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SECTION I

1H Number Theory

Recall that, if p is an odd prime, a primitive root modulo p is a generator of the
cyclic (multiplicative) group (Z/pZ)×. Let p be an odd prime of the form 22n

+ 1; show
that a is a primitive root mod p if and only if a is not a quadratic residue mod p. Use this
result to prove that 7 is a primitive root modulo every such prime.

2F Topics in Analysis

(i) Let α be an algebraic number and let p and q be integers with q 6= 0. What
does Liouville’s theorem say about α and p/q?

(ii) Let p and q be integers with q 6= 0. Prove that∣∣∣∣√2− p

q

∣∣∣∣ >
1

4q2
.

[In (ii), you may not use Liouville’s theorem unless you prove it.]

3G Geometry of Group Actions

Describe the geodesics in the disc model of the hyperbolic plane H2.

Define the area of a region in H2. Compute the area A(r) of a hyperbolic circle of
radius r from the definition just given. Compute the circumference C(r) of a hyperbolic
circle of radius r, and check explicitly that dA(r)/dr = C(r).

How could you define π geometrically if you lived in H2? Briefly justify your answer.

4J Coding and Cryptography

What is a linear binary code? What is the weight w(C) of a linear binary code C?
Define the bar product C1|C2 of two binary linear codes C1 and C2, stating the conditions
that C1 and C2 must satisfy. Under these conditions show that

w(C1|C2) > min(2w(C1), w(C2)).

Paper 2
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5I Statistical Modelling

You see below three R commands, and the corresponding output (which is slightly
abbreviated). Explain the effects of the commands. How is the deviance defined, and why
do we have d.f.=7 in this case? Interpret the numerical values found in the output.

> n = scan()

3 5 16 12 11 34 37 51 56

> i = scan ()

1 2 3 4 5 6 7 8 9

> summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382
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6E Mathematical Biology

Consider a system with stochastic reaction events

x
λ−→ x+ 1 and x

βx2

−→ x− 2 ,

where λ and β are rate constants.

(a) State or derive the exact differential equation satisfied by the average number
of molecules <x>. Assuming that fluctuations are negligible, approximate the differential
equation to obtain the steady-state value of <x>.

(b) Using this approximation, calculate the elasticity H, the average lifetime τ , and
the average chemical event size <r> (averaged over fluxes).

(c) State the stationary Fluctuation Dissipation Theorem for the normalised
variance η. Hence show that

η =
3

4<x>
.

7B Dynamical Systems

Define Lyapunov stability and quasi-asymptotic stability of a fixed point x0 of a
dynamical system ẋ = f(x).

By considering a Lyapunov function of the form V = g(x)+y2, show that the origin
is an asymptotically stable fixed point of

ẋ = −y − x3

ẏ = x5 .

[Lyapunov’s Second Theorem may be used without proof, provided you show that its
conditions apply.]

Paper 2
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8A Further Complex Methods

The Hankel representation of the gamma function is

Γ(z) =
1

2i sin(πz)

∫ (0+)

−∞
tz−1etdt ,

where the path of integration is the Hankel contour.

Use this representation to find the residue of Γ(z) at z = −n, where n is a non-
negative integer.

Is there a pole at z = n, where n is a positive integer? Justify your answer carefully,
working only from the above representation of Γ(z).

9C Classical Dynamics

A rigid body has principal moments of inertia I1, I2 and I3 and is moving under the
action of no forces with angular velocity components (ω1, ω2, ω3). Its motion is described
by Euler’s equations

I1ω̇1 − (I2 − I3)ω2ω3 = 0
I2ω̇2 − (I3 − I1)ω3ω1 = 0
I3ω̇3 − (I1 − I2)ω1ω2 = 0 .

Are the components of the angular momentum to be evaluated in the body frame or the
space frame?

Now suppose that an asymmetric body is moving with constant angular velocity
(Ω, 0, 0). Show that this motion is stable if and only if I1 is the largest or smallest principal
moment.
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10D Cosmology

(a) A spherically symmetric star obeys the pressure-support equation

dP

dr
= −Gmρ

r2
, (∗)

where P (r) is the pressure at a distance r from the centre, ρ(r) is the density, and the
mass m(r) is defined through the relation dm/dr = 4πr2ρ(r). Multiply (∗) by 4πr3 and
integrate over the total volume V of the star to derive the virial theorem

〈P 〉V = − 1
3Egrav ,

where 〈P 〉 is the average pressure and Egrav is the total gravitational potential energy.

