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SECTION I

1E Numbers and Sets

Explain what is meant by a prime number.

By considering numbers of the form 6p1p2 · · · pn − 1, show that there are infinitely
many prime numbers of the form 6k − 1.

By considering numbers of the form (2p1p2 · · · pn)2+3, show that there are infinitely
many prime numbers of the form 6k + 1. [You may assume the result that, for a prime
p > 3, the congruence x2 ≡ −3 (mod p) is soluble only if p ≡ 1 (mod 6).]

2E Numbers and Sets

Define the binomial coefficient (n
r ) and prove that(

n + 1
r

)
=
(n

r

)
+
(

n

r − 1

)
for 0 < r 6 n.

Show also that if p is prime then (p
r ) is divisible by p for 0 < r < p.

Deduce that if 0 6 k < p and 0 6 r 6 k then(
p + k

r

)
≡
(

k

r

)
(mod p).

3C Dynamics

A car is at rest on a horizontal surface. The engine is switched on and suddenly
sets the wheels spinning at a constant angular velocity Ω. The wheels have radius r and
the coefficient of friction between the ground and the surface of the wheels is µ. Calculate
the time T when the wheels start rolling without slipping. If the car is started on an
upward slope in a similar manner, explain whether T is increased or decreased relative to
the case where the car starts on a horizontal surface.

4C Dynamics

For the dynamical system
ẍ = − sinx,

find the stable and unstable fixed points and the equation determining the separatrix.
Sketch the phase diagram. If the system starts on the separatrix at x = 0, write down
an integral determining the time taken for the velocity ẋ to reach zero. Show that the
integral is infinite.
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SECTION II

5E Numbers and Sets

Explain what is meant by an equivalence relation on a set A.

If R and S are two equivalence relations on the same set A, we define

R ◦ S = {(x, z) ∈ A×A : there exists y ∈ A such that (x, y) ∈ R and (y, z) ∈ S}.

Show that the following conditions are equivalent:

(i) R ◦ S is a symmetric relation on A ;

(ii) R ◦ S is a transitive relation on A ;

(iii) S ◦R ⊆ R ◦ S ;

(iv) R ◦ S is the unique smallest equivalence relation on A containing both R and S.

Show also that these conditions hold if A = Z and R and S are the relations of
congruence modulo m and modulo n, for some positive integers m and n.

6E Numbers and Sets

State and prove the Inclusion–Exclusion Principle.

A permutation σ of {1, 2, . . . , n} is called a derangement if σ(j) 6= j for every
j 6 n. Use the Inclusion–Exclusion Principle to find a formula for the number f(n) of
derangements of {1, 2, . . . , n}. Show also that f(n)/n! converges to 1/e as n →∞.

7E Numbers and Sets

State and prove Fermat’s Little Theorem.

An odd number n is called a Carmichael number if it is not prime, but every
positive integer a satisfies an ≡ a (mod n). Show that a Carmichael number cannot be
divisible by the square of a prime. Show also that a product of two distinct odd primes
cannot be a Carmichael number, and that a product of three distinct odd primes p, q, r is
a Carmichael number if and only if p − 1 divides qr − 1, q − 1 divides pr − 1 and r − 1
divides pq − 1. Deduce that 1729 is a Carmichael number.

[You may assume the result that, for any prime p, there exists a number g prime to
p such that the congruence gd ≡ 1 (mod p) holds only when d is a multiple of p− 1. The
prime factors of 1729 are 7, 13 and 19.]
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8E Numbers and Sets

Explain what it means for a set to be countable. Prove that a countable union of
countable sets is countable, and that the set of all subsets of N is uncountable.

A function f : N → N is said to be increasing if f(m) 6 f(n) whenever m 6 n, and
decreasing if f(m) > f(n) whenever m 6 n. Show that the set of all increasing functions
N → N is uncountable, but that the set of decreasing functions is countable.

[Standard results on countability, other than those you are asked to prove, may be
assumed.]

