homogeneous and isotropic universe has mass density ρ(t) and scale factor
a(t). Show how the conservation of total energy (kinetic plus gravitational potential) when
applied to a test particle on the edge of a spherical region in this universe can be used to
obtain the Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
,

where k is a constant. State clearly any assumptions you have made.

(ii) Assume that the universe is flat (k = 0) and filled with two major components:
pressure-free matter (PM = 0) and dark energy with equation of state PΛ = −ρΛc

2

where their mass densities today (t = t0) are given respectively by ρM0 and ρΛ0.
Assuming that each component independently satisfies the fluid conservation equation,
ρ̇ = −3H(ρ+ P/c2), show that the total mass density can be expressed as

ρ(t) =
ρM0

a3
+ ρΛ0,

where we have set a(t0) = 1.

Hence, solve the Friedmann equation and show that the scale factor can be
expressed in the form

a(t) = α(sinhβt)2/3,

where α and β are constants which you should specify in terms of ρM0, ρΛ0 and t0.

[Hint: try the substitution b = a3/2.]

Show that the scale factor a(t) has the expected behaviour for a matter-dominated
universe at early times (t→ 0) and that the universe accelerates at late times (t→∞).
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3/I/10E Cosmology

The energy density ε and pressure P of photons in the early universe is given by

ε =
4σ
c
T 4, P =

1
3
ε,

where σ is the Stefan–Boltzmann constant. By using the first law of thermodynamics
dE = TdS −PdV +µdN , deduce that the entropy differential dS can be expressed in the
form

dS =
16σ
3c

d(T 3V ).

With the third law, show that the entropy density is given by s = (16σ/3c)T 3.

While particle interaction rates Γ remain much greater than the Hubble parameter
H, justify why entropy will be conserved during the expansion of the universe. Hence, in
the early universe (radiation domination) show that the temperature T ∝ a−1 where a(t)
is the scale factor of the universe, and show that the Hubble parameter H ∝ T 2.

4/I/10E Cosmology

The Friedmann and Raychaudhuri equations are respectively(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
and

ä

a
= −4πG

3

(
ρ+

3P
c2

)
,

where ρ is the mass density, P is the pressure, k is the curvature and ȧ ≡ da/dt with t
the cosmic time. Using conformal time τ (defined by dτ = dt/a) and the equation of state
P = wρc2, show that these can be rewritten as

kc2

H2
= Ω− 1 and 2

dH
dτ

= −(3w + 1)
(H2 + kc2

)
,

where H = a−1da/dτ and the relative density is Ω ≡ ρ/ρcrit = 8πGρa2/(3H2).

Use these relations to derive the following evolution equation for Ω

dΩ
dτ

= (3w + 1)HΩ(Ω− 1).

For both w = 0 and w = −1, plot the qualitative evolution of Ω as a function of τ in an
expanding universe H > 0 (i.e. include curves initially with Ω > 1 and Ω < 1).

Hence, or otherwise, briefly describe the flatness problem of the standard cosmology
and how it can be solved by inflation.
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3/II/15E Cosmology

Small density perturbations δk(t) in pressureless matter inside the cosmological
horizon obey the following Fourier evolution equation

δ̈k + 2
ȧ

a
δ̇k − 4πGρ̄cδk = 0,

where ρ̄c is the average background density of the pressureless gravitating matter and k
is the comoving wavevector.

(i) Seek power law solutions δk ∝ tβ (β constant) during the matter-dominated
epoch (teq < t < t0) to find the approximate solution

δk(t) = A(k)
(
t

teq

)2/3

+B(k)
(
t

teq

)−1

, t� teq

where A, B are functions of k only and teq is the time of equal matter-radiation.

By considering the behaviour of the scalefactor a and the relative density ρ̄c/ρ̄total,
show that early in the radiation era (t� teq) there is effectively no significant perturbation
growth in δk on sub-horizon scales.

(ii) For a given wavenumber k = |k|, show that the time tH at which this mode
crosses inside the horizon, i.e., ctH ≈ 2πa(tH)/k, is given by

tH
t0
≈
{(

k0
k

)3
, tH � teq,

(1 + zeq)−1/2
(
k0
k

)2
, tH � teq,

where k0 ≡ 2π/(ct0), and the equal matter-radiation redshift is given by 1 + zeq =
(t0/teq)2/3.

Assume that primordial perturbations from inflation are scale-invariant with a
constant amplitude as they cross the Hubble radius given by 〈|δk(tH)|2〉 ≈ V −1A/k3,
where A is a constant and V is a large volume. Use the results of (i) to project these
perturbations forward to t0, and show that the power spectrum for perturbations today
will be given approximately by

P (k) ≡ V 〈|δk(t0)|2〉 ≈ A

k4
0

×
{
k, k < keq,

keq

(
keq
k

)3

, k > keq.

Part II 2008



37

1/II/16G Logic and Set Theory

What is a well-ordered set? Show that given any two well-ordered sets there is a
unique order isomorphism between one and an initial segment of the other.

Show that for any ordinal α and for any non-zero ordinal β there are unique ordinals
γ and δ with α = β.γ + δ and δ < β .

Show that a non-zero ordinal λ is a limit ordinal if and only if λ = ω.γ for some
non-zero ordinal γ .

[You may assume standard properties of ordinal addition, multiplication and
subtraction.]

2/II/16G Logic and Set Theory

(i) State the Completeness Theorem and the Compactness Theorem for the predi-
cate calculus.

(ii) Show that if a theory has arbitrarily large finite models then it has an infinite
model. Deduce that there is no first order theory whose models are just the finite fields of
characteristic 2. Show that the theory of infinite fields of characteristic 2 does not have a
finite axiomatisation.

(iii) Let T be the collection of closed terms in some first order language L. Suppose
that ∃x.φ(x) is a provable sentence of L with φ quantifier-free. Show that the set of
sentences {¬φ(t) : t ∈ T } is inconsistent.

[Hint: consider the minimal substructure of a model.]

Deduce that there are t1, t2, . . . , tn in T such that φ(t1) ∨ φ(t2) ∨ · · · ∨ φ(tn) is
provable.

3/II/16G Logic and Set Theory

What is a transitive set? Show that if x is transitive then so are the union
⋃
x

and the power set Px of x. If
⋃
x is transitive, is x transitive? If Px is transitive, is x

transitive? Justify your answers.

What is the transitive closure of a set? Show that any set x has a transitive closure
TC(x).

Suppose that x has rank α. What is the rank of Px? What is the rank of TC(x)?

[You may use standard properties of rank.]
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4/II/16G Logic and Set Theory

Prove Hartog’s Lemma that for any set x there is an ordinal α which cannot be
mapped injectively into x.

Now assume the Axiom of Choice. Prove Zorn’s Lemma and the Well-ordering
Principle.

[If you appeal to a fixed point theorem then you should state it clearly.]
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1/II/17F Graph Theory

State a result of Euler concerning the number of vertices, edges and faces of a
connected plane graph. Deduce that if G is a planar graph then δ(G) 6 5. Show that if
G is a planar graph then χ(G) 6 5.

Are the following statements true or false? Justify your answers.

[You may quote standard facts about planar and non-planar graphs, provided that
they are clearly stated.]

(i) If G is a graph with χ(G) 6 4 then G is planar.

(ii) If G is a connected graph with average degree at most 2.01 then G is planar.

(iii) If G is a connected graph with average degree at most 2 then G is planar.

2/II/17F Graph Theory

Prove that every graph G on n > 3 vertices with minimum degree δ(G) > n
2 is

Hamiltonian. For each n > 3, give an example to show that this result does not remain
true if we weaken the condition to δ(G) > n

2 − 1 (for n even) or δ(G) > n−1
2 (for n odd).

For any graph G, let Gk denote the graph formed by adding k new vertices to G,
all joined to each other and to all vertices of G. By considering G1, show that if G is a
graph on n > 3 vertices with δ(G) > n−1

2 then G has a Hamilton path (a path passing
through all the vertices of G).

For each positive integer k, exhibit a connected graph G such that Gk is not
Hamiltonian. Is this still possible if we replace ‘connected’ with ‘2-connected’?
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3/II/17F Graph Theory

Define the chromatic polynomial pG(t) of a graph G. Show that if G has n vertices
and m edges then

pG(t) = ant
n − an−1t

n−1 + an−2t
n−2 − . . .+ (−1)na0,

where an = 1 and an−1 = m and ai > 0 for all 0 6 i 6 n. [You may assume the
deletion–contraction relation, provided it is clearly stated.]

Show that if G is a tree on n vertices then pG(t) = t(t− 1)n−1. Does the converse
hold?

[Hint: if G is disconnected, how is the chromatic polynomial of G related to the
chromatic polynomials of its components?]

Show that if G is a graph on n vertices with the same chromatic polynomial as
Tr(n) (the Turán graph on n vertices with r vertex classes) then G must be isomorphic to
Tr(n).

4/II/17F Graph Theory

For s > 2, let R(s) be the least integer n such that for every 2-colouring of the
edges of Kn there is a monochromatic Ks. Prove that R(s) exists.

For any k > 1 and s1, . . . , sk > 2, define the Ramsey number Rk(s1, . . . , sk), and
prove that it exists.

Show that, whenever the positive integers are partitioned into finitely many classes,
some class contains x, y, z with x+ y = z.

[Hint: given a finite colouring of the positive integers, induce a colouring of the
pairs of positive integers by giving the pair ij (i < j) the colour of j − i.]
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1/II/18H Galois Theory

Find the Galois group of the polynomial f(x) = x4 + x3 + 1 over

(i) the finite field F2, (ii) the finite field F3,

(iii) the finite field F4, (iv) the field Q of rational numbers.

[Results from the course which you use should be stated precisely.]

2/II/18H Galois Theory

(i) Let K be a field, θ ∈ K, and n > 0 not divisible by the characteristic. Suppose
that K contains a primitive nth root of unity. Show that the splitting field of xn − θ has
cyclic Galois group.

(ii) Let L/K be a Galois extension of fields and ζn denote a primitive nth root of
unity in some extension of L, where n is not divisible by the characteristic. Show that
Aut(L(ζn)/K(ζn)) is a subgroup of Aut(L/K).

(iii) Determine the minimal polynomial of a primitive 6th root of unity ζ6 over Q.

