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SECTION I

1H Linear Algebra

Suppose V is a vector space over a field k. A finite set of vectors is said to be a
basis for V if it is both linearly independent and spanning. Prove that any two finite bases
for V have the same number of elements.

2E Groups, Rings and Modules

How many elements does the ring Z[X]/(3, X2 +X + 1) have?

Is this ring an integral domain?

Briefly justify your answers.

3F Analysis II

Let V be the vector space of all sequences (x1, x2, . . .) of real numbers such that xi
converges to zero. Show that the function

|(x1, x2, . . .)| = max
i>1

|xi|

defines a norm on V .

Is the sequence
(1, 0, 0, 0, . . .), (0, 1, 0, 0, . . .), . . .

convergent in V ? Justify your answer.

4H Complex Analysis

State the principle of isolated zeros for an analytic function on a domain in C.

Suppose f is an analytic function on C \ {0}, which is real-valued at the points
1/n, for n = 1, 2, . . ., and does not have an essential singularity at the origin. Prove that
f(z) = f(z̄) for all z ∈ C \ {0}.
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5G Methods

A finite-valued function f(r, θ, φ), where r, θ, φ are spherical polar coordinates,
satisfies Laplace’s equation in the regions r < 1 and r > 1, and f → 0 as r → ∞.
At r = 1, f is continuous and its derivative with respect to r is discontinuous by A sin2 θ,
where A is a constant. Write down the general axisymmetric solution for f in the two
regions and use the boundary conditions to find f .

[
Hint : P2(cos θ) =

1
2

(
3 cos2 θ − 1

)
.

]

6B Quantum Mechanics

(a) Define the probability density ρ(x, t) and the probability current J(x, t) for a
quantum mechanical wave function ψ(x, t), where the three dimensional vector x defines
spatial coordinates.

Given that the potential V (x) is real, show that

∇·J +
∂ρ

∂t
= 0 .

(b) Write down the standard integral expressions for the expectation value 〈A〉ψ and
the uncertainty ∆ψA of a quantum mechanical observable A in a state with wavefunction
ψ(x). Give an expression for ∆ψA in terms of 〈A2〉ψ and 〈A〉ψ, and justify your answer.

7G Electromagnetism

Starting from Maxwell’s equations, deduce Faraday’s law of induction

dΦ
dt

= −ε,

for a moving circuit C, where Φ is the flux of B through the circuit and where the EMF
ε is defined to be

ε =
∮
C

(E + v ×B) · dr

with v(r) denoting the velocity of a point r of C.

[Hint: consider the closed surface consisting of the surface S(t) bounded by C(t),
the surface S(t + δt) bounded by C(t + δt) and the surface S′ stretching from C(t) to
C(t+ δt). Show that the flux of B through S′ is −

∮
C

B · (v × dr)δt .]

Paper 4 [TURN OVER



4

8D Numerical Analysis

(a) Given the data

xi −1 0 1 3

f(xi) −7 −3 −3 9
,

find the interpolating cubic polynomial p ∈ P3 in the Newton form, and transform it to
the power form.

(b) We add to the data one more value f(xi) at xi = 2. Find the power form of
the interpolating quartic polynomial q ∈ P4 to the extended data

xi −1 0 1 2 3

f(xi) −7 −3 −3 −7 9
.

9C Markov Chains

A game of chance is played as follows. At each turn the player tosses a coin, which
lands heads or tails with equal probability 1/2. The outcome determines a score for that
turn, which depends also on the cumulative score so far. Write Sn for the cumulative score
after n turns. In particular S0 = 0. When Sn is odd, a head scores 1 but a tail scores 0.
When Sn is a multiple of 4, a head scores 4 and a tail scores 1. When Sn is even but is not
a multiple of 4, a head scores 2 and a tail scores 1. By considering a suitable four-state
Markov chain, determine the long run proportion of turns for which Sn is a multiple of 4.
State clearly any general theorems to which you appeal.
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SECTION II

10E Linear Algebra

Suppose that α is an orthogonal endomorphism of the finite-dimensional real inner
product space V . Suppose that V is decomposed as a direct sum of mutually orthogonal
α-invariant subspaces. How small can these subspaces be made, and how does α act on
them? Justify your answer.

