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SECTION I

1E Numbers and Sets

Find the unique positive integer a with a ≤ 19, for which

17! · 316 ≡ a (mod 19).

Results used should be stated but need not be proved.

Solve the system of simultaneous congruences

x ≡ 1 (mod 2),
x ≡ 1 (mod 3),
x ≡ 3 (mod 4),
x ≡ 4 (mod 5).

Explain very briefly your reasoning.

2E Numbers and Sets

Give a combinatorial definition of the binomial coefficient
(

n
m

)
for any non-negative

integers n, m.

Prove that
(

n
m

)
=

(
n

n−m

)
for 0 ≤ m ≤ n.

Prove the identities

(
n

k

)(
k

l

)
=

(
n

l

)(
n− l

k − l

)
and

k∑
i=0

(
m

i

)(
n

k − i

)
=

(
n + m

k

)
.
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3C Dynamics

Planetary Explorers Ltd. want to put a communications satellite of mass m into
geostationary orbit around the spherical planet Zog (i.e. with the satellite always above
the same point on the surface of Zog). The mass of Zog is M , the length of its day is T
and G is the gravitational constant.

Write down the equations of motion for a general orbit of the satellite and determine
the radius and speed of the geostationary orbit.

Describe briefly how the orbit is modified if the satellite is released at the correct
radius and on the correct trajectory for a geostationary orbit, but with a little too much
speed. Comment on how the satellite’s speed varies around such an orbit.

4C Dynamics

A car of mass M travelling at speed U on a smooth, horizontal road attempts an
emergency stop. The car skids in a straight line with none of its wheels able to rotate.

Calculate the stopping distance and time on a dry road where the dry friction
coefficient between the tyres and the road is µ.

At high speed on a wet road the grip of each of the four tyres changes from dry
friction to a lubricated drag equal to 1

4λu for each tyre, where λ is the drag coefficient
and u the instantaneous speed of the car. However, the tyres regain their dry-weather
grip when the speed falls below 1

4U . Calculate the stopping distance and time under these
conditions.
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SECTION II

5E Numbers and Sets

What does it mean for a set to be countable? Show that Q×Q is countable, and
R is not countable.

Let D be any set of non-trivial discs in a plane, any two discs being disjoint. Show
that D is countable.

Give an example of a set C of non-trivial circles in a plane, any two circles being
disjoint, which is not countable.

6E Numbers and Sets

Let R be a relation on the set S. What does it mean for R to be an equivalence
relation on S? Show that if R is an equivalence relation on S, the set of equivalence classes
forms a partition of S.

Let G be a group, and let H be a subgroup of G. Define a relation R on G by
a R b if a−1b ∈ H. Show that R is an equivalence relation on G, and that the equivalence
classes are precisely the left cosets gH of H in G. Find a bijection from H to any other
coset gH. Deduce that if G is finite then the order of H divides the order of G.

Let g be an element of the finite group G. The order o(g) of g is the least positive
integer n for which gn = 1, the identity of G. If o(g) = n, then G has a subgroup of order
n; deduce that g|G| = 1 for all g ∈ G.

Let m be a natural number. Show that the set of integers in {1, 2, . . . ,m} which
are prime to m is a group under multiplication modulo m. [You may use any properties of
multiplication and divisibility of integers without proof, provided you state them clearly.]

Deduce that if a is any integer prime to m then aφ(m) ≡ 1 (mod m), where φ is the
Euler totient function.

7E Numbers and Sets

State and prove the Principle of Inclusion and Exclusion.

Use the Principle to show that the Euler totient function φ satisfies

φ(pc1
1 · · · pcr

r ) = pc1−1
1 (p1 − 1) · · · pcr−1

r (pr − 1).

Deduce that if a and b are coprime integers, then φ(ab) = φ(a)φ(b), and more
generally, that if d is any divisor of n then φ(d) divides φ(n).

Show that if φ(n) divides n then n = 2c3d for some non-negative integers c, d.
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8E Numbers and Sets

The Fibonacci numbers are defined by the equations F0 = 0, F1 = 1 and
Fn+1 = Fn + Fn−1 for any positive integer n. Show that the highest common factor
(Fn+1, Fn) is 1.