Compute the Galois group of x6 + 3 ∈ Q[x].

3/II/18H Galois Theory

Let L/K be a field extension.

(a) State what it means for α ∈ L to be algebraic over K, and define its degree
degK(α). Show that if degK(α) is odd, then K(α) = K(α2).

[You may assume any standard results.]

Show directly from the definitions that if α, β ∈ L are algebraic over K, then so
too is α+ β.

(b) State what it means for α ∈ L to be separable over K, and for the extension
L/K to be separable.

Give an example of an inseparable extension L/K.

Show that an extension L/K is separable if L is a finite field.
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4/II/18H Galois Theory

Let L = C(z) be the function field in one variable, n > 0 an integer, and ζn = e2πi/n.

Define σ, τ : L→ L by the formulae

(σf)(z) = f(ζnz), (τf)(z) = f(1/z),

and let G = 〈σ, τ〉 be the group generated by σ and τ .

(i) Find w ∈ C(z) such that LG = C(w).

[You must justify your answer, stating clearly any theorems you use.]

(ii) Suppose n is an odd prime. Determine the subgroups of G and the correspond-
ing intermediate subfields M , with C(w) ⊆M ⊆ L.

State which intermediate subfields M are Galois extensions of C(w), and for these
extensions determine the Galois group.
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1/II/19G Representation Theory

For a complex representation V of a finite group G, define the action of G on the
dual representation V ∗. If α denotes the character of V , compute the character β of V ∗.

[Your formula should express β(g) just in terms of the character α.]

Using your formula, how can you tell from the character whether a given represen-
tation is self-dual, that is, isomorphic to the dual representation?

Let V be an irreducible representation of G. Show that the trivial representation
occurs as a summand of V ⊗ V with multiplicity either 0 or 1. Show that it occurs once
if and only if V is self-dual.

For a self-dual irreducible representation V , show that V either has a nondegenerate
G-invariant symmetric bilinear form or a nondegenerate G-invariant alternating bilinear
form, but not both.

If V is an irreducible self-dual representation of odd dimension n, show that the
corresponding homomorphism G → GL(n,C) is conjugate to a homomorphism into the
orthogonal group O(n,C). Here O(n,C) means the subgroup of GL(n,C) that preserves
a nondegenerate symmetric bilinear form on Cn.

2/II/19G Representation Theory

A finite group G of order 360 has conjugacy classes C1 = {1}, C2, . . . , C7 of sizes
1, 45, 40, 40, 90, 72, 72. The values of four of its irreducible characters are given in the
following table.

C1 C2 C3 C4 C5 C6 C7

5 1 2 −1 −1 0 0
8 0 −1 −1 0 (1−√5)/2 (1 +

√
5)/2

8 0 −1 −1 0 (1 +
√

5)/2 (1−√5)/2
10 −2 1 1 0 0 0

Complete the character table.

[Hint: it will not suffice just to use orthogonality of characters.]

Deduce that the group G is simple.
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3/II/19G Representation Theory

Let V2 denote the irreducible representation Sym2(C2) of SU(2); thus V2 has
dimension 3. Compute the character of the representation Symn(V2) of SU(2) for any
n > 0. Compute the dimension of the invariants Symn(V2)SU(2), meaning the subspace of
Symn(V2) where SU(2) acts trivially.

Hence, or otherwise, show that the ring of complex polynomials in three variables
x, y, z which are invariant under the action of SO(3) is a polynomial ring. Find a generator
for this polynomial ring.

4/II/19G Representation Theory

(a) Let A be a normal subgroup of a finite group G, and let V be an irreducible
representation of G. Show that either V restricted to A is isotypic (a sum of copies of one
irreducible representation of A), or else V is induced from an irreducible representation of
some proper subgroup of G.

(b) Using (a), show that every (complex) irreducible representation of a p-group is
induced from a 1-dimensional representation of some subgroup.

[You may assume that a nonabelian p-group G has an abelian normal subgroup A
which is not contained in the centre of G.]
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1/II/20G Number Fields

(a) Define the ideal class group of an algebraic number field K. State a result
involving the discriminant of K that implies that the ideal class group is finite.

(b) Put K = Q(ω), where ω = 1
2 (1 +

√−23), and let OK be the ring of integers
of K. Show that OK = Z + Zω. Factorise the ideals [2] and [3] in OK into prime ideals.
Verify that the equation of ideals

[2, ω][3, ω] = [ω]

holds. Hence prove that K has class number 3.

2/II/20G Number Fields

(a) Factorise the ideals [2], [3] and [5] in the ring of integers OK of the field
K = Q(

√
30). Using Minkowski’s bound

n!
nn

(
4
π

)s√
|dK |,

determine the ideal class group of K.

[Hint: it might be helpful to notice that 3
2 = NK/Q(α) for some α ∈ K.]

(b) Find the fundamental unit of K and determine all solutions of the equations
x2 − 30y2 = ±5 in integers x, y ∈ Z. Prove that there are in fact no solutions of
x2 − 30y2 = 5 in integers x, y ∈ Z.

4/II/20G Number Fields

(a) Explain what is meant by an integral basis of an algebraic number field. Specify
such a basis for the quadratic field k = Q(

√
2).

(b) Let K = Q(α) with α = 4
√

2, a fourth root of 2. Write an element θ of K as

θ = a+ bα+ cα2 + dα3

with a, b, c, d ∈ Q. By computing the relative traces TK/k(θ) and TK/k(αθ), show that if
θ is an algebraic integer of K, then 2a, 2b, 2c and 4d are rational integers. By further
computing the relative norm NK/k(θ), show that

a2 + 2c2 − 4bd and 2ac− b2 − 2d2

are rational integers. Deduce that 1, α, α2, α3 is an integral basis of K.
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1/II/21F Algebraic Topology

(i) State the van Kampen theorem.

(ii) Calculate the fundamental group of the wedge S2 ∨ S1.

(iii) Let X = R3 \A where A is a circle. Calculate the fundamental group of X.

2/II/21F Algebraic Topology

Prove the Borsuk–Ulam theorem in dimension 2: there is no map f :S2 → S1 such
that f(−x) = −f(x) for every x ∈ S2. Deduce that S2 is not homeomorphic to any subset
of R2.

3/II/20F Algebraic Topology

Let X be the quotient space obtained by identifying one pair of antipodal points
on S2. Using the Mayer–Vietoris exact sequence, calculate the homology groups and the
Betti numbers of X.

4/II/21F Algebraic Topology

Let X and Y be topological spaces.

(i) Show that a map f :X → Y is a homotopy equivalence if there exist maps
g, h:Y → X such that fg ' 1Y and hf ' 1X . More generally, show that a map f :X → Y
is a homotopy equivalence if there exist maps g, h:Y → X such that fg and hf are
homotopy equivalences.

(ii) Suppose that X̃ and Ỹ are universal covering spaces of the path-connected,
locally path-connected spaces X and Y . Using path-lifting properties, show that if X ' Y
then X̃ ' Ỹ .
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1/II/22F Linear Analysis

Suppose p and q are real numbers with p−1 + q−1 = 1 and p, q > 1. Show, quoting
any results on convexity that you need, that

a1/p b1/q 6
a

p
+
b

q

for all real positive a and b.

Define the space lp and show that it is a complete normed vector space.

2/II/22F Linear Analysis

State and prove the principle of uniform boundedness.

[You may assume the Baire category theorem.]

Suppose that X, Y and Z are Banach spaces. Suppose that

F : X × Y → Z

is linear and continuous in each variable separately, that is to say that, if y is fixed,

F (·, y) : X → Z

is a continuous linear map and, if x is fixed,

F (x, ·) : Y → Z

is a continuous linear map. Show that there exists an M such that

‖F (x, y)‖Z 6M‖x‖X‖y‖Y

for all x ∈ X, y ∈ Y . Deduce that F is continuous.

Suppose X, Y , Z and W are Banach spaces. Suppose that

G : X × Y ×W → Z

is linear and continuous in each variable separately. Does it follow that G is continuous?
Give reasons.

Suppose that X, Y and Z are Banach spaces. Suppose that

H : X × Y → Z

is continuous in each variable separately. Does it follow that H is continuous? Give
reasons.

Part II 2008



48

3/II/21F Linear Analysis

State and prove the Stone–Weierstrass theorem for real-valued functions. You may
assume that the function x 7→ |x| can be uniformly approximated by polynomials on any
interval [−k, k].

Suppose that 0 < a < b < 1. Let F be the set of functions which can be uniformly
approximated on [a, b] by polynomials with integer coefficients. By making appropriate
use of the identity

1
2

=
x

1− (1− 2x)
=
∞∑
n=0

x(1− 2x)n,

or otherwise, show that F = C([a, b]).
Is it true that every continuous function on [0, b] can be uniformly approximated

by polynomials with integer coefficients?

4/II/22F Linear Analysis

Let H be a Hilbert space. Show that if V is a closed subspace of H then any f ∈ H
can be written as f = v + w with v ∈ V and w ⊥ V .

Suppose U : H → H is unitary (that is to say UU∗ = U∗U = I). Let

Anf =
1
n

n−1∑
k=0

Ukf

and consider
X = {g − Ug : g ∈ H}.

(i) Show that U is an isometry and ‖An‖ 6 1.

(ii) Show that X is a subspace of H and Anf → 0 as n→∞ whenever f ∈ X.

(iii) Let V be the closure of X. Show that Anv → 0 as n→∞ whenever v ∈ V .

(iv) Show that, if w ⊥ X, then Uw = w. Deduce that, if w ⊥ V , then Uw = w.

(v) If f ∈ H show that there is a w ∈ H such that Anf → w as n→∞.
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1/II/23H Riemann Surfaces

Define the terms Riemann surface, holomorphic map between Riemann surfaces
and biholomorphic map.

Show, without using the notion of degree, that a non-constant holomorphic map
between compact connected Riemann surfaces must be surjective.

Let φ be a biholomorphic map of the punctured unit disc ∆∗ = {0 < |z| < 1} ⊂ C
onto itself. Show that φ extends to a biholomorphic map of the open unit disc ∆ to itself
such that φ(0) = 0.

Suppose that f : R → S is a continuous holomorphic map between Riemann
surfaces and f is holomorphic on R \ {p}, where p is a point in R. Show that f is then
holomorphic on all of R.

