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SECTION I

1H Number Theory

State the theorem of the primitive root for an odd prime power modulus.

Prove that 3 is a primitive root modulo 7n for all integers n > 1. Is 2 a primitive
root modulo 7n for all integers n > 1?

Prove that there is no primitive root modulo 8.

2G Topics in Analysis

State Brouwer’s fixed-point theorem, and also an equivalent version of the theorem
that concerns retractions of the disc. Prove that these two versions are equivalent.

3F Geometry and Groups

Suppose Si : Rn → Rn is a similarity with contraction factor ci ∈ (0, 1) for
1 6 i 6 k. Let X be the unique non-empty compact invariant set for the Si’s. State
a formula for the Hausdorff dimension of X, under an assumption on the Si’s you should
state. Hence compute the Hausdorff dimension of the subset X of the square [0, 1]2 defined
by dividing the square into a 5 × 5 array of squares, removing the open middle square
(2/5, 3/5)2, then removing the middle 1/25th of each of the remaining 24 squares, and so
on.

4G Coding and Cryptography

Define a linear feedback shift register. Explain the Berlekamp–Massey method for
“breaking” a key stream produced by a linear feedback shift register of unknown length.
Use it to find the feedback polynomial of a linear feedback shift register with output
sequence

0 1 0 1 1 1 1 0 0 0 1 0 . . . .
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5I Statistical Modelling

Assume that observations Y = (Y1, . . . , Yn)T satisfy the linear model

Y = Xβ + ε,

where X is an n×p matrix of known constants of full rank p < n, where β = (β1, . . . , βp)T

is unknown and ε ∼ Nn(0, σ2I). Write down a (1− α)-level confidence set for β.

Define Cook’s distance for the observation (xi, Yi), where xT
i is the ith row of X.

Give its interpretation in terms of confidence sets for β.

In the above model with n = 50 and p = 2, you observe that one observation has
Cook’s distance 1.3. Would you be concerned about the influence of this observation?

[You may find some of the following facts useful:
(i) If Z ∼ χ2

2, then P(Z 6 0.21) = 0.1, P(Z 6 1.39) = 0.5 and P(Z 6 4.61) = 0.9.
(ii) If Z ∼ F2,48, then P(Z 6 0.11) = 0.1, P(Z 6 0.70) = 0.5 and P(Z 6 2.42) = 0.9.
(iii) If Z ∼ F48,2, then P(Z 6 0.41) = 0.1, P(Z 6 1.42) = 0.5 and P(Z 6 9.47) = 0.9. ]

6B Mathematical Biology

A large population of some species has probability P (n, t) of taking the value n
at time t. Explain the use of the generating function φ(s, t) =

∑∞
n=0 s

nP (n, t), and give
expressions for P (n, t) and 〈n〉 in terms of φ.

A particular population is subject to a birth-death process, so that the probability
of an increase from n to n+ 1 in unit time is α+ βn, while the probability of a decrease
from n to n− 1 is γn, with γ > β. Show that the master equation for P (n, t) is

∂P (n, t)
∂t

= (α+ β(n− 1))P (n− 1, t) + γ(n+ 1)P (n+ 1, t)− (α+ (β + γ)n)P (n, t) .

Derive the equation satisfied by φ, and show that in the statistically steady state, when φ
and P are independent of time, φ takes the form

φ(s) =
(
γ − β

γ − βs

)α/β

.

Using the equation for φ, or otherwise, find 〈n〉.
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7E Dynamical Systems

Find the fixed points of the system

ẋ = x(x+ 2y − 3) ,
ẏ = y(3− 2x− y) .

Local linearization shows that all the fixed points with xy = 0 are saddle points. Why
can you be certain that this remains true when nonlinear terms are taken into account?
Classify the fixed point with xy 6= 0 by its local linearization. Show that the equation
has Hamiltonian form, and thus that your classification is correct even when the nonlinear
effects are included.

Sketch the phase plane.

