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SECTION I

1G Linear Algebra

Suppose that α : V → W is a linear map of finite-dimensional complex vector
spaces. What is the dual map α∗ of the dual vector spaces?

Suppose that we choose bases of V,W and take the corresponding dual bases of the
dual vector spaces. What is the relation between the matrices that represent α and α∗

with respect to these bases? Justify your answer.

2G Groups, Rings and Modules

If p is a prime, how many abelian groups of order p4 are there, up to isomorphism?

3H Analysis II

Define uniform convergence for a sequence f1, f2, . . . of real-valued functions on the
interval (0, 1).

For each of the following sequences of functions on (0, 1), find the pointwise limit
function. Which of these sequences converge uniformly on (0, 1)?

(i) fn(x) = log (x+ 1
n ),

(ii) fn(x) = cos ( x
n ).

Justify your answers.

4H Complex Analysis

State the argument principle.

Show that if f is an analytic function on an open set U ⊂ C which is one-to-one,
then f ′(z) 6= 0 for all z ∈ U .
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5B Methods

Show that the general solution of the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c is a constant, is
y = f(x+ ct) + g(x− ct) ,

where f and g are twice differentiable functions. Briefly discuss the physical interpretation
of this solution.

Calculate y(x, t) subject to the initial conditions

y(x, 0) = 0 and
∂y

∂t
(x, 0) = ψ(x) .

6B Quantum Mechanics

A particle moving in one space dimension with wave-function Ψ(x, t) obeys the
time-dependent Schrödinger equation. Write down the probability density, ρ, and current
density, j, in terms of the wave-function and show that they obey the equation

∂j

∂x
+
∂ρ

∂t
= 0 .

The wave-function is
Ψ(x, t) =

(
eikx +Re−ikx

)
e−iEt/~ ,

where E = ~2k2/2m and R is a constant, which may be complex. Evaluate j.

7E Electromagnetism

Write down Faraday’s law of electromagnetic induction for a moving circuit C(t)
in a magnetic field B(x, t). Explain carefully the meaning of each term in the equation.

A thin wire is bent into a circular loop of radius a. The loop lies in the (x, z)-plane
at time t = 0. It spins steadily with angular velocity Ωk, where Ω is a constant and k is a
unit vector in the z-direction. A spatially uniform magnetic field B = B0(cosωt, sinωt, 0)
is applied, with B0 and ω both constant. If the resistance of the wire is R, find the current
in the wire at time t.
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8F Numerical Analysis

Given f ∈ C3[0, 2], we approximate f ′(0) by the linear combination

µ(f) = −3
2
f(0) + 2f(1)− 1

2
f(2) .

Using the Peano kernel theorem, determine the least constant c in the inequality

|f ′(0)− µ(f)| ≤ c ‖f ′′′‖∞ ,

and give an example of f for which the inequality turns into equality.

9C Markov Chains

For a Markov chain with state space S, define what is meant by the following:

(i) states i, j ∈ S communicate;

(ii) state i ∈ S is recurrent.

Prove that communication is an equivalence relation on S and that if two states
i, j communicate and i is recurrent then j is recurrent.
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SECTION II

10G Linear Algebra

(i) State and prove the Cayley–Hamilton theorem for square complex matrices.

(ii) A square matrix A is of order n for a strictly positive integer n if An = I and
no smaller positive power of A is equal to I.

Determine the order of a complex 2× 2 matrix A of trace zero and determinant 1.

11G Groups, Rings and Modules

A regular icosahedron has 20 faces, 12 vertices and 30 edges. The group G of its
rotations acts transitively on the set of faces, on the set of vertices and on the set of edges.

(i) List the conjugacy classes in G and give the size of each.

(ii) Find the order of G and list its normal subgroups.

[A normal subgroup of G is a union of conjugacy classes in G.]

12A Geometry

Write down the Riemannian metric for the upper half-plane model H of the
hyperbolic plane. Describe, without proof, the group of isometries of H and the hyperbolic
lines (i.e. the geodesics) on H.

Show that for any two hyperbolic lines `1, `2, there is an isometry of H which maps
`1 onto `2.

Suppose that g is a composition of two reflections in hyperbolic lines which are
ultraparallel (i.e. do not meet either in the hyperbolic plane or at its boundary). Show
that g cannot be an element of finite order in the group of isometries of H.

[Existence of a common perpendicular to two ultraparallel hyperbolic lines may be assumed.
You might like to choose carefully which hyperbolic line to consider as a common
perpendicular.]
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13H Analysis II

State and prove the Contraction Mapping Theorem.

Find numbers a and b, with a < 0 < b, such that the mapping T : C[a, b] → C[a, b]
defined by

T (f)(x) = 1 +
∫ x

0

3t f(t) dt

is a contraction, in the sup norm on C[a, b]. Deduce that the differential equation

dy

dx
= 3xy, with y = 1 when x = 0,

has a unique solution in some interval containing 0.

14A Metric and Topological Spaces

(a) For a subset A of a topological space X, define the closure cl(A) of A. Let
f : X → Y be a map to a topological space Y . Prove that f is continuous if and only if
f(cl(A)) ⊆ cl(f(A)), for each A ⊆ X.

(b) Let M be a metric space. A subset S of M is called dense in M if the closure
of S is equal to M .