(b) Consider a white dwarf supported by electron Fermi degeneracy pressure
P ≈ h2n5/3/me, where me is the electron mass and n is the number density. Assume
a uniform density ρ(r) = mpn(r) ≈ mp〈n〉, so the total mass of the star is given by
M = (4π/3)〈n〉mpR

3 where R is the star radius and mp is the proton mass. Show that
the total energy of the white dwarf can be written in the form

Etotal = Ekin + Egrav =
α

R2
− β

R
,

where α, β are positive constants which you should determine. [You may assume that for
an ideal gas Ekin = 3

2 〈P 〉V .] Use this expression to explain briefly why a white dwarf is
stable.

Paper 2
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SECTION II

11F Topics in Analysis

(i) State the Baire category theorem. Deduce from it a statement about nowhere
dense sets.

(ii) Let X be the set of all real numbers with decimal expansions consisting of the
digits 4 and 5 only. Prove that there is a real number t that cannot be written in the form
x+ y with x ∈ X and y rational.

12J Coding and Cryptography

What does it means to say that f : Fd
2 → Fd

2 is a linear feedback shift register?
Let (xn)n>0 be a stream produced by such a register. Show that there exist N , M with
N +M 6 2d − 1 such that xr+N = xr for all r > M .

Explain and justify the Berlekamp–Massey method for ‘breaking’ a cipher stream
arising from a linear feedback register of unknown length.

Let xn, yn, zn be three streams produced by linear feedback registers. Set

kn = xn if yn = zn

kn = yn if yn 6= zn .

Show that kn is also a stream produced by a linear feedback register. Sketch proofs of any
theorems that you use.
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13E Mathematical Biology

Consider the reaction-diffusion system

∂u

∂τ
= βu

(
u2

v
− u

)
+Du

∂2u

∂x2

∂v

∂τ
= βv

(
u2 − v

)
+Dv

∂2v

∂x2

for an activator u and inhibitor v, where βu and βv are degradation rate constants and
Du and Dv are diffusion rate constants.

(a) Find a suitably scaled time t and length s such that

∂u

∂t
=
u2

v
− u+

∂2u

∂s2

1
Q

∂v

∂t
= u2 − v + P

∂2v

∂s2
,

(∗)

and find expressions for P and Q.

(b) Show that the Jacobian matrix for small spatially homogenous deviations from
a nonzero steady state of (∗) is

J =
(

1 −1
2Q −Q

)
and find the values of Q for which the steady state is stable.
[Hint: The eigenvalues of a 2 × 2 real matrix both have positive real parts iff the matrix
has a positive trace and determinant.]

(c) Derive linearised ordinary differential equations for the amplitudes û(t) and v̂(t)
of small spatially inhomogeneous deviations from a steady state of (∗) that are proportional
to cos(s/L), where L is a constant.

(d) Assuming that the system is stable to homogeneous perturbations, derive the
condition for inhomogeneous instability. Interpret this condition in terms of how far
activator and inhibitor molecules diffuse on average before they are degraded.

(e) Calculate the lengthscale Lcrit of disturbances that are expected to be observed
when the condition for inhomogeneous instability is just satisfied. What are the dominant
mechanisms for stabilising disturbances on lengthscales (i) much less than and (ii) much
greater than Lcrit?
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14B Dynamical Systems

Prove that if a continuous map F of an interval into itself has a periodic orbit of
period three then it also has periodic orbits of least period n for all positive integers n.

Explain briefly why there must be at least two periodic orbits of least period 5.

[You may assume without proof:

(i) If U and V are non-empty closed bounded intervals such that V ⊆ F (U) then there
is a closed bounded interval K ⊆ U such that F (K) = V .

(ii) The Intermediate Value Theorem.]
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15D Cosmology

(a) Consider a homogeneous and isotropic universe with scale factor a(t) and filled
with mass density ρ(t). Show how the conservation of kinetic energy plus gravitational
potential energy for a test particle on the edge of a spherical region in this universe can
be used to derive the Friedmann equation(

ȧ

a

)2

+
kc2

a2
=

8πG
3

ρ , (∗)

where k is a constant. State clearly any assumptions you have made.