8E Further Complex Methods

The function f(t) satisfies f(t) = 0 for t < 1 and

f(t+ 1)− 1
2 f(t) = H(t) ,

where H(t) is the Heaviside step function. By taking Laplace transforms, show that, for
t > 1,

f(t) = 2 + 21−t
∞∑

n=−∞

e2πnit

2πni− log 2
,

and verify directly from the inversion integral that your solution satisfies f(t) = 0 for
t < 1.

Paper 1
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9C Classical Dynamics

Hamilton’s equations for a system with n degrees of freedom can be written in
vector form as

ẋ = J
∂H

∂x

where x = (q1, . . . , qn, p1, . . . , pn)T is a 2n-vector and the 2n×2n matrix J takes the form

J =
(

0 1
−1 0

)
,

where 1 is the n×n identity matrix. Derive the condition for a transformation of the form
xi → yi(x) to be canonical. For a system with a single degree of freedom, show that the
following transformation is canonical for all nonzero values of α :

Q = tan−1

(
αq

p

)
, P = 1

2

(
αq2 +

p2

α

)
.

10D Cosmology

(a) Introduce the concept of comoving co-ordinates in a homogeneous and isotropic
universe and explain how the velocity of a galaxy is determined by the scale factor
a. Express the Hubble parameter H0 today in terms of the scale factor.

(b) The Raychaudhuri equation states that the acceleration of the universe is deter-
mined by the mass density ρ and the pressure P as

ä

a
= −4πG

3
(
ρ+ 3P/c2

)
.

Now assume that the matter constituents of the universe satisfy ρ+ 3P/c2 > 0. In
this case explain clearly why the Hubble time H−1

0 sets an upper limit on the age
of the universe; equivalently, that the scale factor must vanish (a(ti) = 0) at some
time ti < t0 with t0 − ti 6 H−1

0 .

The observed Hubble time is H−1
0 = 1 × 1010 years. Discuss two reasons why the

above upper limit does not seem to apply to our universe.
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SECTION II

11G Topics in Analysis

Let T = {z : |z| = 1} be the unit circle in C, and let φ : T → C be a continuous
function that never takes the value 0. Define the degree (or winding number) of φ about
0. [You need not prove that the degree is well-defined.]

Denote the degree of φ about 0 by w(φ). Prove the following facts.

(i) If φ1 and φ2 are two functions with the properties of φ above, then w(φ1.φ2) =
w(φ1) + w(φ2).

(ii) If ψ is any continuous function such that |ψ(z)| < |φ(z)| for every z ∈ T, then
w(φ+ ψ) = w(φ).

Using these facts, calculate the degree w(φ) when φ is given by the formula φ(z) =
(3z − 2)(z − 3)(2z + 1) + 1.

12F Geometry and Groups

Compute the area of the ball of radius r around a point in the hyperbolic plane.
Deduce that, for any tessellation of the hyperbolic plane by congruent, compact tiles, the
number of tiles which are at most n “steps” away from a given tile grows exponentially in
n. Give an explicit example of a tessellation of the hyperbolic plane.

Paper 1
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13I Statistical Modelling

The table below gives a year-by-year summary of the career batting record of the
baseball player Babe Ruth. The first column gives his age at the start of each season and
the second gives the number of ‘At Bats’ (AB) he had during the season. For each At Bat,
it is recorded whether or not he scored a ‘Hit’. The third column gives the total number
of Hits he scored in the season, and the final column gives his ‘Average’ for the season,
defined as the number of Hits divided by the number of At Bats.

Age AB Hits Average

19 10 2 0.200

20 92 29 0.315

21 136 37 0.272

22 123 40 0.325

23 317 95 0.300

24 432 139 0.322

25 457 172 0.376

26 540 204 0.378

27 406 128 0.315

28 522 205 0.393

29 529 200 0.378

30 359 134 0.373

31 495 184 0.372

32 540 192 0.356

33 536 173 0.323

34 499 172 0.345

35 518 186 0.359

36 534 199 0.373

37 457 156 0.341

38 459 138 0.301

39 365 105 0.288

40 72 13 0.181
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Explain and interpret the R commands below. In particular, you should explain
the model that is being fitted, the approximation leading to the given standard errors and
the test that is being performed in the last line of output.