[The Open Mapping Theorem may be used without proof if clearly stated.]

2/II/23H Riemann Surfaces

Explain what is meant by a divisor D on a compact connected Riemann surface S.
Explain briefly what is meant by a canonical divisor. Define the degree of D and the
notion of linear equivalence between divisors. If two divisors on S have the same degree
must they be linearly equivalent? Give a proof or a counterexample as appropriate, stating
accurately any auxiliary results that you require.

Define `(D) for a divisor D, and state the Riemann–Roch theorem. Deduce that
the dimension of the space of holomorphic differentials is determined by the genus g of S
and that the same is true for the degree of a canonical divisor. Show further that if g = 2
then S admits a non-constant meromorphic function with at most two poles (counting
with multiplicities).

[General properties of meromorphic functions and meromorphic differentials on S
may be used without proof if clearly stated.]

3/II/22H Riemann Surfaces

Define the degree of a non-constant holomorphic map between compact connected
Riemann surfaces and state the Riemann–Hurwitz formula.

Show that there exists a compact connected Riemann surface of any genus g > 0.

[You may use without proof any foundational results about holomorphic maps and
complex algebraic curves from the course, provided that these are accurately stated. You
may also assume that if h(s) is a non-constant complex polynomial without repeated roots
then the algebraic curve C = {(s, t) ∈ C2 : t2 − h(s) = 0} is path connected.]
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4/II/23H Riemann Surfaces

Let Λ be a lattice in C generated by 1 and τ , where Im τ > 0. The Weierstrass
function ℘ is the unique meromorphic Λ-periodic function on C, such that the only poles
of ℘ are at points of Λ and ℘(z)− 1/z2 → 0 as z → 0.

Show that ℘ is an even function. Find all the zeroes of ℘′.

Suppose that a is a complex number such that 2a 6∈ Λ. Show that the function

h(z) = (℘(z − a)− ℘(z + a))(℘(z)− ℘(a))2 − ℘′(z)℘′(a)

has no poles in C \ Λ. By considering the Laurent expansion of h at z = 0, or otherwise,
deduce that h is constant.

[General properties of meromorphic doubly-periodic functions may be used without
proof if accurately stated.]
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1/II/24H Differential Geometry

Let n > 1 be an integer, and let M(n) denote the set of n×n real-valued matrices.
We make M(n) into an n2-dimensional smooth manifold via the obvious identification
M(n) = Rn2

.

(a) Let GL(n) denote the subset

GL(n) = {A ∈M(n) : A−1 exists}.

Show that GL(n) is a submanifold of M(n). What is dimGL(n)?

(b) Now let SL(n) ⊂ GL(n) denote the subset

SL(n) = {A ∈ GL(n) : detA = 1}.

Show that for A ∈ GL(n),

(ddet)AB = tr(A−1B) detA.

Show that SL(n) is a submanifold of GL(n). What is the dimension of SL(n)?

(c) Now consider the set X = M(n) \ GL(n). For what values of n > 1 is X a
submanifold of M(n)?

2/II/24H Differential Geometry

(a) For a regular curve in R3, define curvature and torsion and state the Frenet
formulas.

(b) State and prove the isoperimetric inequality for domains Ω ⊂ R2 with compact
closure and C1 boundary ∂Ω.

[You may assume Wirtinger’s inequality.]

(c) Let γ : I → R2 be a closed plane regular curve such that γ is contained in a disc
of radius r. Show that there exists s ∈ I such that |k(s)| > r−1, where k(s) denotes the
signed curvature. Show by explicit example that the assumption of closedness is necessary.
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3/II/23H Differential Geometry

Let S ⊂ R3 be a surface.

(a) Define the Gauss Map, principal curvatures ki, Gaussian curvature K and mean
curvature H. State the Theorema Egregium.

(b) Define what is meant for S to be minimal. Prove that if S is minimal, then
K 6 0. Give an example of a minimal surface whose Gaussian curvature is not identically
0, justifying your answer.

(c) Does there exist a compact minimal surface S ⊂ R3? Justify your answer.

4/II/24H Differential Geometry

Let S ⊂ R3 be a surface.

(a) In the case where S is compact, define the Euler characteristic χ and genus g
of S.

(b) Define the notion of geodesic curvature kg for regular curves γ : I → S. When
is kg = 0? State the Global Gauss–Bonnet Theorem (including boundary term).

(c) Let S = S2 (the standard 2-sphere), and suppose γ ⊂ S2 is a simple closed
regular curve such that S2\γ is the union of two distinct connected components with equal
areas. Can γ have everywhere strictly positive or everywhere strictly negative geodesic
curvature?

(d) Prove or disprove the following statement: if S is connected with Gaussian
curvature K = 1 identically, then S is a subset of a sphere of radius 1.
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1/II/25J Probability and Measure

State the Dominated Convergence Theorem.

Hence or otherwise prove Kronecker’s Lemma: if (aj) is a sequence of non-negative
reals such that

∞∑
j=1

aj
j
<∞,

then

n−1
n∑
j=1

aj → 0 (n→∞).

Let ξ1, ξ2, . . . be independent N(0, 1) random variables and set Sn = ξ1 + . . .+ ξn.
Let F0 be the collection of all finite unions of intervals of the form (a, b), where a and b
are rational, together with the whole line R. Prove that with probability 1 the limit

m(B) ≡ lim
n→∞

1
n

n∑
j=1

IB(Sj)

exists for all B ∈ F0, and identify it. Is it possible to extend m defined on F0 to a measure
on the Borel σ-algebra of R? Justify your answer.

2/II/25J Probability and Measure

Explain what is meant by a simple function on a measurable space (S,S).

Let (S,S, µ) be a finite measure space and let f : S → R be a non-negative Borel
measurable function. State the definition of the integral of f with respect to µ.

Prove that, for any sequence of simple functions (gn) such that 0 6 gn(x) ↑ f(x)
for all x ∈ S, we have ∫

gndµ ↑
∫
fdµ.

State and prove the Monotone Convergence Theorem for finite measure spaces.
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3/II/24J Probability and Measure

(i) What does it mean to say that a sequence of random variables (Xn) converges
in probability to X? What does it mean to say that the sequence (Xn) converges in
distribution to X? Prove that if Xn → X in probability, then Xn → X in distribution.

(ii) What does it mean to say that a sequence of random variables (Xn) is uniformly
integrable? Show that, if (Xn) is uniformly integrable and Xn → X in distribution, then
E(Xn)→ E(X).

[Standard results from the course may be used without proof if clearly stated.]

4/II/25J Probability and Measure

(i) A stepfunction is any function s on R which can be written in the form

s(x) =
n∑
k=1

ckI(ak,bk](x), x ∈ R,

where ak, bk, ck are real numbers, with ak < bk for all k. Show that the set of all
stepfunctions is dense in L1(R,B, µ). Here, B denotes the Borel σ-algebra, and µ denotes
Lebesgue measure.

[You may use without proof the fact that, for any Borel set B of finite measure,
and any ε > 0, there exists a finite union of intervals A such that µ(A4B) < ε.]

(ii) Show that the Fourier transform

ŝ(t) =
∫

R
s(x)eitx dx

of a stepfunction has the property that ŝ(t)→ 0 as |t| → ∞.

(iii) Deduce that the Fourier transform of any integrable function has the same
property.

Part II 2008



55

1/II/26I Applied Probability

Let (Xt, t > 0) be an irreducible continuous-time Markov chain with initial
probability distribution π and Q-matrix Q (for short: a (π,Q) CTMC), on a finite state
space I.

(i) Define the terms reversible CTMC and detailed balance equations (DBEs) and
explain, without proof, the relation between them.

(ii) Prove that any solution of the DBEs is an equilibrium distribution (ED) for (Xt).

Let (Yn, n = 0, 1, . . .) be an irreducible discrete-time Markov chain with initial
probability distribution π̂ and transition probability matrix P̂ (for short: a (π̂, P̂ ) DTMC),
on the state space I.

(iii) Repeat the two definitions from (i) in the context of the DTMC (Yn). State also
in this context the relation between them, and prove a statement analogous to (ii).

(iv) What does it mean to say that (Yn) is the jump chain for (Xt)? State and prove
a relation between the ED π for the CTMC (Xt) and the ED π̂ for its jump chain
(Yn).

(v) Prove that (Xt) is reversible (in equilibrium) if and only if its jump chain (Yn) is
reversible (in equilibrium).

(vi) Consider now a continuous time random walk on a graph. More precisely, consider
a CTMC (Xt) on an undirected graph, where some pairs of states i, j ∈ I are
joined by one or more non-oriented ‘links’ eij(1), . . . , eij(mij). Here mij = mji is
the number of links between i and j. Assume that the jump rate qij is proportional
to mij . Can the chain (Xt) be reversible? Identify the corresponding jump chain
(Yn) (which determines a discrete-time random walk on the graph) and comment
on its reversibility.
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2/II/26I Applied Probability

Consider a continuous-time Markov chain (Xt) given by the diagram below.

W0 W1 W(i− 1) Wi

C0 C1 C(i− 1) Ci

λ
. . .

λ
. . .

µ
. . .

µ
. . .

βα βα βα βα

We will assume that the rates α, β, λ and µ are all positive.

(a) Is the chain (Xt) irreducible?

(b) Write down the standard equations for the hitting probabilities

hCi = PCi

(
hit W0

)
, i > 0,

and
hWi = PWi

(
hit W0

)
, i > 1.

Explain how to identify the probabilities hCi and hWi among the solutions to these
equations.

[You should state the theorem you use but its proof is not required.]

(c) Set h(i) =
(
hCi

hWi

)
and find a matrix A such that

h(i) = Ah(i−1), i = 1, 2, . . . .

The recursion matrix A has a ‘standard’ eigenvalue and a ‘standard’ eigenvector
that do not depend on the transition rates: what are they and why are they always
present?

(d) Calculate the second eigenvalue ϑ of the matrix A, and the corresponding eigen-

vector, in the form
(
b
1

)
, where b > 0.

(e) Suppose the second eigenvalue ϑ is > 1. What can you say about hCi and hWi? Is
the chain (Xt) transient or recurrent? Justify your answer.

(f) Now assume the opposite: the second eigenvalue ϑ is < 1. Check that in this case
b < 1. Is the chain transient or recurrent under this condition?

