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SECTION I

1C Linear Algebra

Let Ω be the set of all 2 × 2 matrices of the form α = aI + bJ + cK + dL, where
a, b, c, d are in R, and

I =
(

1 0
0 1

)
, J =

(
i 0
0 −i

)
, K =

(
0 1
−1 0

)
, L =

(
0 i
i 0

)
(i2 = −1) .

Prove that Ω is closed under multiplication and determine its dimension as a vector
space over R. Prove that

(aI + bJ + cK + dL) (aI − bJ − cK − dL) = (a2 + b2 + c2 + d2)I ,

and deduce that each non-zero element of Ω is invertible.

2C Groups, Rings and Modules

Define an automorphism of a group G, and the natural group law on the set Aut(G)
of all automorphisms of G. For each fixed h in G, put ψ(h)(g) = hgh−1 for all g in G.
Prove that ψ(h) is an automorphism of G, and that ψ defines a homomorphism from G
into Aut(G).

3B Analysis II

Define uniform continuity for a real-valued function defined on an interval in R.

Is a uniformly continuous function on the interval (0, 1) necessarily bounded?

Is 1/x uniformly continuous on (0, 1)?

Is sin(1/x) uniformly continuous on (0, 1)?

Justify your answers.

4A Metric and Topological Spaces

Let X be a topological space. Suppose that U1, U2, . . . are connected subsets of X
with Uj ∩ U1 non-empty for all j > 0. Prove that

W =
⋃
j>0

Uj

is connected. If each Uj is path-connected, prove that W is path-connected.
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5E Methods

Consider the differential equation for x(t) in t > 0

ẍ− k2x = f(t),

subject to boundary conditions x(0) = 0, and ẋ(0) = 0. Find the Green function G(t, t′)
such that the solution for x(t) is given by

x(t) =
∫ t

0

G(t, t′)f(t′) dt′.

6H Electromagnetism

Write down Maxwell’s equations in the presence of a charge density ρ and current
density J. Show that it is necessary that ρ,J satisfy a conservation equation.

If ρ,J are zero outside a fixed region V show that the total charge inside V is a
constant and also that

d
dt

∫
V

xρ d3x =
∫

V

J d3x .

7G Special Relativity

Bob and Alice are twins. Bob accelerates rapidly away from Earth in a rocket that
travels in a straight line until it reaches a velocity v relative to the Earth. It then travels
with constant v for a long time before reversing its engines and decelerating rapidly until
it is travelling at a velocity −v relative to the Earth. After a further long period of time
the rocket returns to Earth, decelerating rapidly until it is at rest. Alice remains on Earth
throughout. Sketch the space-time diagram that describes Bob’s world-line in Alice’s rest
frame, assuming that the periods of acceleration and deceleration are negligibly small
compared to the total time, explain carefully why Bob ages less than Alice between his
departure and his return and show that

∆tB =
(

1− v2

c2

)1/2

∆tA ,

where ∆tB is the time by which Bob has aged and ∆tA is the time by which Alice has
aged.

Indicate on your diagram how Bob sees Alice aging during his voyage.

Paper 2 [TURN OVER



4

8E Fluid Dynamics

For a steady flow of an incompressible fluid of density ρ, show that

u× ω = ∇H ,

where ω = ∇× u is the vorticity and H is to be found. Deduce that H is constant along
streamlines.

Now consider a flow in the xy-plane described by a streamfunction ψ(x, y). Evaluate
u× ω and deduce from H = H(ψ) that

dH

dψ
+ ω = 0.

9D Optimization

Explain what is meant by a two-person zero-sum game with payoff matrix A = (aij).

Show that the problems of the two players may be expressed as a dual pair of
linear programming problems. State without proof a set of sufficient conditions for a pair
of strategies for the two players to be optimal.
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SECTION II

10C Linear Algebra

(i) Let A = (aij) be an n× n matrix with entries in C. Define the determinant of
A, the cofactor of each aij , and the adjugate matrix adj(A). Assuming the expansion of
the determinant of a matrix in terms of its cofactors, prove that

adj(A)A = det(A)In ,

where In is the n× n identity matrix.

(ii) Let

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Show the eigenvalues of A are ±1,±i, where i2 = −1, and determine the diagonal
matrix to which A is similar. For each eigenvalue, determine a non-zero eigenvector.

11C Groups, Rings and Modules

Let A be the abelian group generated by two elements x, y, subject to the relation
6x+9y = 0. Give a rigorous explanation of this statement by defining A as an appropriate
quotient of a free abelian group of rank 2. Prove that A itself is not a free abelian group,
and determine the exact structure of A.

12A Geometry

Let U be an open subset of R2 equipped with a Riemannian metric. For
γ : [0, 1] → U a smooth curve, define what is meant by its length and energy. Prove
that length(γ)2 ≤ energy(γ), with equality if and only if γ̇ has constant norm with respect
to the metric.

Suppose now U is the upper half plane model of the hyperbolic plane, and P,Q
are points on the positive imaginary axis. Show that a smooth curve γ joining P and Q
represents an absolute minimum of the length of such curves if and only if γ(t) = i v(t),
with v a smooth monotonic real function.

Suppose that a smooth curve γ joining the above points P and Q represents a
stationary point for the energy under proper variations; deduce from an appropriate form
of the Euler–Lagrange equations that γ must be of the above form, with v̇/v constant.
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13B Analysis II

Use the standard metric on Rn in this question.

(i) Let A be a nonempty closed subset of Rn and y a point in Rn. Show that there
is a point x ∈ A which minimizes the distance to y, in the sense that d(x, y) 6 d(a, y) for
all a ∈ A.