> Mod <- glm(Hits/AB~Age+I(Age^2),family=binomial,weights=AB)

> summary(Mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5406713 0.8487687 -5.350 8.81e-08 ***

Age 0.2684739 0.0565992 4.743 2.10e-06 ***

I(Age^2) -0.0044827 0.0009253 -4.845 1.27e-06 ***

Residual deviance: 23.345 on 19 degrees of freedom

Assuming that any required packages are loaded, draw a careful sketch of the graph
that you would expect to see on entering the following lines of code:

> Coef <- coef(Mod)

> Fitted <- inv.logit(Coef[[1]]+Coef[[2]]*Age+Coef[[3]]*Age^2)

> plot(Age,Average)

> lines(Age,Fitted)
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14E Dynamical Systems

(a) An autonomous dynamical system ẋ = f(x) in R2 has a periodic orbit x = X(t)
with period T . The linearized evolution of a small perturbation x = X(t) + η(t) is
given by ηi(t) = Φij(t)ηj(0). Obtain the differential equation and initial condition
satisfied by the matrix Φ(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is
always unity and show that the other is given by

exp

(∫ T

0

∇ · f
(
X(t)

)
dt

)
.

(b) Use the ‘energy-balance’ method for nearly Hamiltonian systems to find a leading-
order approximation to the amplitude of the limit cycle of the equation

ẍ+ ε(αx2 + βẋ2 − γ)ẋ+ x = 0 ,

where 0 < ε� 1 and (α+ 3β)γ > 0.

Compute a leading-order approximation to the nontrivial Floquet multiplier of the
limit cycle and hence determine its stability.

[You may assume that
∫ 2π

0

sin2 θ cos2 θ dθ = π/4 and
∫ 2π

0

cos4 θ dθ = 3π/4.]
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15C Classical Dynamics

(a) In the Hamiltonian framework, the action is defined as

S =
∫ (

paq̇a −H(qa, pa, t)
)
dt .

Derive Hamilton’s equations from the principle of least action. Briefly explain how
the functional variations in this derivation differ from those in the derivation of
Lagrange’s equations from the principle of least action. Show that H is a constant
of the motion whenever ∂H/∂t = 0.

(b) What is the invariant quantity arising in Liouville’s theorem? Does the theorem
depend on assuming ∂H/∂t = 0? State and prove Liouville’s theorem for a system
with a single degree of freedom.

(c) A particle of mass m bounces elastically along a perpendicular between two parallel
walls a distance b apart. Sketch the path of a single cycle in phase space,
assuming that the velocity changes discontinuously at the wall. Compute the action
I =

∮
p dq as a function of the energy E and the constants m, b. Verify that the

period of oscillation T is given by T = dI/dE. Suppose now that the distance b
changes slowly. What is the relevant adiabatic invariant? How does E change as a
function of b?

16H Logic and Set Theory

Explain what it means for a poset to be chain-complete. State Zorn’s Lemma, and
use it to prove that, for any two elements a and b of a distributive lattice L with b 66 a,
there exists a lattice homomorphism f : L → {0, 1} with f(a) = 0 and f(b) = 1. Explain
briefly how this result implies the completeness theorem for propositional logic.

17F Graph Theory

State and prove Euler’s formula relating the number of vertices, edges and faces of
a connected plane graph.

Deduce that a planar graph of order n > 3 has size at most 3n − 6. What bound
can be given if the planar graph contains no triangles?

Without invoking the four colour theorem, prove that a planar graph that contains
no triangles is 4-colourable.