(b) Now suppose that the universe was filled throughout its history with radiation
with equation of state P = ρc2/3. Using the fluid conservation equation and the definition
of the relative density Ω, show that the density of this radiation can be expressed as

ρ =
3H2

0

8πG
Ω0

a4
,

where H0 is the Hubble parameter today and Ω0 is the relative density today (t = t0)
and a0 ≡ a(t0) = 1 is assumed. Show also that kc2 = H2

0 (Ω0 − 1) and hence rewrite the
Friedmann equation (∗) as (

ȧ

a

)2

= H2
0Ω0

(
1
a4

− β

a2

)
, (†)

where β ≡ (Ω0 − 1)/Ω0.

(c) Now consider a closed model with k > 0 (or Ω > 1). Rewrite (†) using the new
time variable τ defined by

dt

dτ
= a .

Hence, or otherwise, solve (†) to find the parametric solution

a(τ) =
1√
β

(sinατ) , t(τ) =
1

α
√
β

(1− cosατ) ,

where α ≡ H0

√
(Ω0 − 1). [Recall that

∫
dx/

√
1− x2 = sin−1 x.]

Using the solution for a(τ), find the value of the new time variable τ = τ0 today
and hence deduce that the age of the universe in this model is

t0 = H−1
0

√
Ω0 − 1

Ω0 − 1
.
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16F Logic and Set Theory

Give the inductive and the synthetic definitions of ordinal addition, and prove that
they are equivalent. Give an example to show that ordinal addition is not commutative.

Which of the following assertions about ordinals α, β and γ are always true, and
which can be false? Give proofs or counterexamples as appropriate.

(i) α+ (β + γ) = (α+ β) + γ.

(ii) If α and β are limit ordinals then α+ β = β + α.

(iii) If α+ β = ω1 then α = 0 or α = ω1.

(iv) If α+ β = ω1 then β = 0 or β = ω1.

17F Graph Theory

Brooks’ Theorem states that if G is a connected graph then χ(G) 6 ∆(G) unless
G is complete or is an odd cycle. Prove the theorem for 3-connected graphs G.

Let G be a graph, and let d1 + d2 = ∆(G)− 1. By considering a partition V1, V2 of
V (G) that minimizes the quantity d2e(G[V1]) + d1e(G[V2]), show that there is a partition
with ∆(G[Vi]) 6 di, i = 1, 2.

By taking d1 = 3, show that if a graph G contains no K4 then χ(G) 6 3
4∆(G) + 3

2 .

18G Galois Theory

Let K be a field of characteristic 0 containing all roots of unity.

(i) Let L be the splitting field of the polynomial Xn − a where a ∈ K. Show that
the Galois group of L/K is cyclic.

(ii) Suppose that M/K is a cyclic extension of degree m over K. Let g be a
generator of the Galois group and ζ ∈ K a primitive m-th root of 1. By considering the
resolvent

R(w) =
m−1∑
i=0

gi(w)
ζi

of elements w ∈ M , show that M is the splitting field of a polynomial Xm − a for some
a ∈ K.

Paper 2 [TURN OVER
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19G Representation Theory

Let G be a finite group and {χi} the set of its irreducible characters. Also choose
representatives gj for the conjugacy classes, and denote by Z(gj) their centralisers.

(i) State the orthogonality and completeness relations for the χk.

(ii) Using Part (i), or otherwise, show that

∑
i
χi(gj) · χi(gk) = δjk · |Z(gj)| .

(iii) Let A be the matrix with Aij = χi(gj). Prove that

|detA|2 =
∏

j
|Z(gj)|.

(iv) Show that detA is either real or purely imaginary, explaining when each
situation occurs.

[Hint for (iv): Consider the effect of complex conjugation on the rows of the matrix A.]

20G Number Fields

Show that ε = (3 +
√

7)/(3 −
√

7) is a unit in k = Q(
√

7). Show further that 2 is
the square of the principal ideal in k generated by 3 +

√
7.

Assuming that the Minkowski constant for k is 1
2 , deduce that k has class number 1.

Assuming further that ε is the fundamental unit in k, show that the complete
solution in integers x, y of the equation x2 − 7y2 = 2 is given by

x+
√

7y = ±εn(3 +
√

7) (n = 0,±1,±2, . . .).

Calculate the particular solution in positive integers x, y when n = 1.

21H Algebraic Topology

State the Van Kampen Theorem. Use this theorem and the fact that π1S
1 = Z to

compute the fundamental groups of the torus T = S1 × S1, the punctured torus T \ {p},
for some point p ∈ T , and the connected sum T # T of two copies of T .