(g) Finally, specify, by means of inequalities between the parameters α, β, λ and µ,
when the chain (Xt) is recurrent and when it is transient.
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3/II/25I Applied Probability

Let (Xt) be an irreducible continuous-time Markov chain with countably many
states. What does it mean to say the chain is (i) positive recurrent, (ii) null recurrent?
Consider the chain (Xt) with the arrow diagram below.

0W 1W (i− 1)W iW

0C 1C (i− 1)C iC

λ
. . .

λ
. . .

µ
. . .

µ
. . .

βα βα βα βα

In this question we analyse the existence of equilibrium probabilities πiC and πiW
of the chain (Xt) being in state iC or iW, i = 0, 1, . . ., and the impact of this fact on
positive and null recurrence of the chain.

(a) Write down the invariance equations πQ = 0 and check that they have the form

π0C =
β

λ+ α
π0W,

(
π1C, π1W

)
=
βπ0W

λ+ α

(
λ(µ+ β)
µ(λ+ α)

,
λ

µ

)
,

(
π(i+1)C, π(i+1)W

)
=
(
πiC, πiW

)
B, i = 1, 2, . . . ,

where B is a 2× 2 recursion matrix:

B =


λµ− βα
µ(λ+ α)

− α

µ

β(β + µ)
µ(λ+ α)

β + µ

µ

.

(b) Verify that the row vector
(
π1C, π1W

)
is an eigenvector of B with the eigenvalue θ

where

θ =
λ (µ+ β)
µ (λ+ α)

.

Hence, specify the form of equilibrium probabilities πiC and πiW and conclude that the
chain (Xt) is positive recurrent if and only if µα > λβ .
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4/II/26I Applied Probability

On a hot summer night, opening my window brings some relief. This attracts
hordes of mosquitoes who manage to negotiate a dense window net. But, luckily, I have a
mosquito trapping device in my room.

Assume the mosquitoes arrive in a Poisson process at rate λ; afterwards they wander
around for independent and identically distributed random times with a finite mean ES,
where S denotes the random wandering time of a mosquito, and finally are trapped by
the device.

(a) Identify a mathematical model, which was introduced in the course, for the number
of mosquitoes present in the room at times t > 0.

(b) Calculate the distribution of Q(t) in terms of λ and the tail probabilities P(S > x)
of the wandering time S, where Q(t) is the number of mosquitoes in the room at
time t > 0 (assuming that at the initial time, Q(0) = 0).

(c) Write down the distribution for QE, the number of mosquitoes in the room in
equilibrium, in terms of λ and ES.

(d) Instead of waiting for the number of mosquitoes to reach equilibrium, I close the
window at time t > 0. For v > 0 let X (t+ v) be the number of mosquitoes left at
time t+ v, i.e. v time units after closing the window. Calculate the distribution of
X (t+ v).

(e) Let V (t) be the time needed to trap all mosquitoes in the room after closing the
window at time t > 0. By considering the event {X (t+ v) > 1}, or otherwise,
compute P [V (t) > v].

(f) Now suppose that the time t at which I shut the window is very large, so that I
can assume that the number of mosquitoes in the room has the distribution of QE .
Let V E be the further time needed to trap all mosquitoes in the room. Show that

P
[
V E > v

]
= 1− exp

(−λE
[
(S − v)+

])
,

where x+ ≡ max (x, 0).
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1/II/27I Principles of Statistics

An angler starts fishing at time 0. Fish bite in a Poisson Process of rate Λ per
hour, so that, if Λ = λ, the number Nt of fish he catches in the first t hours has the
Poisson distribution P(λt), while Tn, the time in hours until his nth bite, has the Gamma
distribution Γ(n, λ), with density function

p(t | λ) =
λn

(n− 1)!
tn−1 e−λ t (t > 0) .

Bystander B1 plans to watch for 3 hours, and to record the number N3 of fish caught.
Bystander B2 plans to observe until the 10th bite, and to record T10 , the number of hours
until this occurs.

For B1 , show that Λ̃1 := N3/3 is an unbiased estimator of Λ whose variance
function achieves the Cramér–Rao lower bound.

Find an unbiased estimator of Λ for B2, of the form Λ̃2 = k/T10. Does it achieve
the Cramér–Rao lower bound? Is it minimum-variance-unbiased? Justify your answers.

In fact, the 10th fish bites after exactly 3 hours. For each of B1 and B2, write
down the likelihood function for Λ based their observations. What does the Likelihood
Principle have to say about the inferences to be drawn by B1 and B2, and why? Compute
the estimates λ̃1 and λ̃2 produced by applying Λ̃1 and Λ̃2 to the observed data. Does the
method of minimum-variance-unbiased estimation respect the Likelihood Principle?
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2/II/27I Principles of Statistics

Under hypothesis Hi (i = 0, 1), a real-valued observable X, taking values in X ,
has density function pi(·). Define the Type I error α and the Type II error β of a test
φ : X → [0, 1] of the null hypothesis H0 against the alternative hypothesis H1. What are
the size and power of the test in terms of α and β?

Show that, for 0 < c <∞ , φ minimises cα+ β among all possible tests if and only
if it satisfies

p1(x) > cp0(x)⇒ φ(x) = 1,
p1(x) < cp0(x)⇒ φ(x) = 0.

What does this imply about the admissibility of such a test?

Given the value θ of a parameter variable Θ ∈ [0, 1), the observable X has density
function

p(x | θ) =
2(x− θ)
(1− θ)2

(θ 6 x 6 1).

For fixed θ ∈ (0, 1), describe all the likelihood ratio tests of H0 : Θ = 0 against
Hθ : Θ = θ.

For fixed k ∈ (0, 1), let φk be the test that rejects H0 if and only if X > k . Is φk
admissible as a test of H0 against Hθ for every θ ∈ (0, 1)? Is it uniformly most powerful for
its size for testing H0 against the composite hypothesis H1 : Θ ∈ (0, 1)? Is it admissible
as a test of H0 against H1?

3/II/26I Principles of Statistics

Define the notion of exponential family (EF), and show that, for data arising as
a random sample of size n from an exponential family, there exists a sufficient statistic
whose dimension stays bounded as n→∞ .

The log-density of a normal distribution N (µ, v) can be expressed in the form

log p(x | φ) = φ1 x+ φ2 x
2 − k(φ)

where φ = (φ1, φ2) is the value of an unknown parameter Φ = (Φ1,Φ2). Determine
the function k , and the natural parameter-space F. What is the mean-value parameter
H = (H1,H2) in terms of Φ?

Determine the maximum likelihood estimator Φ̂1 of Φ1 based on a random sample
(X1, . . . , Xn), and give its asymptotic distribution for n→∞.

How would these answers be affected if the variance of X were known to have
value v0?
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4/II/27I Principles of Statistics

Define sufficient statistic, and state the factorisation criterion for determining
whether a statistic is sufficient. Show that a Bayesian posterior distribution depends
on the data only through the value of a sufficient statistic.

Given the value µ of an unknown parameter M, observables X1, . . . , Xn are
independent and identically distributed with distribution N (µ, 1). Show that the statistic
X := n−1

∑n
i=1Xi is sufficient for M .

If the prior distribution is M ∼ N (0, τ2), determine the posterior distribution of M
and the predictive distribution of X.

In fact, there are two hypotheses as to the value of M. Under hypothesis H0,
M takes the known value 0; under H1, M is unknown, with prior distribution N (0, τ2).
Explain why the Bayes factor for choosing between H0 and H1 depends only on X, and
determine its value for data X1 = x1, . . . , Xn = xn .

The frequentist 5%-level test of H0 against H1 rejects H0 when |X| > 1.96/
√
n.

What is the Bayes factor for the critical case |x| = 1.96/
√
n? How does this behave as

n→∞? Comment on the similarities or differences in behaviour between the frequentist
and Bayesian tests.
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1/II/28J Stochastic Financial Models

(a) In the context of the Black–Scholes formula, let S0 be the time-0 spot price, K
be the strike price, T be the time to maturity, and let σ be the volatility. Assume that the
interest rate r is constant and assume absence of dividends. Write EC (S0,K, σ, r, T ) for
the time-0 price of a standard European call. The Black–Scholes formula can be written
in the following form

EC (S0,K, σ, r, T ) = S0Φ (d1)− e−rTKΦ (d2) .

State how the quantities d1 and d2 depend on S0,K, σ, r and T .

Assume that you sell this option at time 0. What is your replicating portfolio at
time 0?

[No proofs are required.]

(b) Compute the limit of EC (S0,K, σ, r, T ) as σ → ∞ . Construct an explicit
arbitrage under the assumption that European calls are traded above this limiting price.

(c) Compute the limit of EC (S0,K, σ, r, T ) as σ → 0 . Construct an explicit
arbitrage under the assumption that European calls are traded below this limiting price.

(d) Express in terms of S0, d1 and T the derivative

∂

∂σ
EC (S0,K, σ, r, T ) .

[Hint: you may find it useful to express ∂
∂σd1 in terms of ∂

∂σd2.]

[You may use without proof the formula S0Φ′ (d1)− e−rTKΦ′ (d2) = 0.]

(e) Say what is meant by implied volatility and explain why the previous results
make it well-defined.
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2/II/28J Stochastic Financial Models

(a) Let (Bt : t > 0) be a Brownian motion and consider the process

Yt = Y0e
σBt+(µ− 1

2σ
2)t

for Y0 > 0 deterministic. For which values of µ is (Yt : t > 0) a supermartingale? For
which values of µ is (Yt : t > 0) a martingale? For which values of µ is (1/Yt : t > 0) a
martingale? Justify your answers.

(b) Assume that the riskless rates of return for Dollar investors and Euro investors
are rD and rE respectively. Thus, 1 Dollar at time 0 in the bank account of a Dollar investor
will grow to erDt Dollars at time t. For a Euro investor, the Dollar is a risky, tradable asset.
Let QE be his equivalent martingale measure and assume that the EUR/USD exchange
rate at time t, that is, the number of Euros that one Dollar will buy at time t, is given by

Yt = Y0e
σBt+(µ− 1

2σ
2)t,

where (Bt) is a Brownian motion under QE . Determine µ as function of rD and rE . Verify
that Y is a martingale if rD = rE .