Paper 1
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18H Galois Theory

Let K be a field and f a separable polynomial over K of degree n. Explain what
is meant by the Galois group G of f over K. Show that G is a transitive subgroup of Sn

if and only if f is irreducible. Deduce that if n is prime, then f is irreducible if and only
if G contains an n-cycle.

Let f be a polynomial with integer coefficients, and p a prime such that f , the
reduction of f modulo p, is separable. State a theorem relating the Galois group of f over
Q to that of f over Fp.

Determine the Galois group of the polynomial x5 − 15x− 3 over Q.

19F Representation Theory

(a) Let G be a finite group and X a finite set on which G acts. Define the permutation
representation C[X] and compute its character.

(b) Let G and U be the following subgroups of GL2(Fp), where p is a prime,

G =

{(
a b
0 1

) ∣∣∣∣∣ a ∈ F×p , b ∈ Fp

}
, U =

{(
1 b
0 1

) ∣∣∣∣∣ b ∈ Fp

}
.

(i) Decompose C[G/U ] into irreducible representations.

(ii) Let ψ : U → C× be a non-trivial, one-dimensional representation. Determine
the character of the induced representation IndG

Uψ, and decompose IndG
Uψ

into irreducible representations.

(iii) List all of the irreducible representations of G and show that your list is
complete.

20G Number Fields

Let α, β, γ denote the zeros of the polynomial x3 − nx− 1, where n is an integer.
The discriminant of the polynomial is defined as

∆ = ∆(1, α, α2) = (α− β)2(β − γ)2(γ − α)2.

Prove that, if ∆ is square-free, then 1, α, α2 is an integral basis for k = Q(α).

By verifying that
α(α− β)(α− γ) = 2nα+ 3

and further that the field norm of the expression on the left is −∆, or otherwise, show
that ∆ = 4n3 − 27. Hence prove that, when n = 1 and n = 2, an integral basis for k is
1, α, α2.

Paper 1 [TURN OVER
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21H Algebraic Topology

Compute the homology groups of the “pinched torus” obtained by identifying a
meridian circle S1 × {p} on the torus S1 × S1 to a point, for some point p ∈ S1.

22G Linear Analysis

Let U be a vector space. Define what it means for two norms || · ||1 and || · ||2 on
U to be Lipschitz equivalent . Give an example of a vector space and two norms which are
not Lipschitz equivalent.

Show that, if U is finite dimensional, all norms on U are Lipschitz equivalent.
Deduce that a finite dimensional subspace of a normed vector space is closed.

Show that a normed vector space W is finite dimensional if and only if W contains
a non-empty open set with compact closure.

23F Riemann Surfaces

Let Λ = Z + Zτ be a lattice in C, where τ is a fixed complex number with positive
imaginary part. The Weierstrass ℘-function is the unique meromorphic Λ-periodic function
on C such that ℘ is holomorphic on C \ Λ, and ℘(z)− 1/z2 → 0 as z → 0.

Show that ℘(−z) = ℘(z) and find all the zeros of ℘′ in C.

Show that ℘ satisfies a differential equation

℘′(z)2 = Q(℘(z)),

for some cubic polynomial Q(w). Further show that

Q(w) = 4
(
w − ℘

(
1
2

)) (
w − ℘

(
1
2τ
)) (

w − ℘
(

1
2 (1 + τ)

))
and that the three roots of Q are distinct.

[Standard properties of meromorphic doubly-periodic functions may be used without proof
provided these are accurately stated, but any properties of the ℘-function that you use must
be deduced from first principles.]
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24H Differential Geometry

(a) State and prove the inverse function theorem for a smooth map f : X → Y between
manifolds without boundary.

[You may assume the inverse function theorem for functions in Euclidean space.]

(b) Let p be a real polynomial in k variables such that for some integer m > 1,

p(tx1, . . . , txk) = tmp(x1, . . . , xk)

for all real t > 0 and all y = (x1, . . . , xk) ∈ Rk. Prove that the set Xa of points y
where p(y) = a is a (k−1)-dimensional submanifold of Rk, provided it is not empty
and a 6= 0.
[You may use the pre-image theorem provided that it is clearly stated.]

