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SECTION I

1E Linear Algebra

State Sylvester’s law of inertia.

Find the rank and signature of the quadratic form q on Rn given by

q (x1, . . . , xn) =

(
n∑

i=1

xi

)2

−
n∑

i=1

x2
i .

2E Groups, Rings and Modules

(i) Give the definition of a Euclidean domain and, with justification, an example of
a Euclidean domain that is not a field.

(ii) State the structure theorem for finitely generated modules over a Euclidean
domain.

(iii) In terms of your answer to (ii), describe the structure of the Z-module M with
generators {m1,m2,m3} and relations 2m3 = 2m2, 4m2 = 0.

3F Analysis II

Define uniform convergence for a sequence f1, f2, . . . of real-valued functions on an
interval in R. If (fn) is a sequence of continuous functions converging uniformly to a
(necessarily continuous) function f on a closed interval [a, b], show that∫ b

a

fn(x) dx→
∫ b

a

f(x) dx

as n→∞.

Which of the following sequences of functions f1, f2, . . . converges uniformly on the
open interval (0, 1)? Justify your answers.

(i) fn(x) = 1/(nx);

(ii) fn(x) = e−x/n.
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4F Metric and Topological Spaces

Which of the following subspaces of Euclidean space are connected? Justify your
answers.

(i)
{
(x, y, z) ∈ R3 : z2 − x2 − y2 = 1

}
;

(ii)
{
(x, y) ∈ R2 : x2 = y2

}
;

(iii)
{
(x, y, z) ∈ R3 : z = x2 + y2

}
.

5A Methods

Describe briefly the method of Lagrange multipliers for finding the stationary values
of a function f(x, y) subject to a constraint g(x, y) = 0.

Use the method to find the smallest possible surface area (including both ends) of
a circular cylinder that has volume V .

6G Electromagnetism

Given that the electric field E and the current density j within a conducting medium
of uniform conductivity σ are related by j = σE, use Maxwell’s equations to show that
the charge density ρ in the medium obeys the equation

∂ρ

∂t
= − σ

ε0
ρ.

An infinitely long conducting cylinder of uniform conductivity σ is set up with a
uniform electric charge density ρ0 throughout its interior. The region outside the cylinder
is a vacuum. Obtain ρ within the cylinder at subsequent times and hence obtain E and j
within the cylinder as functions of time and radius. Calculate the value of E outside the
cylinder.

7B Special Relativity

A1 moves at speed v1 in the x-direction with respect to A0. A2 moves at speed v2
in the x-direction with respect to A1. By applying a Lorentz transformation between the
rest frames of A0, A1, and A2, calculate the speed at which A0 observes A2 to travel.

A3 moves at speed v3 in the x-direction with respect to A2. Calculate the speed at
which A0 observes A3 to travel.
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8A Fluid Dynamics

Explain what is meant by a material time derivative, D/Dt. Show that if the
material velocity is u(x, t) then

D/Dt = ∂/∂t+ u ·∇.

When glass is processed in its liquid state, its temperature, θ(x, t), satisfies the
equation

Dθ/Dt = −θ.

The glass flows in a two-dimensional channel −1 < y < 1, x > 0 with steady velocity
u = (1 − y2, 0). At x = 0 the glass temperature is maintained at the constant value θ0.
Find the steady temperature distribution throughout the channel.

9C Optimization

Consider the maximal flow problem on a finite set N , with source A, sink B and
capacity constraints cij for i, j ∈ N . Explain what is meant by a cut and by the capacity
of a cut.

Show that the maximal flow value cannot exceed the minimal cut capacity.

Take N = {0, 1, 2, 3, 4}2 and suppose that, for i = (i1, i2) and j = (j1, j2),

cij = max{|i1 − i2|, |j1 − j2|} if |i1 − j1|+ |i2 − j2| = 1,

and cij = 0 otherwise. Thus the node set is a square grid of 25 points, with positive flow
capacity only between nearest neighbours, and where the capacity of an edge in the grid
equals the larger of the distances of its two endpoints from the diagonal. Find a maximal
flow from (0, 3) to (3, 0). Justify your answer.
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SECTION II

10E Linear Algebra

Suppose that V is the set of complex polynomials of degree at most n in the variable
x. Find the dimension of V as a complex vector space.

Define

ek : V → C by ek(φ) =
dkφ

dxk
(0).

Find a subset of {ek | k ∈ N} that is a basis of the dual vector space V ∗. Find the
corresponding dual basis of V .

Define
D : V → V by D(φ) =

dφ

dx
.

Write down the matrix of D with respect to the basis of V that you have just found, and
the matrix of the map dual to D with respect to the dual basis.

11E Groups, Rings and Modules

(i) Prove the first Sylow theorem, that a finite group of order pnr with p prime and
p not dividing the integer r has a subgroup of order pn.

(ii) State the remaining Sylow theorems.

(iii) Show that if p and q are distinct primes then no group of order pq is simple.

12H Geometry

Let σ : V → U ⊂ R3 denote a parametrized smooth embedded surface, where V is
an open ball in R2 with coordinates (u, v). Explain briefly the geometric meaning of the
second fundamental form

Ldu2 + 2M dudv +N dv2,

where L = σuu ·N, M = σuv ·N, N = σvv ·N, with N denoting the unit normal vector
to the surface U .

Prove that if the second fundamental form is identically zero, then Nu = 0 = Nv

as vector-valued functions on V , and hence that N is a constant vector. Deduce that U is
then contained in a plane given by x ·N = constant.
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13F Analysis II

For a smooth mapping F : R2 → R2, the Jacobian J(F ) at a point (x, y) is defined
as the determinant of the derivative DF , viewed as a linear map R2 → R2. Suppose that
F maps into a curve in the plane, in the sense that F is a composition of two smooth
mappings R2 → R → R2. Show that the Jacobian of F is identically zero.