(c) Let rD, rE be as in part (b). Let now QD be an equivalent martingale measure
for a Dollar investor and assume that the EUR/USD exchange rate at time t is given by

Yt = Y0e
σBt+(µ− 1

2σ
2)t,

where now (Bt) is a Brownian motion under QD. Determine µ as function of rD and
rE . Given rD = rE , check, under QD, that is Y is not a martingale but that 1/Y is a
martingale.

(d) Assuming still that rD = rE , rederive the final conclusion of part (c), namely
the martingale property of 1/Y , directly from part (b).
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3/II/27J Stochastic Financial Models

Consider a vector of asset prices evolving over time S̄ = (S0
t , S

1
t , . . . , S

d
t )t∈{0,1,...,T}.

The asset price S0 is assumed constant over time. In this context, explain what is an
arbitrage and prove that the existence of an equivalent martingale measure implies no-
arbitrage.

Suppose that over two periods a stock price moves on a binomial tree

15

30

12

45

36
16

10

Assume riskless rate r = 1/4. Determine the equivalent martingale measure. [No proof is
required.]

Sell an American put with strike 15 and expiry 2 at its no-arbitrage price, which
you should determine.

Verify that the buyer of the option should use his early exercise right if the first
period is bad.

Assume that the first period is bad, and that the buyer forgets to exercise. How
much risk-free profit can you lock in?
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4/II/28J Stochastic Financial Models

(a) Consider a family (Xn : n > 0) of independent, identically distributed, positive
random variables and fix z0 > 0. Define inductively

zn+1 = znXn, n > 0.

Compute, for n ∈ {1, . . . , N}, the conditional expectation E(zN |zn).

(b) Fix R ∈ [0, 1). In the setting of part (a), compute also E(U(zN )|zn), where

U(x) = x1−R/(1−R), x > 0.

(c) Let U be as in part (b). An investor with wealth w0 > 0 at time 0 wishes to
invest it in such a way as to maximise E(U(wN )) where wN is the wealth at the start of
day N . Let α ∈ [0, 1] be fixed. On day n, he chooses the proportion θ ∈ [α, 1] of his wealth
to invest in a single risky asset, so that his wealth at the start of day n+ 1 will be

wn+1 = wn{θXn + (1− θ)(1 + r)}.

Here, (Xn : n > 0) is as in part (a) and r is the per-period riskless rate of interest. If
Vn(w) = sup E(U(wN )|wn = w) denotes the value function of this optimization problem,
show that Vn(wn) = anU(wn) and give a formula for an. Verify that, in the case α = 1,
your answer is in agreement with part (b).
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2/II/29I Optimization and Control

Consider a stochastic controllable dynamical system P with action-space A and
countable state-space S. Thus P = (pxy(a) : x, y ∈ S, a ∈ A) and pxy(a) denotes the
transition probability from x to y when taking action a. Suppose that a cost c(x, a)
is incurred each time that action a is taken in state x, and that this cost is uniformly
bounded. Write down the dynamic optimality equation for the problem of minimizing the
expected long-run average cost.

State in terms of this equation a general result, which can be used to identify an
optimal control and the minimal long-run average cost.

A particle moves randomly on the integers, taking steps of size 1. Suppose we can
choose at each step a control parameter u ∈ [α, 1− α], where α ∈ (0, 1/2) is fixed, which
has the effect that the particle moves in the positive direction with probability u and
in the negative direction with probability 1 − u. It is desired to maximize the long-run
proportion of time π spent by the particle at 0. Show that there is a solution to the
optimality equation for this example in which the relative cost function takes the form
θ(x) = µ |x| , for some constant µ .

Determine an optimal control and show that the maximal long-run proportion of
time spent at 0 is given by

π =
1− 2α

2 (1− α)
.

You may assume that it is valid to use an unbounded function θ in the optimality equation
in this example.
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3/II/28I Optimization and Control

Let Q be a positive-definite symmetric m ×m matrix. Show that a non-negative
quadratic form on Rd × Rm of the form

c(x, a) = xTRx+ xTSTa+ aTSx+ aTQa, x ∈ Rd, a ∈ Rm,

is minimized over a, for each x, with value xT (R− STQ−1S)x, by taking a = Kx, where
K = −Q−1S.

Consider for k 6 n the controllable stochastic linear system in Rd

Xj+1 = AXj +BUj + εj+1, j = k, k + 1, . . . , n− 1,

starting from Xk = x at time k, where the control variables Uj take values in Rm, and
where εk+1, . . . , εn are independent, zero-mean random variables, with var(εj) = Nj .
Here, A, B and Nj are, respectively, d× d, d×m and d× d matrices. Assume that a cost
c(Xj , Uj) is incurred at each time j = k, . . . , n−1 and that a final cost C(Xn) = XT

n Π0Xn

is incurred at time n. Here, Π0 is a given non-negative-definite symmetric matrix. It is
desired to minimize, over the set of all controls u, the total expected cost V u(k, x). Write
down the optimality equation for the infimal cost function V (k, x).

Hence, show that V (k, x) has the form

V (k, x) = xTΠn−kx+ γk

for some non-negative-definite symmetric matrix Πn−k and some real constant γk. Show
how to compute the matrix Πn−k and constant γk and how to determine an optimal
control.
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4/II/29I Optimization and Control

State Pontryagin’s maximum principle for the controllable dynamical system with
state-space R+, given by

ẋt = b(t, xt, ut), t > 0,

where the running costs are given by c(t, xt, ut), up to an unconstrained terminal time τ
when the state first reaches 0, and there is a terminal cost C(τ).

A company pays a variable price p(t) per unit time for electrical power, agreed in
advance, which depends on the time of day. The company takes on a job at time t = 0,
which requires a total amount E of electrical energy, but can be processed at a variable
level of power consumption u(t) ∈ [0, 1]. If the job is completed by time τ , then the
company will receive a reward R(τ). Thus, it is desired to minimize∫ τ

0

u(t)p(t)dt−R(τ),

subject to ∫ τ

0

u(t)dt = E, u(t) ∈ [0, 1],

with τ > 0 unconstrained. Take as state variable the energy xt still needed at time t to
complete the job. Use Pontryagin’s maximum principle to show that the optimal control
is to process the job on full power or not at all, according as the price p(t) lies below or
above a certain threshold value p∗.

Show further that, if τ∗ is the completion time for the optimal control, then

p∗ + Ṙ(τ∗) = p(τ∗) .

Consider a case in which p is periodic, with period one day, where day 1 corresponds
to the time interval [0, 2], and p(t) = (t − 1)2 during day 1. Suppose also that
R(τ) = 1/(1+τ) and E = 1/2. Determine the total energy cost and the reward associated
with the threshold p∗ = 1/4 .

Hence, show that any threshold low enough to carry processing over into day 2 is
suboptimal.

Show carefully that the optimal price threshold is given by p∗ = 1/4 .
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1/II/29C Partial Differential Equations

(i) State the local existence theorem for the first order quasi-linear partial differen-
tial equation

n∑
j=1

aj(x, u)
∂u

∂xj
= b(x, u),

which is to be solved for a real-valued function with data specified on a hypersurface S.
Include a definition of “non-characteristic” in your answer.

(ii) Consider the linear constant-coefficient case (that is, when all the functions
a1, . . . , an are real constants and b(x, u) = cx+d for some c = (c1, . . . , cn) with c1, . . . , cn
real and d real) and with the hypersurface S taken to be the hyperplane x ·n = 0 . Explain
carefully the relevance of the non-characteristic condition in obtaining a solution via the
method of characteristics.

(iii) Solve the equation
∂u

∂y
+ u

∂u

∂x
= 0,

with initial data u(0, y) = −y prescribed on x = 0, for a real-valued function u(x, y).
Describe the domain on which your solution is C1 and comment on this in relation to the
theorem stated in (i).

2/II/30C Partial Differential Equations

(i) Define the concept of “fundamental solution” of a linear constant-coefficient
partial differential operator and write down the fundamental solution for the operator −∆
on R3.

(ii) State and prove the mean value property for harmonic functions on R3.

(iii) Let u ∈ C2(R3) be a harmonic function which satisfies u(p) > 0 at every point
p in an open set Ω ⊂ R3. Show that if B(z, r) ⊂ B(w,R) ⊂ Ω , then

u(w) >
( r
R

)3

u (z) .

Assume that B(x, 4r) ⊂ Ω. Deduce, by choosing R = 3r and w, z appropriately, that

inf
B(x,r)

u > 3−3 sup
B(x,r)

u .

[In (iii), B(z, ρ) = {x ∈ R3 : ‖x − z‖ < ρ} is the ball of radius ρ > 0 centred at
z ∈ R3.]
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3/II/29C Partial Differential Equations

Let C∞per = {u ∈ C∞(R) : u(x + 2π) = u(x)} be the space of smooth 2π-periodic
functions of one variable.

(i) For f ∈ C∞per show that there exists a unique uf ∈ C∞per such that

− d2uf
dx2

+ uf = f.

(ii) Show that If [uf + φ] > If [uf ] for every φ ∈ C∞per which is not identically zero,
where If : C∞per → R is defined by

If [u] =
1
2

∫ +π

−π

[(
∂u

∂x

)2

+ u2 − 2f(x)u

]
dx.

(iii) Show that the equation

∂u

∂t
− ∂2u

∂x2
+ u = f(x),

with initial data u(0, x) = u0(x) ∈ C∞per has, for t > 0, a smooth solution u(t, x) such that
u(t, ·) ∈ C∞per for each fixed t > 0. Give a representation of this solution as a Fourier series
in x. Calculate limt→+∞ u(t, x) and comment on your answer in relation to (i).

(iv) Show that If [u(t, ·)] 6 If [u(s, ·)] for t > s > 0, and that If [u(t, ·)]→ If [uf ] as
t→ +∞.
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4/II/30C Partial Differential Equations

(i) Define the Fourier transform f̂ = F(f) of a Schwartz function f ∈ S(Rn), and
also of a tempered distribution u ∈ S ′(Rn).

(ii) From your definition, compute the Fourier transform of the distribution
Wt ∈ S ′(R3) given by

Wt(ψ) =< Wt, ψ >=
1

4πt

∫
‖y‖=t

ψ(y) dΣ(y)

for every Schwartz function ψ ∈ S(R3). Here dΣ(y) = t2dΩ(y) is the integration element
on the sphere of radius t.