(c) Show that the manifolds Xa with a > 0 are all diffeomorphic. Is Xa with a > 0
necessarily diffeomorphic to Xb with b < 0?

25J Probability and Measure

Let (Xn)n∈N be a sequence of (real-valued, Borel-measurable) random variables on
the probability space (Ω,A,P).

(a) Let (An)n∈N be a sequence of events in A.
What does it mean for the events (An)n∈N to be independent?
What does it mean for the random variables (Xn)n∈N to be independent?

(b) Define the tail σ-algebra T for a sequence (Xn)n∈N and state Kolmogorov’s 0 - 1
law.

(c) Consider the following events in A,

{Xn 6 0 eventually} ,
{ lim

n→∞
X1 + . . .+Xn exists} ,

{X1 + . . .+Xn 6 0 infinitely often} .

Which of them are tail events for (Xn)n∈N? Justify your answers.

(d) Let (Xn)n∈N be independent random variables with

P(Xn = 0) = P(Xn = 1) = 1
2 for all n ∈ N ,

and define Un = X1X2 +X2X3 + . . .+X2nX2n+1.
Show that Un/n→ c a.s. for some c ∈ R, and determine c.
[Standard results may be used without proof, but should be clearly stated.]

Paper 1 [TURN OVER



14

26J Applied Probability

(a) What is a Q-matrix? What is the relationship between the transition matrix P (t)
of a continuous time Markov process and its generator Q?

(b) A pond has three lily pads, labelled 1, 2, and 3. The pond is also the home of a
frog that hops from pad to pad in a random fashion. The position of the frog is a
continuous time Markov process on {1, 2, 3} with generator

Q =

−1 1 0
1 −2 1
1 0 −1

 .

Sketch an arrow diagram corresponding to Q and determine the communicating
classes. Find the probability that the frog is on pad 2 in equilibrium. Find the
probability that the frog is on pad 2 at time t given that the frog is on pad 1 at
time 0.

27J Principles of Statistics

(a) What is a loss function? What is a decision rule? What is the risk function of a
decision rule? What is the Bayes risk of a decision rule with respect to a prior π?

(b) Let θ 7→ R(θ, d) denote the risk function of decision rule d, and let r(π, d) denote
the Bayes risk of decision rule d with respect to prior π. Suppose that d∗ is a
decision rule and π0 is a prior over the parameter space Θ with the two properties

(i) r(π0, d
∗) = mind r(π0, d)

(ii) supθ R(θ, d∗) = r(π0, d
∗).

Prove that d∗ is minimax.

(c) Suppose now that Θ = A = R, where A is the space of possible actions, and that
the loss function is

L(θ, a) = exp(−λaθ),

where λ is a positive constant. If the law of the observation X given parameter θ
is N(θ, σ2), where σ > 0 is known, show (using (b) or otherwise) that the rule

d∗(x) = x/σ2λ

is minimax.
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28I Stochastic Financial Models

Over two periods a stock price {St : t = 0, 1, 2} moves on a binomial tree.

864

1440

576

2400

960

384

Assuming that the riskless rate is constant at r = 1/3, verify that all risk-neutral
up-probabilities are given by one value p ∈ (0, 1). Find the time-0 value of the following
three put options all struck at K = S0 = 864 = 25 × 33, with expiry 2:

(a) a European put;

(b) an American put;

(c) a European put modified by raising the strike to K = 992 at time 1 if the stock
went down in the first period.
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29A Partial Differential Equations

(a) State a local existence theorem for solving first order quasi-linear partial differential
equations with data specified on a smooth hypersurface.

(b) Solve the equation
∂u

∂x
+ x

∂u

∂y
= 0

with boundary condition u(x, 0) = f(x) where f ∈ C1(R), making clear the domain
on which your solution is C1. Comment on this domain with reference to the non-
characteristic condition for an initial hypersurface (including a definition of this
concept).