Describe the possible matrices for α with respect to a suitably chosen orthonormal
basis of V when dimV = 3.

11E Groups, Rings and Modules

(a) Suppose that R is a commutative ring, M an R-module generated by
m1, . . . , mn and φ ∈ EndR(M). Show that, if A = (aij) is an n × n matrix with
entries in R that represents φ with respect to this generating set, then in the sub-ring
R[φ] of EndR(M) we have det(aij − φδij) = 0.

[Hint: A is a matrix such that φ(mi) =
∑
aijmj with aij ∈R. Consider the matrix

C = (aij − φδij) with entries in R[φ] and use the fact that for any n × n matrix N over
any commutative ring, there is a matrix N ′ such that N ′N = (detN)1n.]

(b) Suppose that k is a field, V a finite-dimensional k-vector space and that
φ ∈ Endk(V ). Show that if A is the matrix of φ with respect to some basis of V then φ
satisfies the characteristic equation det(A− λ1) = 0 of A.
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12H Geometry

Describe the hyperbolic lines in both the disc and upper half-plane models of the
hyperbolic plane. Given a hyperbolic line l and a point P 6∈ l, we define

d(P, l) := inf
Q∈l

ρ(P,Q),

where ρ denotes the hyperbolic distance. Show that d(P, l) = ρ(P,Q′), where Q′ is the
unique point of l for which the hyperbolic line segment PQ′ is perpendicular to l.

Suppose now that L1 is the positive imaginary axis in the upper half-plane model
of the hyperbolic plane, and L2 is the semicircle with centre a > 0 on the real line, and
radius r, where 0 < r < a. For any P ∈ L2, show that the hyperbolic line through P
which is perpendicular to L1 is a semicircle centred on the origin of radius 6 a + r, and
prove that

d(P,L1) >
a− r

a+ r
.

For arbitrary hyperbolic lines L1, L2 in the hyperbolic plane, we define

d(L1, L2) := inf
P∈L1,Q∈L2

ρ(P,Q).

If L1 and L2 are ultraparallel (i.e. hyperbolic lines which do not meet, either inside the
hyperbolic plane or at its boundary), prove that d(L1, L2) is strictly positive.

[The equivalence of the disc and upper half-plane models of the hyperbolic plane,
and standard facts about the metric and isometries of these models, may be quoted without
proof.]

13F Analysis II

State precisely the contraction mapping theorem.

An ancient way to approximate the square root of a positive number a is to start
with a guess x > 0 and then hope that the average of x and a/x gives a better guess.
We can then repeat the procedure using the new guess. Justify this procedure as follows.
First, show that all the guesses after the first one are greater than or equal to

√
a. Then

apply the properties of contraction mappings to the interval [
√
a,∞) to show that the

procedure always converges to
√
a.

Once the above procedure is close enough to
√
a, estimate how many more steps of

the procedure are needed to get one more decimal digit of accuracy in computing
√
a.
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14F Metric and Topological Spaces

(a) Show that every compact subset of a Hausdorff topological space is closed.

(b) Let X be a compact metric space. For F a closed subset of X and p any point
of X, show that there is a point q in F with

d(p, q) = inf
q′∈F

d(p, q′).

Suppose that for every x and y in X there is a point m in X with d(x,m) = (1/2)d(x, y)
and d(y,m) = (1/2)d(x, y). Show that X is connected.

15D Complex Methods

Denote by f ∗ g the convolution of two functions, and by f̂ the Fourier transform,
i.e.,

[f ∗ g](x) =
∫ ∞

−∞
f(t)g(x− t) dt, f̂(λ) =

∫ ∞

−∞
f(x)e−iλx dx .

(a) Show that, for suitable functions f and g, the Fourier transform F̂ of the
convolution F = f ∗ g is given by F̂ = f̂ · ĝ.