Hence deduce the formula of Kirchoff for the solution of the initial value problem
for the wave equation in three space dimensions,

∂2u

∂t2
−∆u = 0,

with initial data u(0, x) = 0 and ∂u
∂t (0, x) = g(x), x ∈ R3, where g ∈ S(R3). Explain

briefly why the formula is also valid for arbitrary smooth g ∈ C∞(R3).

(iii) Show that any C2 solution of the initial value problem in (ii) is given by the
formula derived in (ii) (uniqueness).

(iv) Show that any two C2 solutions of the initial value problem for

∂2u

∂t2
+
∂u

∂t
−∆u = 0 ,

with the same initial data as in (ii), also agree for any t > 0 .
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1/II/30A Asymptotic Methods

Obtain an expression for the nth term of an asymptotic expansion, valid as λ→∞,
for the integral

I(λ) =
∫ 1

0

t2αe−λ(t2+t3) dt (α > −1/2).

Estimate the value of n for the term of least magnitude.

Obtain the first two terms of an asymptotic expansion, valid as λ → ∞, for the
integral

J(λ) =
∫ 1

0

t2αe−λ(t2−t3) dt (−1/2 < α < 0) .

[Hint:

Γ(z) =
∫ ∞

0

tz−1e−t dt . ]

[Stirling’s formula may be quoted.]

3/II/30A Asymptotic Methods

Describe how the leading-order approximation may be found by the method of
stationary phase of

I(λ) =
∫ b

a

f(t) exp
(
iλ g(t)

)
dt,

for λ � 1 , where λ , f and g are real. You should consider the cases for which:

(a) g′(t) has one simple zero at t = t0 , where a < t0 < b ;

(b) g′(t) has more than one simple zero in the region a < t < b ; and

(c) g′(t) has only a simple zero at t = b .

What is the order of magnitude of I(λ) if g′(t) is non zero for a 6 t 6 b ?

Use the method of stationary phase to find the leading-order approximation for
λ� 1 to

J(λ) =
∫ 1

0

sin
(
λ
(
t3 − t)) dt.

[Hint: ∫ ∞
−∞

exp
(
iu2
)
du =

√
πeiπ/4 . ]
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4/II/31A Asymptotic Methods

The Bessel equation of order n is

z2y′′ + zy′ +
(
z2 − n2

)
y = 0 . (1)

Here, n is taken to be an integer, with n > 0 . The transformation w(z) = z
1
2 y(z)

converts (1) to the form
w′′ + q(z)w = 0 , (2)

where

q(z) = 1−
(
n2 − 1

4

)
z2

.

Find two linearly independent solutions of the form

w = e sz
∞∑
k=0

ckz
ρ−k , (3)

where ck are constants, with c0 6= 0 , and s and ρ are to be determined. Find recurrence
relationships for the ck.

Find the first two terms of two linearly independent Liouville–Green solutions of
(2) for w(z) valid in a neighbourhood of z = ∞. Relate these solutions to those of the
form (3).
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1/II/31C Integrable Systems

Define an integrable system in the context of Hamiltonian mechanics with a finite
number of degrees of freedom and state the Arnold–Liouville theorem.

Consider a six-dimensional phase space with its canonical coordinates (pj , qj),
j = 1, 2, 3, and the Hamiltonian

1
2

3∑
j=1

pj
2 + F (r),

where r =
√
q2
1 + q2

2 + q2
3 and where F is an arbitrary function. Show that both

M1 = q2p3 − q3p2 and M2 = q3p1 − q1p3 are first integrals.

State the Jacobi identity and deduce that the Poisson bracket

M3 = {M1,M2}

is also a first integral. Construct a suitable expression out of M1,M2,M3 to demonstrate
that the system admits three first integrals in involution and thus satisfies the hypothesis
of the Arnold–Liouville theorem.

2/II/31C Integrable Systems

Describe the inverse scattering transform for the KdV equation, paying particular
attention to the Lax representation and the evolution of the scattering data.

[Hint: you may find it helpful to consider the operator

A = 4
d3

dx3
− 3
(
u
d

dx
+

d

dx
u
)
.]
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3/II/31C Integrable Systems

Let U(λ) and V (λ) be matrix-valued functions of (x, y) depending on the auxiliary
parameter λ. Consider a system of linear PDEs

∂

∂x
Φ = U(λ)Φ,

∂

∂y
Φ = V (λ)Φ (1)

where Φ is a column vector whose components depend on (x, y, λ). Derive the zero
curvature representation as the compatibility conditions for this system.

Assume that

U(λ) = −
ux 0 λ

1 −ux 0
0 1 0

 , V (λ) = −
 0 e−2u 0

0 0 eu

λ−1eu 0 0


and show that (1) is compatible if the function u = u(x, y) satisfies the PDE

∂2u

∂x∂y
= F (u) (2)

for some F (u) which should be determined.

Show that the transformation

(x, y) −→ (cx, c−1y), c ∈ R \ {0}

forms a symmetry group of the PDE (2) and find the vector field generating this group.

Find the ODE characterising the group-invariant solutions of (2).
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1/II/32D Principles of Quantum Mechanics

(a) If A and B are operators which each commute with their commutator [A,B],
show that [A, eB ] = [A,B]eB . By considering

F (λ) = eλAeλBe−λ(A+B)

and differentiating with respect to the parameter λ, show also that

eAeB = CeA+B = eA+BC

where C = e
1
2 [A,B].

(b) Consider a one-dimensional quantum system with position x̂ and momentum
p̂. Write down a formula for the operator U(α) corresponding to translation through
α, calculate [x̂, U(α)], and show that your answer is consistent with the assumption
that position eigenstates obey |x + α〉 = U(α)|x〉. Given this assumption, express the
wavefunction for U(α)|ψ〉 in terms of the wavefunction ψ(x) for |ψ〉.

Now suppose the one-dimensional system is a harmonic oscillator of mass m and
frequency ω. Show that

ψ0(x−α) = e−mωα
2/4~

∞∑
n=0

(mω
2~

)n/2 αn√
n!
ψn(x),

where ψn(x) are normalised wavefunctions with energies En = ~ω(n+ 1
2 ).

[Standard results for constructing normalised energy eigenstates in terms of anni-
hilation and creation operators

a =
(mω

2~

)1/2(
x̂+

i

mω
p̂
)
, a† =

(mω
2~

)1/2(
x̂− i

mω
p̂
)

may be quoted without proof.]
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2/II/32D Principles of Quantum Mechanics

Derive approximate expressions for the eigenvalues of a Hamiltonian H + λV ,
working to second order in the parameter λ and assuming the eigenstates and eigenvalues
of H are known and non-degenerate.

Let J = (J1, J2, J3) be angular momentum operators with |j m〉 joint eigenstates
of J2 and J3. What are the possible values of the labels j and m and what are the
corresponding eigenvalues of the operators?

A particle with spin j is trapped in space (its position and momentum can be
ignored) but is subject to a magnetic field of the form B = (B1, 0, B3), resulting in
a Hamiltonian −γ(B1J1 + B3J3). Starting from the eigenstates and eigenvalues of
this Hamiltonian when B1 = 0, use perturbation theory to compute the leading order
corrections to the energies when B1 is non-zero but much smaller than B3. Compare with
the exact result.

[You may set ~ = 1 and use J±|j m〉 =
√

(j ∓m)(j ±m+ 1)|j m±1〉.]

3/II/32D Principles of Quantum Mechanics

Explain, in a few lines, how the Pauli matrices σ = (σ1, σ2, σ3) with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are used to represent angular momentum operators with respect to basis states | ↑〉 and
| ↓〉 corresponding to spin up and spin down along the 3-axis. You should state clearly
which properties of the matrices correspond to general features of angular momentum and
which are specific to spin half.

Consider two spin-half particles labelled A and B, each with its spin operators and
spin eigenstates. Find the matrix representation of

σ(A) · σ(B) = σ
(A)
1 σ

(B)
1 + σ

(A)
2 σ

(B)
2 + σ

(A)
3 σ

(B)
3

with respect to a basis of two-particle states | ↑〉A| ↑〉B , | ↓〉A| ↑〉B , | ↑〉A| ↓〉B , | ↓〉A| ↓〉B.
Show that the eigenvalues of the matrix are 1, 1, 1,−3 and find the eigenvectors.

What is the behaviour of each eigenvector under interchange of A and B? If the
particles are identical, and there are no other relevant degrees of freedom, which of the
two-particle states are allowed?

By relating (σ(A) +σ(B))2 to the operator discussed above, show that your findings
are consistent with standard results for addition of angular momentum.
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4/II/32D Principles of Quantum Mechanics

Define the interaction picture for a quantum mechanical system with Schrödinger
picture Hamiltonian H0 + V (t) and explain why either picture gives the same physical
predictions. Derive an equation of motion for interaction picture states and use this to
show that the probability of a transition from a state |n〉 at time zero to a state |m〉 at
time t is

P (t) =
1
~2

∣∣∣∣ ∫ t

0

ei(Em−En)t′/~〈m|V (t′)|n〉 dt′
∣∣∣∣2

correct to second order in V , where the initial and final states are orthogonal eigenstates
of H0 with eigenvalues En and Em.

Consider a perturbed harmonic oscillator:

H0 = ~ω(a†a+ 1
2 ) , V (t) = ~λ( aeiνt + a†e−iνt )

with a and a† annihilation and creation operators (all usual properties may be assumed).
Working to order λ2, find the probability for a transition from an initial state with
En = ~ω(n+ 1

2 ) to a final state with Em = ~ω(m+ 1
2 ) after time t.

Suppose t becomes large and perturbation theory still applies. Explain why the
rate P (t)/t for each allowed transition is sharply peaked, as a function of ν, around ν = ω.
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1/II/33E Applications of Quantum Mechanics

A beam of particles each of mass m and energy ~2k2/(2m) scatters off an axisym-
metric potential V . In the first Born approximation the scattering amplitude is

f(θ) = − m

2π~2

∫
e−i(k−k0)·x′V (x′) d3x′, (∗)

where k0 = (0, 0, k) is the wave vector of the incident particles and k = (k sin θ, 0, k cos θ) is
the wave vector of the outgoing particles at scattering angle θ (and φ = 0). Let q = k−k0

and q = |q|. Show that when the scattering potential V is spherically symmetric the
expression (∗) simplifies to

f(θ) = − 2m
~2q

∫ ∞
0

r′V (r′) sin(qr′) dr′,

and find the relation between q and θ.