(c) Solve the equation

u2 ∂u

∂x
+
∂u

∂y
= 0

with boundary condition u(x, 0) = x and show that your solution is C1 on some
open set containing the initial hypersurface y = 0. Comment on the significance of
this, again with reference to the non-characteristic condition.

30B Asymptotic Methods

Two real functions p(t), q(t) of a real variable t are given on an interval [0, b], where
b > 0. Suppose that q(t) attains its minimum precisely at t = 0, with q′(0) = 0, and that
q′′(0) > 0. For a real argument x, define

I(x) =
∫ b

0

p(t)e−xq(t) dt.

Explain how to obtain the leading asymptotic behaviour of I(x) as x → +∞ (Laplace’s
method).

The modified Bessel function Iν(x) is defined for x > 0 by:

Iν(x) =
1
π

∫ π

0

ex cos θ cos(νθ) dθ − sin(νπ)
π

∫ ∞

0

e−x(cosh t)−νt dt.

Show that
Iν(x) ∼ ex

√
2πx

as x→∞ with ν fixed.
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31E Integrable Systems

(a) Let q(x, t) satisfy the heat equation

∂q

∂t
=
∂2q

∂x2
.

Find the function X, which depends linearly on ∂q/∂x, q, k, such that the heat
equation can be written in the form

∂

∂t

(
e−ikx+k2tq

)
+

∂

∂x

(
e−ikx+k2tX

)
= 0, k ∈ C.

Use this equation to construct a Lax pair for the heat equation.

(b) Use the above result, as well as the Cole–Hopf transformation, to construct a Lax
pair for the Burgers equation

∂Q

∂t
− 2Q

∂Q

∂x
=
∂2Q

∂x2
.

(c) Find the second-order ordinary differential equation satisfied by the similarity
solution of the so-called cylindrical KdV equation:

∂q

∂t
+
∂3q

∂x3
+ q

∂q

∂x
+

q

3t
= 0, t 6= 0.

32D Principles of Quantum Mechanics

A particle in one dimension has position and momentum operators x̂ and p̂. Explain
how to introduce the position-space wavefunction ψ(x) for a quantum state |ψ〉 and use
this to derive a formula for ‖ |ψ〉 ‖2. Find the wavefunctions for x̂|ψ〉 and p̂|ψ〉 in terms
of ψ(x), stating clearly any standard properties of position and momentum eigenstates
which you require.

Define annihilation and creation operators a and a† for a harmonic oscillator of
unit mass and frequency and write the Hamiltonian

H =
1
2
p̂2 +

1
2
x̂2

in terms of them. Let |ψα〉 be a normalized eigenstate of a with eigenvalue α, a complex
number. Show that |ψα〉 cannot be an eigenstate of H unless α = 0, and that |ψ0〉 is an
eigenstate of H with the lowest possible energy. Find a normalized wavefunction for |ψα〉
for any α. Do there exist normalizable eigenstates of a† ? Justify your answer.
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33A Applications of Quantum Mechanics

Consider a particle of mass m and momentum ~k moving under the influence of a
spherically symmetric potential V (r) such that V (r) = 0 for r > a. Define the scattering
amplitude f(θ) and the phase shift δ`(k). Here θ is the scattering angle. How is f(θ)
related to the differential cross section?

Obtain the partial-wave expansion

f(θ) =
1
k

∞∑
`=0

(2`+ 1) eiδ` sin δ` P`(cos θ) .

Let R`(r) be a solution of the radial Schrödinger equation, regular at r = 0, for
energy ~2k2/2m and angular momentum `. Let

Q`(k) = a
R′` (a)
R`(a)

− ka
j′` (ka)
j`(ka)

.

Obtain the relation

tan δ` =
Q`(k)j2`(ka)ka

Q`(k)n`(ka)j`(ka)ka− 1
.