Paper 2
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22F Linear Analysis

Let X and Y be Banach spaces. Define what it means for a linear operator
T : X → Y to be compact. For a linear operator T : X → X, define the spectrum,
point spectrum, and resolvent set of T .

Now let H be a complex Hilbert space. Define what it means for a linear operator
T : H → H to be self-adjoint. Suppose e1, e2, . . . is an orthonormal basis for H. Define a
linear operator T : H → H by setting Tei = 1

i ei. Is T compact? Is T self-adjoint? Justify
your answers. Describe, with proof, the spectrum, point spectrum, and resolvent set of T .

23H Riemann Surfaces

Define the terms function element and complete analytic function.

Let (f,D) be a function element such that f(z)n = p(z), for some integer n > 2,
where p(z) is a complex polynomial with no multiple roots. Let F be the complete
analytic function containing (f,D). Show that every function element (f̃ , D̃) in F satisfies
f̃(z)n = p(z).

Describe how the non-singular complex algebraic curve

C = {(z, w) ∈ C2 | wn − p(z) = 0}

can be made into a Riemann surface such that the first and second projections C2 → C
define, by restriction, holomorphic maps f1, f2 : C → C.

Explain briefly the relation between C and the Riemann surface S(F ) for the
complete analytic function F given earlier.

[You do not need to prove the Inverse Function Theorem, provided that you state it
accurately.]
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24H Differential Geometry

State the isoperimetric inequality in the plane.

Let S ⊂ R3 be a surface. Let p ∈ S and let Sr(p) be a geodesic circle of centre
p and radius r (r small). Let L be the length of Sr(p) and A be the area of the region
bounded by Sr(p). Prove that

4πA− L2 = π2r4K(p) + ε(r),

where K(p) is the Gaussian curvature of S at p and

lim
r→0

ε(r)
r4

= 0.

When K(p) > 0 and r is small, compare this briefly with the isoperimetric inequality in
the plane.

25J Probability and Measure

Let R be a family of random variables on the common probability space (Ω,F ,P).
What is meant by saying that R is uniformly integrable? Explain the use of uniform
integrability in the study of convergence in probability and in L1. [Clear definitions should
be given of any terms used, but proofs may be omitted.]

Let R1 and R2 be uniformly integrable families of random variables on (Ω,F ,P).
Show that the family R given by

R = {X + Y : X ∈ R1, Y ∈ R2}

is uniformly integrable.

Paper 2
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26I Applied Probability

What does it mean to say that (Xt) is a renewal process?

Let (Xt) be a renewal process with holding times S1, S2, . . . and let s > 0. For
n > 1, set Tn = SXs+n. Show that

P(Tn > t) > P(Sn > t), t > 0,

for all n, with equality if n > 2.

Consider now the case where S1, S2, . . . are exponential random variables. Show
that

P(T1 > t) > P(S1 > t), t > 0,

and that, as s→∞,
P(T1 > t) → P(S1 + S2 > t), t > 0 .

27I Principles of Statistics

(i) Suppose thatX is a multivariate normal vector with mean µ ∈ Rd and covariance
matrix σ2I, where µ and σ2 are both unknown, and I denotes the d× d identity matrix.
Suppose that Θ0 ⊂ Θ1 are linear subspaces of Rd of dimensions d0 and d1, where
d0 < d1 < d. Let Pi denote orthogonal projection onto Θi (i = 0, 1). Carefully derive the
joint distribution of (|X − P1X|2, |P1X − P0X|2) under the hypothesis H0 : µ ∈ Θ0. How
could you use this to make a test of H0 against H1 : µ ∈ Θ1?

(ii) Suppose that I students take J exams, and that the mark Xij of student i in
exam j is modelled as

Xij = m+ αi + βj + εij

where
∑

i αi = 0 =
∑

j βj , the εij are independent N(0, σ2), and the parameters m, α, β
and σ are unknown. Construct a test of H0 : βj = 0 for all j against H1 :

∑
j βj = 0.
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28J Stochastic Financial Models

(i) At the beginning of year n, an investor makes decisions about his investment
and consumption for the coming year. He first takes out an amount cn from his current
wealth wn, and sets this aside for consumption. He splits his remaining wealth between
a bank account (unit wealth invested at the start of the year will have grown to a sure
amount r > 1 by the end of the year), and the stock market. Unit wealth invested in the
stock market will have become the random amount Xn+1 > 0 by the end of the year.