Calculate this scattering amplitude for the potential V (r) = V0e
−r where V0 is a

constant, and show that at high energies the particles emerge predominantly in a narrow
cone around the forward beam direction. Estimate the angular width of the cone.

2/II/33E Applications of Quantum Mechanics

Consider a large, essentially two-dimensional, rectangular sample of conductor of
area A, and containing 2N electrons of charge −e. Suppose a magnetic field of strength
B is applied perpendicularly to the sample. Write down the Landau Hamiltonian for one
of the electrons assuming that the electron interacts just with the magnetic field.

[You may ignore the interaction of the electron spin with the magnetic field.]

Find the allowed energy levels of the electron.

Find the total energy of the 2N electrons at absolute zero temperature as a function
of B, assuming that B is in the range

π~N
eA

6 B 6
2π~N
eA

.

Comment on the values of the total energy when B takes the values at the two ends
of this range.
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3/II/33E Applications of Quantum Mechanics

Consider the body-centred cuboidal lattice L with lattice points (n1a, n2a, n3b) and
((n1 + 1

2 )a, (n2 + 1
2 )a, (n3 + 1

2 )b), where a and b are positive and n1, n2 and n3 take all
possible integer values. Find the reciprocal lattice L̃ and describe its geometrical form.
Calculate the volumes of the unit cells of the lattices L and L̃.

Find the reciprocal lattice vector associated with the lattice planes parallel to the
plane containing the points (0, 0, b), (0, a, b), ( 1

2a,
1
2a,

1
2b), (a, 0, 0) and (a, a, 0). Deduce

the allowed Bragg scattering angles of X-rays off these planes, assuming that b = 4
3a and

that the X-rays have wavelength λ = 1
2a.

4/II/33E Applications of Quantum Mechanics

Explain why the allowed energies of electrons in a three-dimensional crystal lie
in energy bands. What quantum numbers can be used to classify the electron energy
eigenstates?

Describe the effect on the energy level structure of adding a small density of
impurity atoms randomly to the crystal.
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2/II/34E Statistical Physics

Prove that energy fluctuations in a canonical distribution are given by〈
(E − 〈E〉)2

〉
= kBT

2CV

where T is the absolute temperature, CV = ∂〈E〉
∂T |V is the heat capacity at constant volume,

and kB is Boltzmann’s constant.

Prove the following relation in a similar manner:〈
(E − 〈E〉)3

〉
= k2

B

[
T 4 ∂CV

∂T

∣∣∣∣
V

+ 2T 3CV

]
.

Show that, for an ideal gas of N monatomic molecules where 〈E〉 = 3
2NkBT , these

equations can be reduced to

1
〈E〉2

〈
(E − 〈E〉)2

〉
=

2
3N

and
1
〈E〉3

〈
(E − 〈E〉)3

〉
=

8
9N2

.
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3/II/34E Statistical Physics

Derive the following two relations:

T dS = Cp dT − T
∂V

∂T

∣∣∣∣
p

dp

and

T dS = CV dT + T
∂p

∂T

∣∣∣∣
V

dV.

[You may use any standard Maxwell relation without proving it.]

Experimentalists very seldom measure CV directly; they measure Cp and use
thermodynamics to extract CV . Use your results from the first part of this question
to find a formula for Cp − CV in terms of the easily measured quantities

α =
1
V

∂V

∂T

∣∣∣∣
p

(the volume coefficient of expansion) and

κ = − 1
V

∂V

∂p

∣∣∣∣
T

(the isothermal compressibility).

4/II/34D Statistical Physics

Show that the Fermi momentum pF of a gas of N non-interacting electrons in
volume V is

pF =
(

3π2~3N

V

)1/3

.

Consider the electrons to be effectively massless, so that an electron of momentum p has
(relativistic) energy cp. Show that the mean energy per electron at zero temperature is
3cpF /4.

When a constant external magnetic field of strength B is applied to the electron gas,
each electron gets an energy contribution ±µB depending on whether its spin is parallel or
antiparallel to the field. Here µ is the magnitude of the magnetic moment of an electron.
Calculate the total magnetic moment of the electron gas at zero temperature, assuming
µB is much less than cpF .
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1/II/34D Electrodynamics

Frame S ′ is moving with uniform speed v in the x-direction relative to a laboratory
frame S. The components of the electric and magnetic fields E and B in the two frames
are related by the Lorentz transformation

E′x = Ex, E′y = γ(Ey − vBz), E′z = γ(Ez + vBy),

B′x = Bx, B′y = γ(By + vEz), B′z = γ(Bz − vEy),

where γ = 1/
√

1− v2 and units are chosen so that c = 1. How do the components of the
spatial vector F = E + iB (where i =

√−1) transform?

Show that F′ is obtained from F by a rotation through θ about a spatial axis n,
where n and θ should be determined. Hence, or otherwise, show that there are precisely two
independent scalars associated with F which are preserved by the Lorentz transformation,
and obtain them.

[Hint: since |v| < 1 there exists a unique real ψ such that v = tanhψ.]

3/II/35D Electrodynamics

The retarded scalar potential ϕ(t,x) produced by a charge distribution ρ(t,x) is
given by

ϕ(t,x) =
1

4πε0

∫
Ω

d3x′
ρ(t− |x− x′|,x′)

|x− x′| ,

where Ω denotes all 3-space. Describe briefly and qualitatively the physics underlying this
formula.

Write the integrand in the formula above as a 1-dimensional integral over a new time
coordinate τ . Next consider a special source, a point charge q moving along a trajectory
x = x0(t) so that

ρ(t,x) = qδ(3)(x− x0(t)),

where δ(3)(x) denotes the 3-dimensional delta function. By reversing the order of
integration, or otherwise, obtain the Liénard–Wiechert potential

ϕ(t,x) =
1

4πε0
q

R− v ·R ,

where v and R are to be determined.

Write down the corresponding formula for the vector potential A(t,x).
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4/II/35D Electrodynamics

The Maxwell field tensor is given by

F ab =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 .

A general 4-velocity is written as Ua = γ(1,v), where γ = (1 − |v|2)−1/2, and c = 1. A
general 4-current density is written as Ja = (ρ, j), where ρ is the charge density and j is
the 3-current density. Show that

F abUb = γ(E · v, E + v ×B).

In the rest frame of a conducting medium, Ohm’s law states that j = σE where
σ is the conductivity. Show that the relativistic generalization to a frame in which the
medium moves with uniform velocity v is

Ja − (JbUb)Ua = σF abUb.

Show that this implies

j = ρv + σγ(E + v ×B− (v ·E)v).

Simplify this formula, given that the charge density vanishes in the rest frame of the
medium.
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1/II/35E General Relativity

For the metric
ds2 =

1
r2

(−dt2 + dr2
)
, r > 0 ,

obtain the geodesic equations of motion. For a massive particle show that(
dr
dt

)2

= 1− 1
k2r2

,

for some constant k. Show that the particle moves on trajectories

r2 − t2 =
1
k2
, kr = sec τ , kt = tan τ ,

where τ is the proper time, if the origins of t, τ are chosen appropriately.

2/II/35E General Relativity

Let xa(λ) be a path P with tangent vector T a = d
dλx

a(λ). For vectors Xa(x(λ))
and Y a(x(λ)) defined on P let

∇TXa =
d

dλ
Xa + Γabc(x(λ))XbT c,

where Γabc(x) is the metric connection for a metric gab(x). ∇TY a is defined similarly.
Suppose P is geodesic and λ is an affine parameter. Explain why ∇TT a = 0. Show that
if ∇TXa = ∇TY a = 0 then gab(x(λ))Xa(x(λ))Y b(x(λ)) is constant along P .

If xa(λ, µ) is a family of geodesics which depend on µ, let Sa = ∂
∂µx

a and define

∇SXa =
∂

∂µ
Xa + Γabc(x(λ))XbSc.

Show that ∇TSa = ∇ST a and obtain

∇T 2Sa ≡ ∇T (∇TSa) = RabcdT
bT cSd.

What is the physical relevance of this equation in general relativity? Describe briefly how
this is relevant for an observer moving under gravity.

[You may assume [∇T ,∇S ]Xa = RabcdX
bT cSd.]
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4/II/36E General Relativity

A solution of the Einstein equations is given by the metric

ds2 = −
(

1− 2M
r

)
dt2 +

1(
1− 2M

r

) dr2 + r2(dθ2 + sin2 θdφ2) .

For an incoming light ray, with constant θ, φ, show that

t = v − r − 2M log
∣∣∣ r
2M
− 1
∣∣∣ ,

for some fixed v and find a similar solution for an outgoing light ray. For the outgoing
case, assuming r > 2M , show that in the far past r

2M −1 ∝ exp( t
2M ) and in the far future

r ∼ t.
Obtain the transformed metric after the change of variables (t, r, θ, φ)→ (v, r, θ, φ).

With coordinates t̂ = v − r, r sketch, for fixed θ, φ, the trajectories followed by light rays.
What is the significance of the line r = 2M?

Show that, whatever path an observer with initial r = r0 < 2M takes, he must
reach r = 0 in a finite proper time.
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1/II/36A Fluid Dynamics II

Derive the relation between the stress tensor σij and the rate-of-strain tensor eij
in an incompressible Newtonian fluid, using the result that there is a linear dependence
between the components of σij and those of eij that is the same in all frames. Write down
the boundary conditions that hold at an interface between two viscous fluids.

Viscous fluid is contained in a channel between the rigid planes y = −a and y = a .
The fluid in y < 0 has dynamic viscosity µ− , while that in y > 0 has dynamic viscosity
µ+ . Gravity may be neglected. The fluids move through the channel in the x-direction
under the influence of a pressure gradient applied at the ends of the channel. It may be
assumed that the velocity has no z-components, and all quantities are independent of z .

Find a steady solution of the Navier–Stokes equation in which the interface between
the two fluids remains at y = 0, the fluid velocity is everywhere independent of x, and the
pressure gradient is uniform. Use it to calculate the following:

(a) the viscous tangential stress at y = −a and at y = a; and

(b) the ratio of the volume fluxes of the two different fluids.