Suppose that
tan δ` ≈ γ

k0 − k
,

for some `, with all other δ` small for k ≈ k0. What does this imply for the differential
cross section when k ≈ k0?

[For V = 0, the two independent solutions of the radial Schrödinger equation are j`(kr)
and n`(kr) with

j`(ρ) ∼
1
ρ

sin(ρ− 1
2`π), n`(ρ) ∼ −1

ρ
cos(ρ− 1

2`π) as ρ→∞ ,

eiρ cos θ =
∞∑

`=0

(2`+ 1)i` j`(ρ)P`(cos θ) .

Note that the Wronskian ρ2
(
j`(ρ)n′` (ρ)− j′` (ρ)n`(ρ)

)
is independent of ρ.]
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34E Electrodynamics

S and S ′ are two reference frames with S ′ moving with constant speed v in the
x-direction relative to S. The co-ordinates xa and x′a are related by dx′a = La

b dx
b where

La
b =


γ −γv 0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

 ,

and γ = (1 − v2)−1/2. What is the transformation rule for the scalar potential ϕ and
vector potential A between the two frames?

As seen in S ′ there is an infinite uniform stationary distribution of charge along
the x-axis with uniform line density σ. Determine the electric and magnetic fields E and
B both in S ′ and S. Check your answer by verifying explicitly the invariance of the two
quadratic Lorentz invariants.

Comment briefly on the limit |v| � 1.

35A General Relativity

Let φ(x) be a scalar field and ∇a denote the Levi–Civita covariant derivative
operator of a metric tensor gab. Show that

∇a∇bφ = ∇b∇aφ .

If the Ricci tensor, Rab, of the metric gab satisfies

Rab = ∂aφ∂bφ ,

find the energy momentum tensor Tab and use the contracted Bianchi identity to show
that, if ∂aφ 6= 0, then

∇a∇aφ = 0 . (∗)

Show further that (∗) implies

∂a

(√
−g gab∂bφ

)
= 0 .
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36B Fluid Dynamics II

Write down the boundary conditions that are satisfied at the interface between two
viscous fluids in motion. Briefly discuss the physical meaning of these boundary conditions.

A layer of incompressible fluid of density ρ and viscosity µ flows steadily down a
plane inclined at an angle θ to the horizontal. The layer is of uniform thickness h measured
perpendicular to the plane and the viscosity of the overlying air can be neglected. Using
co-ordinates parallel and perpendicular to the plane, write down the equations of motion,
and the boundary conditions on the plane and on the free top surface. Determine the
pressure and velocity fields. Show that the volume flux down the plane is 1

3ρgh
3 sin θ/µ

per unit cross-slope width.

Consider now the case where a second layer of fluid, of uniform thickness αh,
viscosity βµ, and density ρ flows steadily on top of the first layer. Determine the pressure
and velocity fields in each layer. Why does the velocity profile in the bottom layer depend
on α but not on β?

37C Waves

An elastic solid occupies the region y < 0. The wave speeds in the solid are cp and
cs. A P-wave with dilatational potential

φ = exp{ik(x sin θ + y cos θ − cpt)}

is incident from y < 0 on a rigid barrier at y = 0. Obtain the reflected waves.

Are there circumstances where the reflected S-wave is evanescent? Give reasons for
your answer.

38C Numerical Analysis

(a) Define the Jacobi method with relaxation for solving the linear system Ax = b.

(b) Let A be a symmetric positive definite matrix with diagonal part D such that the
matrix 2D − A is also positive definite. Prove that the iteration always converges
if the relaxation parameter ω is equal to 1.

(c) Let A be the tridiagonal matrix with diagonal elements aii = 1 and off-diagonal
elements ai+1,i = ai,i+1 = 1/4. Prove that convergence occurs if ω satisfies
0 < ω 6 4/3. Explain briefly why the choice ω = 1 is optimal.

[You may quote without proof any relevant result about the convergence of iterative methods
and about the eigenvalues of matrices.]

END OF PAPER
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