(b) Let

f1(x) =
{

1 |x| 6 1/2 ,
0 otherwise.

and let f2 = f1 ∗ f1 be the convolution of f1 with itself. Find the Fourier transforms of f1
and f2, and, by applying Parseval’s theorem, determine the value of the integral∫ ∞

−∞

(
sin y
y

)4

dy .
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16B Methods

The integral

I =
∫ b

a

F (y(x), y′(x))dx ,

where F is some functional, is defined for the class of functions y(x) for which y(a) = y0,
with the value y(b) at the upper endpoint unconstrained. Suppose that y(x) extremises
the integral among the functions in this class. By considering perturbed paths of the form
y(x) + εη(x), with ε� 1, show that

d

dx

(∂F
∂y′

)
− ∂F

∂y
= 0

and that
∂F

∂y′

∣∣∣
x=b

= 0 .

Show further that
F − y′

∂F

∂y′
= k

for some constant k.

A bead slides along a frictionless wire under gravity. The wire lies in a vertical
plane with coordinates (x, y) and connects the point A with coordinates (0, 0) to the point
B with coordinates (x0, y(x0)), where x0 is given and y(x0) can take any value less than
zero. The bead is released from rest at A and slides to B in a time T . For a prescribed x0

find both the shape of the wire, and the value of y(x0), for which T is as small as possible.
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17B Special Relativity

A javelin of length 4 metres is thrown at a speed of 12
13c horizontally and lengthwise

through a barn of length 3 metres, which is open at both ends. (Here c denotes the speed
of light.)

(a) What is the length of the javelin in the rest frame of the barn?

(b) What is the length of the barn in the rest frame of the javelin?

(c) Define the rest frame coordinates of the barn and of the javelin such that the
point where the trailing end of the javelin enters the barn is the origin in both frames.
Draw a space-time diagram in the rest frame coordinates (ct, x) of the barn, showing the
world lines of both ends of the javelin and of the front and back of the barn. Draw a second
space-time diagram in the rest frame coordinates (ct′, x′) of the javelin, again showing the
world lines of both ends of the javelin and of the front and back of the barn.

(d) Clearly mark the space-time events corresponding to (A) the trailing end of the
javelin entering the barn, and (B) the leading end of the javelin exiting the back of the
barn. Give the corresponding (ct, x) and (ct′, x′) coordinates for (B).

Are the events (A) and (B) space-like, null, or time-like separated?

As the javelin is longer than the barn in one frame and shorter than the barn in
another, it might be argued that the javelin is contained entirely within the barn for a
period according to an observer in one frame, but not according to an observer in another.
Explain how this apparent inconsistency is resolved.

18A Fluid Dynamics

A rectangular tank has a horizontal base and vertical sides. Viewed from above,
the cross-section of the tank is a square of side a. At rest, the depth of water in the
tank is h. Suppose that the free-surface is disturbed in such a way that the flow in the
water is irrotational. Take the pressure at the free surface as atmospheric. Starting from
the appropriate non-linear expressions, obtain free-surface boundary conditions for the
velocity potential appropriate for small-amplitude disturbances of the surface.

Show that the governing equations and boundary conditions admit small-amplitude
normal mode solutions for which the free-surface elevation above its equilibrium level is
everywhere proportional to eiωt, and find the frequencies, ω, of such modes.
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19C Statistics

Two series of experiments are performed, the first resulting in observations
X1, . . . , Xm, the second resulting in observations Y1, . . . , Yn. We assume that all observa-
tions are independent and normally distributed, with unknown means µX in the first series
and µY in the second series. We assume further that the variances of the observations are
unknown but are all equal.

Write down the distributions of the sample mean X̄ = m−1
∑m
i=1Xi and sum of

squares SXX =
∑m
i=1(Xi − X̄)2 .

Hence obtain a statistic T (X,Y ) to test the hypothesis H0 : µX = µY against
H1 : µX > µY and derive its distribution under H0. Explain how you would carry out a
test of size α = 1/100 .

20C Optimization

Use a suitable version of the simplex algorithm to solve the following linear
programming problem:

maximize 50x1 − 30x2 + x3

subject to x1 + x2 + x3 ≤ 30
2x1 − x2 ≤ 35
x1 + 2x2 − x3 ≥ 40

and x1, x2, x3 ≥ 0.

END OF PAPER
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