9C Dynamics

A motorcycle of mass M moves on a bowl-shaped surface specified by its height
h(r) where r =

√
x2 + y2 is the radius in cylindrical polar coordinates (r, φ, z). The

torque exerted by the motorcycle engine on the rear wheel results in a force F(t) pushing
the motorcycle forward. Assuming F(t) is directed along the motorcycle’s velocity and
that the motorcycle’s vertical velocity and acceleration are small, show that the motion is
described by

r̈ − rφ̇2 = −g
dh

dr
+

F (t)
M

ṙ√
ṙ2 + r2φ̇2

,

rφ̈ + 2ṙφ̇ =
F (t)
M

rφ̇√
ṙ2 + r2φ̇2

,

where dots denote time derivatives, F (t) = |F(t)| and g is the acceleration due to gravity.

The motorcycle rider can adjust F (t) to produce the desired trajectory. If the rider
wants to move on a curve r(φ), show that φ(t) must obey

φ̇2 = g
dh

dr

/(
r +

2
r

(
dr

dφ

)2

− d2r

dφ2

)
.

Now assume that h(r) = r2/`, with ` a constant, and r(φ) = εφ with ε a positive constant,
and 0 6 φ < ∞ so that the desired trajectory is a spiral curve. Assuming that φ(t) tends
to infinity as t tends to infinity, show that φ̇(t) tends to

√
2g/` and F (t) tends to 4εMg/`

as t tends to infinity.
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10C Dynamics

A particle of mass m bounces back and forth between two walls of mass M moving
towards each other in one dimension. The walls are separated by a distance `(t). The wall
on the left has velocity +V (t) and the wall on the right has velocity −V (t). The particle
has speed υ(t). Friction is negligible and the particle–wall collisions are elastic.

Consider a collision between the particle and the wall on the right. Show that
the centre–of–mass velocity of the particle–wall system is υcm = (mυ −MV )/(m + M).
Calculate the particle’s speed following the collision.

Assume that the particle is much lighter than the walls, i.e., m � M . Show that
the particle’s speed increases by approximately 2V every time it collides with a wall.

Assume also that υ � V (so that particle–wall collisions are frequent) and that the
velocities of the two walls remain nearly equal and opposite. Show that in a time interval
∆t, over which the change in V is negligible, the wall separation changes by ∆` ≈ −2V ∆t.
Show that the number of particle–wall collisions during ∆t is approximately υ∆t/` and
that the particle’s speed increases by ∆υ ≈ −(∆`/`)υ during this time interval.

Hence show that under the given conditions the particle speed υ is approximately
proportional to `−1.

11C Dynamics

Two light, rigid rods of length 2` have a mass m attached to each end. Both are
free to move in two dimensions. The two rods are placed so that their two ends are located
at (−d, +2`), (−d, 0), and (+d, 0), (+d,−2`) respectively, where d is positive. They are
set in motion with no rotation, with centre–of–mass velocities (+V, 0) and (−V, 0), so that
the lower mass on the first rod collides head on with the upper mass on the second rod at
the origin (0, 0). [You may assume that the impulse is directed along the x-axis.]

Assuming the collision is elastic, calculate the centre–of–mass velocity υ and the
angular velocity ω of each rod immediately after the collision.

Assuming a coefficient of restitution e, compute υ and ω for each rod after the
collision.
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12C Dynamics

A particle of mass m and charge q > 0 moves in a time-dependent magnetic field
B = (0, 0, Bz(t)).

Write down the equations of motion governing the particle’s x, y and z coordinates.

Show that the speed of the particle in the (x, y) plane, V =
√

ẋ2 + ẏ2, is a constant.

Show that the general solution of the equations of motion is

x(t) = x0 + V

∫ t

0

dt′ cos

(
−
∫ t′

0

dt′′q
Bz(t′′)

m
+ φ

)
,

y(t) = y0 + V

∫ t

0

dt′ sin

(
−
∫ t′

0

dt′′q
Bz(t′′)

m
+ φ

)
,

z(t) = z0 + υzt,

and interpret each of the six constants of integration, x0, y0, z0, vz, V and φ. [Hint: Solve
the equations for the particle’s velocity in cylindrical polars.]

Let Bz(t) = βt, where β is a positive constant. Assuming that x0 = y0 = z0 =
vz = φ = 0 and V = 1, calculate the position of the particle in the limit t →∞ (you may
assume this limit exists). [Hint: You may use the results

∫∞
0

dx cos(x2) =
∫∞
0

dx sin(x2) =√
π/8.]

END OF PAPER
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