Comment on the limits of each of the results in (a) and (b) as µ+/µ− → 1 , and as
µ+/µ− →∞ .
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2/II/36A Fluid Dynamics II

Viscous fluid with dynamic viscosity µ flows with velocity (ux, uy, uz) ≡ (uH , uz)
(in cartesian coordinates x, y, z) in a shallow container with a free surface at z = 0 . The
base of the container is rigid, and is at z = −h(x, y) . A horizontal stress S(x, y) is applied
at the free surface. Gravity may be neglected.

Using lubrication theory (conditions for the validity of which should be clearly
stated), show that the horizontal volume flux q(x, y) ≡ ∫ 0

−h uH dz satisfies the equations

∇ · q = 0 , µq = −1
3
h3∇p +

1
2
h2 S ,

where p(x, y) is the pressure. Find also an expression for the surface velocity u0(x, y) ≡
uH(x, y, 0) in terms of S , q and h .

Now suppose that the container is cylindrical with boundary at x2 +y2 = a2 , where
a� h , and that the surface stress is uniform and in the x-direction, so S = (S0, 0) with S0

constant. It can be assumed that the correct boundary condition to apply at x2 + y2 = a2

is q · n = 0 , where n is the unit normal.

Write q = ∇ψ(x, y)× ẑ , and show that ψ satisfies the equation

∇ ·
(

1
h3
∇ψ
)

= − S0

2µh2

∂h

∂y
.

Deduce that if h = h0 (constant) then q = 0 . Find u0 in this case.

Now suppose that h = h0(1 + εy/a) , where ε � 1 . Verify that to leading order
in ε, ψ = εC(x2 + y2− a2) for some constant C to be determined. Hence determine u0 up
to and including terms of order ε .

[Hint: ∇× (A× ẑ) = ẑ · ∇A− ẑ∇ ·A for any vector field A .]
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3/II/36A Fluid Dynamics II

Show that, in cylindrical polar co-ordinates, the streamfunction ψ(r, φ) for the
velocity u = (ur(r, φ), uφ(r, φ), 0) and vorticity (0, 0, ω(r, φ)) of two-dimensional Stokes
flow of incompressible fluid satisfies the equations

u =
(

1
r

∂ψ

∂φ
,− ∂ψ

∂r
, 0
)
, ∇2ω = −∇4ψ = 0.

Show also that the pressure p(r, φ) satisfies ∇2p = 0 .

A stationary rigid circular cylinder of radius a occupies the region r 6 a . The flow
around the cylinder tends at large distances to a simple shear flow, with velocity given in
cartesian coordinates (x, y, z) by u = (Γy, 0, 0) . Inertial forces may be neglected.

By solving the equation for ψ in cylindrical polars, determine the flow field
everywhere. Determine the torque on the cylinder per unit length in z .

[Hint: in cylindrical polars

∇2V =
1
r

∂

∂r

(
r
∂V

∂r

)
+

1
r2

∂2V

∂φ2
.

The off-diagonal component of the rate-of-strain tensor is given by

erφ =
1
2

(
1
r

∂ur
∂φ

+ r
∂

∂r

(uφ
r

))
.]
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4/II/37A Fluid Dynamics II

Viscous incompressible fluid of uniform density is extruded axisymmetrically from
a thin circular slit of small radius centred at the origin and lying in the plane z = 0 in
cylindrical polar coordinates r, θ, z . There is no external radial pressure gradient. It is
assumed that the fluid forms a thin boundary layer, close to and symmetric about the plane
z = 0 . The layer has thickness δ(r) � r . The r-component of the steady Navier–Stokes
equations may be approximated by

ur
∂ur
∂r

+ uz
∂ur
∂z

= ν
∂2ur
∂z2

.

(i) Prove that the quantity (proportional to the flux of radial momentum)

F =
∫ ∞
−∞

u2
r r dz

is independent of r.

(ii) Show, by balancing terms in the momentum equation and assuming constancy
of F , that there is a similarity solution of the form

ur = −1
r

∂Ψ
∂z

, uz =
1
r

∂Ψ
∂r

, Ψ = −Aδ(r)f(η), η =
z

δ(r)
, δ(r) = Cr,

where A,C are constants. Show that for suitable choices of A and C the equation for f
takes the form

−f ′ 2 − ff ′′ = f ′′′;

f = f ′′ = 0 at η = 0; f ′ → 0 as η →∞;∫ ∞
−∞

f2
η dη = 1.

(iii) Give an inequality connecting F and ν that ensures that the boundary layer
approximation (δ � r) is valid. Solve the equation to give a complete solution to the
problem for ur when this inequality holds.

[Hint:
∫∞
−∞ sech4x dx = 4/3 . ]
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1/II/37B Waves

Show that in an acoustic plane wave the velocity and perturbation pressure are
everywhere proportional and find the constant of proportionality.

Gas occupies a tube lying parallel to the x-axis. In the regions x < 0 and x > L the
gas has uniform density ρ0 and sound speed c0 . For 0 < x < L the gas is cooled so that
it has uniform density ρ1 and sound speed c1 . A harmonic plane wave with frequency ω
is incident from x = −∞ . Show that the amplitude of the wave transmitted into x > L
relative to that of the incident wave is

|T | =
[

cos2 k1L+
1
4
(
λ+ λ−1

)2
sin2 k1L

]−1/2

,

where λ = ρ1c1/ρ0c0 and k1 = ω/c1 .

What are the implications of this result if λ� 1?

2/II/37B Waves

Show that, in one-dimensional flow of a perfect gas at constant entropy, the
Riemann invariants u± 2(c− c0)/(γ− 1) are constant along characteristics dx/dt = u± c .

A perfect gas occupies a tube that lies parallel to the x-axis. The gas is initially at
rest and is in x > 0 . For times t > 0 a piston is pulled out of the gas so that its position
at time t is

x = X(t) = − 1
2
ft2,

where f > 0 is a constant. Sketch the characteristics of the resulting motion in the
(x, t) plane and explain why no shock forms in the gas.

Calculate the pressure exerted by the gas on the piston for times t > 0 , and show
that at a finite time tv a vacuum forms. What is the speed of the piston at t = tv?
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3/II/37B Waves

The real function φ(x, t) satisfies the Klein–Gordon equation

∂2φ

∂t2
=

∂2φ

∂x2
− φ , −∞ < x <∞, t > 0 .

Find the dispersion relation for disturbances of wavenumber k and deduce their phase and
group velocities.

Suppose that at t = 0

φ(x, 0) = 0 and
∂φ

∂t
(x, 0) = e−|x| .

Use Fourier transforms to find an integral expression for φ(x, t) when t > 0 .

Use the method of stationary phase to find φ(V t, t) for t→∞ for fixed 0 < V < 1 .
What can be said if V > 1?

[Hint: you may assume that∫ ∞
−∞

e−ax
2
dx =

√
π

a
, Re(a) > 0 .]

4/II/38B Waves

A layer of rock of shear modulus µ̄ and shear wave speed c̄s occupies the region
0 6 y 6 h with a free surface at y = h . A second rock having shear modulus µ and shear
wave speed cs > c̄s occupies y 6 0 . Show that elastic SH waves of wavenumber k and
phase speed c can propagate in the layer with zero disturbance at y = −∞ if c̄s < c < cs
and c satisfies the dispersion relation

tan
[
kh
√
c2/c̄2s − 1

]
=

µ

µ̄

√
1− c2/c2s√
c2/c̄2s − 1

.

Show graphically, or otherwise, that this equation has at least one real solution for
any value of kh, and determine the smallest value of kh for which the equation has at least
two real solutions.
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1/II/38C Numerical Analysis

The Poisson equation ∇2u = f in the unit square Ω = [0, 1] × [0, 1], with zero
boundary conditions on ∂Ω, is discretized with the nine-point formula

10
3
um,n − 2

3
(um+1,n + um−1,n + um,n+1 + um,n−1)

− 1
6

(um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1) = −h2fm,n,

where 1 6 m,n 6M , um,n ≈ u(mh, nh), and (mh, nh) are grid points.

(a) Prove that, for any ordering of the grid points, the method can be written as
Au = b with a symmetric positive-definite matrix A.

(b) Describe the Jacobi method for solving a linear system of equations, and prove
that it converges for the above system.

[You may quote without proof the corollary of the Householder–John theorem
regarding convergence of the Jacobi method.]

2/II/38C Numerical Analysis

The advection equation

ut = ux, x ∈ R, t > 0,

is solved by the leapfrog scheme

un+1
m = µ

(
unm+1 − unm−1

)
+ un−1

m ,

where n > 1 and µ = ∆t/∆x is the Courant number.

(a) Determine the local error of the method.

(b) Applying the Fourier technique, find the range of µ > 0 for which the method
is stable.
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3/II/38C Numerical Analysis

(a) A numerical method for solving the ordinary differential equation

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0,

generates for every h > 0 a sequence {yn}, where yn is an approximation to y(tn) and
tn = nh. Explain what is meant by the convergence of the method.

(b) Prove from first principles that if the function f is sufficiently smooth and
satisfies the Lipschitz condition

|f(t, x)− f(t, y)| 6 λ|x− y|, x, y ∈ R, t ∈ [0, T ] ,

for some λ > 0, then the trapezoidal rule

yn+1 = yn +
1
2
h [f(tn, yn) + f(tn+1, yn+1)]

converges.

4/II/39C Numerical Analysis

Let A ∈ Rn×n be a real matrix with n linearly independent eigenvectors. When
calculating eigenvalues of A, the sequence x(k), k = 0, 1, 2, . . ., is generated by the power
method x(k+1) = Ax(k)/‖Ax(k)‖, where x(0) is a real nonzero vector.

(a) Describe the asymptotic properties of the sequence x(k), both in the case where
the eigenvalues λi of A satisfy |λi| < |λn|, i = 1, . . . , n − 1, and in the case where
|λi| < |λn−1| = |λn|, i = 1, . . . , n−2. In the latter case explain how the (possibly complex-
valued) eigenvalues λn−1, λn and their corresponding eigenvectors can be determined.

(b) Let n = 3, and suppose that, for a large k, we obtain the vectors

yk = xk =

 1
1
1

 , yk+1 = Axk =

 2
3
4

 , yk+2 = A2xk =

 2
4
6

 .
Find two eigenvalues of A and their corresponding eigenvectors.
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