The investor’s objective is to invest and consume so as to maximise the expected
value of

∑N
n=1 U(cn), where U is strictly increasing and strictly convex. Consider the

dynamic programming equation (Bellman equation) for his problem,

Vn(w) = sup
c,θ

{
U(c) + En

[
Vn+1(θ(w − c)Xn+1 + (1− θ)(w − c)r)

] }
(0 6 n < N),

VN (w) = U(w).

Explain all undefined notation, and explain briefly why the equation holds.

(ii) Supposing that the Xi are independent and identically distributed, and that
U(x) = x1−R/(1 − R), where R > 0 is different from 1, find as explicitly as you can the
form of the agent’s optimal policy.

(iii) Return to the general problem of (i). Assuming that the sample space Ω is
finite, and that all suprema are attained, show that

En[V ′n+1(w
∗
n+1)(Xn+1 − r) ] = 0,
rEn[V ′n+1(w

∗
n+1) ] = U ′(c∗n),

rEn[V ′n+1(w
∗
n+1) ] = V ′n(w∗n),

where (c∗n, w
∗
n)06n6N denotes the optimal consumption and wealth process for the prob-

lem. Explain the significance of each of these equalities.
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29I Optimization and Control

Explain what is meant by a time-homogeneous discrete time Markov decision
problem.

What is the positive programming case?

A discrete time Markov decision problem has state space {0, 1, . . . , N}. In state
i, i 6= 0, N , two actions are possible. We may either stop and obtain a terminal reward
r(i) > 0, or may continue, in which case the subsequent state is equally likely to be
i − 1 or i + 1. In states 0 and N stopping is automatic (with terminal rewards r(0) and
r(N) respectively). Starting in state i, denote by Vn(i) and V (i) the maximal expected
terminal reward that can be obtained over the first n steps and over the infinite horizon,
respectively. Prove that limn→∞ Vn = V .

Prove that V is the smallest concave function such that V (i) > r(i) for all i.

Describe an optimal policy.

Suppose r(0), . . . , r(N) are distinct numbers. Show that the optimal policy is
unique, or give a counter-example.

30C Partial Differential Equations

Define a fundamental solution of a linear partial differential operator P . Prove that
the function

G(x) = 1
2e
−|x|

defines a distribution which is a fundamental solution of the operator P given by

P u = −d
2u

dx2
+ u .

Hence find a solution u0 to the equation

−d
2u0

dx2
+ u0 = V (x) ,

where V (x) = 0 for |x| > 1 and V (x) = 1 for |x| 6 1.

Consider the functional

I[u] =
∫

R

{
1
2

[(du
dx

)2

+ u2
]
− V u

}
dx .

Show that I[u0 + φ] > I[u0] for all Schwartz functions φ that are not identically zero.
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31C Integrable Systems

Suppose q(x, t) satisfies the mKdV equation

qt + qxxx + 6q2qx = 0 ,

where qt = ∂q/∂t etc.

(a) Find the 1-soliton solution.

[You may use, without proof, the indefinite integral
∫

dx

x
√

1− x2
= −arcsechx . ]

(b) Express the self-similar solution of the mKdV equation in terms of a solution,
denoted by v(z), of the Painlevé II equation.

(c) Using the Ansatz
dv

dz
+ iv2 − i

6
z = 0 ,

find a particular solution of the mKdV equation in terms of a solution of the Airy equation

d2Ψ
dz2

+
z

6
Ψ = 0 .
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32D Principles of Quantum Mechanics

The components of σ = (σ1, σ2, σ3) are 2×2 hermitian matrices obeying

[σi, σj ] = 2iεijkσk and (n·σ)2 = 1 (∗)

for any unit vector n. Show that these properties imply

(a·σ) (b·σ) = a·b + i(a×b)·σ

for any constant vectors a and b. Assuming that θ is real, explain why the matrix
U = exp(−in·σ θ/2) is unitary, and show that

U = cos(θ/2) − in·σ sin(θ/2) .

Hence deduce that
Um·σU−1 = m·σ cos θ + (n×m)·σ sin θ

where m is any unit vector orthogonal to n.

Write down an equation relating the matrices σ and the angular momentum
operator S for a particle of spin one half, and explain briefly the significance of the
conditions (∗). Show that if |χ〉 is a state with spin ‘up’ measured along the direction
(0, 0, 1) then, for a certain choice of n, U |χ〉 is a state with spin ‘up’ measured along the
direction (sin θ, 0, cos θ).
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33B Applications of Quantum Mechanics

Describe briefly the variational approach to the determination of an approximate
ground state energy E0 of a Hamiltonian H.