Conversely, let F : R2 → R2 be a smooth mapping whose Jacobian is identically
zero. Write F (x, y) = (f(x, y), g(x, y)). Suppose that ∂f/∂y|(0,0) 6= 0. Show that
∂f/∂y 6= 0 on some open neighbourhood U of (0, 0) and that on U

(∂g/∂x, ∂g/∂y) = e(x, y) (∂f/∂x, ∂f/∂y)

for some smooth function e defined on U . Now suppose that c : R → U is a smooth curve
of the form t 7→ (t, α(t)) such that F ◦ c is constant. Write down a differential equation
satisfied by α. Apply an existence theorem for differential equations to show that there
is a neighbourhood V of (0, 0) such that every point in V lies on a curve t 7→ (t, α(t)) on
which F is constant.

[A function is said to be smooth when it is infinitely differentiable. Detailed justification
of the smoothness of the functions in question is not expected.]

14D Complex Analysis or Complex Methods

Let Ω be the region enclosed between the two circles C1 and C2, where

C1 = {z ∈ C : |z − i| = 1} , C2 = {z ∈ C : |z − 2i| = 2}.

Find a conformal mapping that maps Ω onto the unit disc.

[Hint: you may find it helpful first to map Ω to a strip in the complex plane. ]
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15G Methods

Verify that y = e−x is a solution of the differential equation

(x+ 2)y′′ + (x+ 1)y′ − y = 0,

and find a second solution of the form ax+ b.

Let L be the operator

L[y] = y′′ +
(x+ 1)
(x+ 2)

y′ − 1
(x+ 2)

y

on functions y(x) satisfying

y′(0) = y(0) and lim
x→∞

y(x) = 0.

The Green’s function G(x, ξ) for L satisfies

L[G] = δ(x− ξ),

with ξ > 0. Show that

G(x, ξ) = − (ξ + 1)
(ξ + 2)

eξ−x

for x > ξ, and find G(x, ξ) for x < ξ.

Hence or otherwise find the solution of

L[y] = −(x+ 2)e−x,

for x > 0, with y(x) satisfying the boundary conditions above.
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16B Quantum Mechanics

The spherically symmetric bound state wavefunctions ψ(r), where r = |x|, for
an electron orbiting in the Coulomb potential V (r) = −e2/(4πε0r) of a hydrogen atom
nucleus, can be modelled as solutions to the equation

d2ψ

dr2
+

2
r

dψ

dr
+
a

r
ψ(r)− b2ψ(r) = 0

for r > 0, where a = e2m/(2πε0~2), b =
√
−2mE/~, and E is the energy of the

corresponding state. Show that there are normalisable and continuous wavefunctions ψ(r)
satisfying this equation with energies

E = − me4

32π2ε20~2N2

for all integers N > 1.

17G Electromagnetism

Derive from Maxwell’s equations the Biot-Savart law

B(r) =
µ0

4π

∫
V

j(r′)× (r− r′)
|r− r′|3

dV ′

giving the magnetic field B(r) produced by a steady current density j(r) that vanishes
outside a bounded region V .

[You may assume that the divergence of the magnetic vector potential is zero.]

A steady current density j(r) has the form j = (0, jφ(r), 0) in cylindrical polar
coordinates (r, φ, z) where

jφ(r) =
{
kr 0 6 r 6 b, −h 6 z 6 h,
0 otherwise,

and k is a constant. Find the magnitude and direction of the magnetic field at the origin.

[
Hint :

∫ h

−h

dz

(r2 + z2)3/2
=

2h
r2(h2 + r2)1/2

.

]
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18D Numerical Analysis

(a) For a positive weight function w, let∫ 1

−1

f(x)w(x) dx ≈
n∑

i=0

aif(xi)

be the corresponding Gaussian quadrature with n+1 nodes. Prove that all the coefficients
ai are positive.

(b) The integral

I(f) =
∫ 1

−1

f(x)w(x) dx

is approximated by a quadrature

In(f) =
n∑

i=0

a
(n)
i f(x(n)

i )

which is exact on polynomials of degree 6 n and has positive coefficients a(n)
i . Prove that,

for any f continuous on [−1, 1], the quadrature converges to the integral, i.e.,

|I(f)− In(f)| → 0 as n→∞.

[You may use the Weierstrass theorem: for any f continuous on [−1, 1], and for any ε > 0,
there exists a polynomial Q of degree n=n(ε, f) such that max

x∈[−1,1]
|f(x)−Q(x)| < ε.]

19C Statistics

Suppose that X1, . . . , Xn are independent normal random variables of unknown
mean θ and variance 1. It is desired to test the hypothesis H0 : θ ≤ 0 against the
alternative H1 : θ > 0. Show that there is a uniformly most powerful test of size α = 1/20
and identify a critical region for such a test in the case n = 9. If you appeal to any
theoretical result from the course you should also prove it.

[The 95th percentile of the standard normal distribution is 1.65.]
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20C Markov Chains

Consider the Markov chain (Xn)n≥0 on the integers Z whose non-zero transition
probabilities are given by p0,1 = p0,−1 = 1/2 and

pn,n−1 = 1/3, pn,n+1 = 2/3, for n ≥ 1,

pn,n−1 = 3/4, pn,n+1 = 1/4, for n 6 −1.

(a) Show that, if X0 = 1, then (Xn)n≥0 hits 0 with probability 1/2.

(b) Suppose now that X0 = 0. Show that, with probability 1, as n → ∞ either
Xn →∞ or Xn → −∞.

(c) In the case X0 = 0 compute P(Xn →∞ as n→∞).

END OF PAPER
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