Prove that if a metric space M is compact then it has a countable subset which is
dense in M .
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15F Complex Methods

(i) Use the definition of the Laplace transform of f(t):

L{f(t)} = F (s) =
∫ ∞

0

e−stf(t) dt ,

to show that, for f(t) = tn,

L{f(t)} = F (s) =
n!
sn+1

, L{eatf(t)} = F (s− a) =
n!

(s− a)n+1
.

(ii) Use contour integration to find the inverse Laplace transform of

F (s) =
1

s2(s+ 1)2
.

(iii) Verify the result in (ii) by using the results in (i) and the convolution theorem.

(iv) Use Laplace transforms to solve the differential equation

f (iv)(t) + 2f ′′′(t) + f ′′(t) = 0,

subject to the initial conditions

f(0) = f ′(0) = f ′′(0) = 0, f ′′′(0) = 1 .
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16E Methods

Write down the Euler-Lagrange equation for extrema of the functional

I =
∫ b

a

F (y, y′) dx .

Show that a first integral of this equation is given by

F − y′
∂F

∂y′
= C .

A road is built between two points A and B in the plane z = 0 whose polar
coordinates are r = a, θ = 0 and r = a, θ = π/2 respectively. Owing to congestion, the
traffic speed at points along the road is kr2 with k a positive constant. If the equation
describing the road is r = r(θ), obtain an integral expression for the total travel time T
from A to B.

[Arc length in polar coordinates is given by ds2 = dr2 + r2dθ2.]

Calculate T for the circular road r = a.

Find the equation for the road that minimises T and determine this minimum value.

17B Special Relativity

(a) A moving π0 particle of rest-mass mπ decays into two photons of zero rest-mass,

π0 → γ + γ .

Show that

sin
θ

2
=

mπc
2

2
√
E1E2

,

where θ is the angle between the three-momenta of the two photons and E1, E2 are their
energies.

(b) The π− particle of rest-mass mπ decays into an electron of rest-mass me and a
neutrino of zero rest mass,

π− → e− + ν .

Show that v, the speed of the electron in the rest frame of the π−, is

v = c

[
1− (me/mπ)2

1 + (me/mπ)2

]
.
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18D Fluid Dynamics

Starting from Euler’s equation for an inviscid, incompressible fluid in the absence
of body forces,

∂u
∂t

+ (u.∇)u = − 1
ρ
∇p ,

derive the equation for the vorticity ω = ∇∧u .

[You may assume that ∇∧(a∧b) = a∇.b− b∇.a + (b.∇)a− (a.∇)b .]

Show that, in a two-dimensional flow, vortex lines keep their strength and move
with the fluid.

Show that a two-dimensional flow driven by a line vortex of circulation Γ at distance
b from a rigid plane wall is the same as if the wall were replaced by another vortex of
circulation −Γ at the image point, distance b from the wall on the other side. Deduce that
the first vortex will move at speed Γ/4πb parallel to the wall.

A line vortex of circulation Γ moves in a quarter-plane, bounded by rigid plane
walls at x = 0, y > 0 and y = 0, x > 0. Show that the vortex follows a trajectory whose
equation in plane polar coordinates is r sin 2θ = constant.

19C Statistics

Consider the linear regression model

Yi = α+ βxi + εi, 1 6 i 6 n ,

where ε1, . . . , εn are independent, identically distributed N(0, σ2), x1, . . . , xn are known
real numbers with

∑n
i=1 xi = 0 and α, β and σ2 are unknown.

(i) Find the least-squares estimates α̂ and β̂ of α and β, respectively, and explain why
in this case they are the same as the maximum-likelihood estimates.

(ii) Determine the maximum-likelihood estimate σ̂2 of σ2 and find a multiple of it which
is an unbiased estimate of σ2.

(iii) Determine the joint distribution of α̂, β̂ and σ̂2.

(iv) Explain carefully how you would test the hypothesis H0 : α = α0 against the
alternative H1 : α 6= α0.
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20C Optimization

Consider the linear programming problem

minimize 2x1 − 3x2 − 2x3

subject to − 2x1 + 2x2 + 4x3 6 5
4x1 + 2x2 − 5x3 6 8
5x1 − 4x2 + 1

2 x3 6 5 , xi > 0 , i = 1, 2, 3 .

(i) After adding slack variables z1 , z2 and z3 and performing one iteration of the
simplex algorithm, the following tableau is obtained.

x1 x2 x3 z1 z2 z3

x2 −1 1 2 1/2 0 0 5/2
z2 6 0 −9 −1 1 0 3
z3 1 0 17/2 2 0 1 15

Payoff −1 0 4 3/2 0 0 15/2

Complete the solution of the problem.

(ii) Now suppose that the problem is amended so that the objective function becomes

2x1 − 3x2 − 5x3 .

Find the solution of this new problem.

(iii) Formulate the dual of the problem in (ii) and identify the optimal solution to the
dual.

END OF PAPER

Paper 4


	Rubric
	1G Linear Algebra
	2G Groups, Rings and Modules
	3H Analysis II
	4H Complex Analysis
	5B Methods
	6B Quantum Mechanics
	7E Electromagnetism 
	8F Numerical Analysis
	9C Markov Chains
	10G Linear Algebra
	11G Groups, Rings and Modules
	12A Geometry
	13H Analysis II
	14A Metric and Topological Spaces
	15F Complex Methods
	16E Methods
	17B Special Relativity
	18D Fluid Dynamics
	19C Statistics
	20C Optimization