Let |ψ1〉 and |ψ2〉 be two states, and consider the trial state

|ψ〉 = a1|ψ1〉+ a2|ψ2〉

for real constants a1 and a2. Given that

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 , 〈ψ2|ψ1〉 = 〈ψ1|ψ2〉 = s ,

〈ψ1|H|ψ1〉 = 〈ψ2|H|ψ2〉 = E , 〈ψ2|H|ψ1〉 = 〈ψ1|H|ψ2〉 = ε ,
(∗)

and that ε < sE , obtain an upper bound on E0 in terms of E , ε and s.

The normalized ground-state wavefunction of the Hamiltonian

H1 =
p2

2m
−Kδ(x) , K > 0,

is
ψ1(x) =

√
λ e−λ|x| , λ =

mK

~2
.

Verify that the ground state energy of H1 is

EB ≡ 〈ψ1|H|ψ1〉 = −1
2
Kλ .

Now consider the Hamiltonian

H =
p2

2m
−Kδ(x)−Kδ(x−R) ,

and let E0(R) be its ground-state energy as a function of R. Assuming that

ψ2(x) =
√
λ e−λ|x−R| ,

use (∗) to compute s, E and ε for ψ1 and ψ2 as given. Hence show that

E0(R) 6 EB

[
1 + 2

e−λR
(
1 + e−λR

)
1 + (1 + λR) e−λR

]
.

Why should you expect this inequality to become an approximate equality for sufficiently
large R? Describe briefly how this is relevant to molecular binding.
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34D Statistical Physics

Write down the first law of thermodynamics in differential form applied to an
infinitesimal reversible change.

Explain what is meant by an adiabatic change.

Starting with the first law in differential form, derive the Maxwell relation(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

.

Hence show that (
∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P .

For radiation in thermal equilibrium at temperature T in volume V , it is given that
E = V e(T ) and P = e(T )/3. Hence deduce Stefan’s Law,

E = aV T 4 ,

where a is a constant.

The radiation is allowed to expand adiabatically. Show that V T 3 is constant during
the expansion.

35C General Relativity

State without proof the properties of local inertial coordinates xa centred on an
arbitrary spacetime event p. Explain their physical significance.

Obtain an expression for ∂aΓb
c
d at p in inertial coordinates. Use it to derive the

formula
Rabcd = 1

2

(
∂b∂cgad + ∂a∂dgbc − ∂b∂dgac − ∂a∂cgbd

)
for the components of the Riemann tensor at p in local inertial coordinates. Hence deduce
that at any point in any chart Rabcd = Rcdab.

Consider the metric

ds2 =
ηab dx

a dxb

(1 + L−2ηabxaxb)2
,

where ηab = diag(1, 1, 1,−1) is the Minkowski metric tensor and L is a constant. Compute
the Ricci scalar R = Rab

ab at the origin xa = 0.
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36E Fluid Dynamics II

A volume V of very viscous fluid of density ρ and dynamic viscosity µ is released
at the origin on a rigid horizontal boundary at time t = 0. Using lubrication theory,
determine the velocity profile in the gravity current once it has spread sufficiently that
the axisymmetric thickness h(r, t) of the current is much less than the radius R(t) of the
front.

Derive the differential equation

∂h

∂t
=
β

r

∂

∂r

(
rh3 ∂h

∂r

)
,

where β is to be determined.

Write down the other equations that are needed to determine the appropriate
similarity solution for this problem.

Determine the similarity solution and calculate R(t).

37E Waves

Show that, in the standard notation for a one-dimensional flow of a perfect gas at
constant entropy, the quantity u+2(c− c0)/(γ−1) remains constant along characteristics
dx/dt = u+ c.

A perfect gas is initially at rest and occupies a tube in x > 0. A piston is pushed
into the gas so that its position at time t is x(t) = 1

2ft
2, where f > 0 is a constant. Find

the time and position at which a shock first forms in the gas.

38A Numerical Analysis

Define a Krylov subspace Kn(A, v).

Let dn be the dimension of Kn(A, v). Prove that the sequence {dm}m=1,2,...

increases monotonically. Show that, moreover, there exists an integer k with the following
property: dm = m for m = 1, 2, . . . , k, while dm = k for m > k. Assuming that A has a
full set of eigenvectors, show that k is equal to the number of eigenvectors of A required
to represent the vector v.

END OF PAPER
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