Let n be a natural number. Prove by induction on k that for all positive integers k,

Fn+k = FkFn+1 + Fk−1Fn.

Deduce that Fn divides Fnl for all positive integers l. Deduce also that if m ≥ n
then

(Fm, Fn) = (Fm−n, Fn).

9C Dynamics

A particle of mass m and charge q moving in a vacuum through a magnetic field B
and subject to no other forces obeys

m r̈ = q ṙ×B,

where r(t) is the location of the particle.

For B = (0, 0, B) with constant B, and using cylindrical polar coordinates r =
(r, θ, z), or otherwise, determine the motion of the particle in the z = 0 plane if its initial
speed is u0 with ż = 0. [Hint: Choose the origin so that ṙ = 0 and r̈ = 0 at t = 0.]

Due to a leak, a small amount of gas enters the system, causing the particle to
experience a drag force D = −µṙ, where µ � qB. Write down the new governing equations
and show that the speed of the particle decays exponentially. Sketch the path followed by
the particle. [Hint: Consider the equations for the velocity in Cartesian coordinates; you
need not apply any initial conditions.]
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10C Dynamics

A keen cyclist wishes to analyse her performance on training rollers. She decides
that the key components are her bicycle’s rear wheel and the roller on which the wheel
sits. The wheel, of radius R, has its mass M entirely at its outer edge. The roller, which
is driven by the wheel without any slippage, is a solid cylinder of radius S and mass M/2.
The angular velocities of the wheel and roller are ω and σ, respectively.

Determine I and J , the moments of inertia of the wheel and roller, respectively.
Find the ratio of the angular velocities of the wheel and roller. Show that the combined
total kinetic energy of the wheel and roller is 1

2Kω2, where

K =
5
4
MR2

is the effective combined moment of inertia of the wheel and roller.

Why should K be used instead of just I or J in the equation connecting torque with
angular acceleration? The cyclist believes the torque she can produce at the back wheel
is T = Q(1 − ω/Ω) where Q and Ω are dimensional constants. Determine the angular
velocity of the wheel, starting from rest, as a function of time.

In an attempt to make the ride more realistic, the cyclist adds a fan (of negligible
mass) to the roller. The fan imposes a frictional torque −γσ2 on the roller, where γ is a
dimensional constant. Determine the new maximum speed for the wheel.
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11C Dynamics

A puck of mass m located at r = (x, y) slides without friction under the influence
of gravity on a surface of height z = h(x, y). Show that the equations of motion can be
approximated by

r̈ = −g∇h ,

where g is the gravitational acceleration and the small slope approximation sinφ ≈ tanφ
is used.

Determine the motion of the puck when h(x, y) = αx2.

Sketch the surface

h(x, y) = h(r) =
1
r2
− 1

r

as a function of r, where r2 = x2 + y2. Write down the equations of motion of the puck
on this surface in polar coordinates r = (r, θ) under the assumption that the small slope
approximation can be used. Show that L, the angular momentum per unit mass about the
origin, is conserved. Show also that the initial kinetic energy per unit mass of the puck is
E0 = 1

2L2/r2
0 if the puck is released at radius r0 with negligible radial velocity. Determine

and sketch ṙ2 as a function of r for this release condition. What condition relating L, r0

and g must be satisfied for the orbit to be bounded?

12C Dynamics

In an experiment a ball of mass m is released from a height h0 above a flat,
horizontal plate. Assuming the gravitational acceleration g is constant and the ball falls
through a vacuum, find the speed u0 of the ball on impact.

Determine the speed u1 at which the ball rebounds if the coefficient of restitution
for the collision is γ. What fraction of the impact energy is dissipated during the collision?
Determine also the maximum height hn the ball reaches after the nth bounce, and the time
Tn between the nth and (n + 1)th bounce. What is the total distance travelled by the ball
before it comes to rest if γ < 1?

If the experiment is repeated in an atmosphere then the ball experiences a drag
force D = −α |u|u, where α is a dimensional constant and u the instantaneous velocity of
the ball. Write down and solve the modified equation for u(t) before the ball first hits the
plate.

END OF PAPER
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