(ii) Suppose that the set A in part (i) is convex, meaning that A contains the line
segment between any two of its points. Show that point x ∈ A described in part (i) is
unique.

14F Complex Analysis or Complex Methods

Let F = P/Q be a rational function, where degQ > degP + 2 and Q has no real
zeros. Using the calculus of residues, write a general expression for∫ ∞

−∞
F (x)eixdx

in terms of residues and briefly sketch its proof.

Evaluate explicitly the integral∫ ∞

−∞

cosx
4 + x4

dx .
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15E Methods

Write down the Euler–Lagrange equation for the variational problem for r(z)

δ

∫ h

−h

F (z, r, r′) dz = 0,

with boundary conditions r(−h) = r(h) = R, where R is a given positive constant. Show
that if F does not depend explicitly on z, i.e. F = F (r, r′), then the equation has a first
integral

F − r′
∂F

∂r′
=

1
k
,

where k is a constant.

An axisymmetric soap film r(z) is formed between two circular rings r = R at
z = ±H. Find the equation governing the shape which minimizes the surface area. Show
that the shape takes the form

r(z) = k−1 cosh kz.

Show that there exist no solution if R/H < sinhA, where A is the unique positive solution
of A = cothA.
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16G Quantum Mechanics

A particle of mass m moving in a one-dimensional harmonic oscillator potential
satisfies the Schrödinger equation

H Ψ(x, t) = i~
∂

∂t
Ψ(x, t) ,

where the Hamiltonian is given by

H = − ~2

2m
d2

dx2
+

1
2
mω2 x2 .

The operators a and a† are defined by

a =
1√
2

(
βx+

i

β~
p

)
, a† =

1√
2

(
βx− i

β~
p

)
,

where β =
√
mω/~ and p = −i~∂/∂x is the usual momentum operator. Show that

[a, a†] = 1.

Express x and p in terms of a and a† and, hence or otherwise, show that H can be
written in the form

H =
(
a†a+ 1

2

)
~ω .

Show, for an arbitrary wave function Ψ, that
∫
dxΨ∗H Ψ ≥ 1

2~ω and hence that
the energy of any state satisfies the bound

E ≥ 1
2~ω .

Hence, or otherwise, show that the ground state wave function satisfies aΨ0 = 0 and that
its energy is given by

E0 = 1
2~ω .

By considering H acting on a† Ψ0, (a†)2 Ψ0, and so on, show that states of the form

(a†)n Ψ0

(n > 0) are also eigenstates and that their energies are given by En =
(
n+ 1

2

)
~ω.
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17H Electromagnetism

Assume the magnetic field

B(x) = b(x− 3 ẑ ẑ · x) , (∗)

where ẑ is a unit vector in the vertical direction. Show that this satisfies the expected
equations for a static magnetic field in vacuum.

A circular wire loop, of radius a, mass m and resistance R, lies in a horizontal
plane with its centre on the z-axis at a height z and there is a magnetic field given by
(∗). Calculate the magnetic flux arising from this magnetic field through the loop and also
the force acting on the loop when a current I is flowing around the loop in a clockwise
direction about the z-axis.

Obtain an equation of motion for the height z(t) when the wire loop is falling under
gravity. Show that there is a solution in which the loop falls with constant speed v which
should be determined. Verify that in this situation the rate at which heat is generated by
the current flowing in the loop is equal to the rate of loss of gravitational potential energy.
What happens when R→ 0?

18F Numerical Analysis

(a) Let {Qn}n>0 be a set of polynomials orthogonal with respect to some inner
product ( · , · ) in the interval [a, b]. Write explicitly the least-squares approximation to
f ∈ C[a, b] by an nth-degree polynomial in terms of the polynomials {Qn}n>0.

(b) Let an inner product be defined by the formula

(g, h) =
∫ 1

−1

(1− x2)−
1
2 g(x)h(x)dx.

Determine the nth degree polynomial approximation of f(x) = (1− x2)
1
2 with respect to

this inner product as a linear combination of the underlying orthogonal polynomials.
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19D Statistics

Let X1, . . . , Xn be a random sample from a probability density function f(x | θ),
where θ is an unknown real-valued parameter which is assumed to have a prior density
π(θ). Determine the optimal Bayes point estimate a(X1, . . . , Xn) of θ, in terms of the
posterior distribution of θ given X1, . . . , Xn, when the loss function is

L(θ, a) =
{
γ(θ − a) when θ > a,
δ(a− θ) when θ 6 a,

where γ and δ are given positive constants.

Calculate the estimate explicitly in the case when f(x | θ) is the density of the
uniform distribution on (0, θ) and π(θ) = e−θθn/n!, θ > 0.

20D Markov Chains

Consider a Markov chain (Xn)n>0 with state space {0, 1, 2, . . .} and transition
probabilities given by

Pi,j = pqi−j+1, 0 < j 6 i+ 1, and Pi,0 = qi+1 for i > 0,

with Pi,j = 0, otherwise, where 0 < p < 1 and q = 1− p.

For each i > 1, let

hi = P (Xn = 0, for some n > 0 | X0 = i) ,

that is, the probability that the chain ever hits the state 0 given that it starts in
state i. Write down the equations satisfied by the probabilities {hi, i > 1} and hence,
or otherwise, show that they satisfy a second-order recurrence relation with constant
coefficients. Calculate hi for each i > 1.

Determine for each value of p, 0 < p < 1, whether the chain is transient, null
recurrent or positive recurrent and in the last case calculate the stationary distribution.

[Hint: When the chain is positive recurrent, the stationary distribution is geometric.]

END OF PAPER
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