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SECTION I

1D Algebra and Geometry

Let A be a real 3×3 symmetric matrix with eigenvalues λ1 > λ2 > λ3 > 0. Consider
the surface S in R3 given by

xT Ax = 1.

Find the minimum distance between the origin and S. How many points on S realize this
minimum distance? Justify your answer.

2D Algebra and Geometry

Define what it means for a group to be cyclic. If p is a prime number, show that a
finite group G of order p must be cyclic. Find all homomorphisms ϕ : C11 → C14, where
Cn denotes the cyclic group of order n. [You may use Lagrange’s theorem.]

3A Vector Calculus

Let A(t,x) and B(t,x) be time-dependent, continuously differentiable vector fields
on R3 satisfying

∂A
∂t

= ∇×B and
∂B
∂t

= −∇×A .

Show that for any bounded region V ,

d

dt

[1
2

∫
V

(A2 + B2)dV
]

= −
∫

S

(A×B) · dS ,

where S is the boundary of V .

4A Vector Calculus

Given a curve γ(s) in R3, parameterised such that ‖γ′(s)‖ = 1 and with γ′′(s) 6= 0,
define the tangent t(s), the principal normal p(s), the curvature κ(s) and the binormal
b(s).

The torsion τ(s) is defined by

τ = −b′ · p .

Sketch a circular helix showing t,p,b and b′ at a chosen point. What is the sign of the
torsion for your helix? Sketch a second helix with torsion of the opposite sign.
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SECTION II

5D Algebra and Geometry

Define the notion of an action of a group G on a set X. Assuming that G is finite,
state and prove the Orbit-Stabilizer Theorem.

Let G be a finite group and X the set of its subgroups. Show that g(K) = gKg−1

(g ∈ G, K ∈ X) defines an action of G on X. If H is a subgroup of G, show that the orbit
of H has at most |G|/|H| elements.

Suppose H is a subgroup of G and H 6= G. Show that there is an element of G
which does not belong to any subgroup of the form gHg−1 for g ∈ G.

6D Algebra and Geometry

Let M be the group of Möbius transformations of C∪{∞} and let SL(2, C) be the
group of all 2× 2 complex matrices with determinant 1.

Show that the map θ : SL(2, C) →M given by

θ

(
a b
c d

)
(z) =

az + b

cz + d

is a surjective homomorphism. Find its kernel.

Show that every T ∈M not equal to the identity is conjugate to a Möbius map S
where either Sz = µz with µ 6= 0, 1, or Sz = z ± 1. [You may use results about matrices
in SL(2, C), provided they are clearly stated.]

Show that if T ∈ M, then T is the identity, or T has one, or two, fixed points.
Also show that if T ∈ M has only one fixed point z0 then Tnz → z0 as n → ∞ for any
z ∈ C ∪ {∞}.
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7D Algebra and Geometry

Let G be a group and let Z(G) = {h ∈ G : gh = hg for all g ∈ G}. Show that
Z(G) is a normal subgroup of G.

Let H be the set of all 3× 3 real matrices of the form 1 x y
0 1 z
0 0 1

 ,

with x, y, z ∈ R. Show that H is a subgroup of the group of invertible real matrices under
multiplication.

Find Z(H) and show that H/Z(H) is isomorphic to R2 with vector addition.

8D Algebra and Geometry

Let A be a 3× 3 real matrix such that det(A) = −1, A 6= −I, and AT A = I, where
AT is the transpose of A and I is the identity.

Show that the set E of vectors x for which Ax = −x forms a 1-dimensional subspace.

Consider the plane Π through the origin which is orthogonal to E. Show that A
maps Π to itself and induces a rotation of Π by angle θ, where cos θ = 1

2 (trace (A) + 1).
Show that A is a reflection in Π if and only if A has trace 1. [You may use the fact that
trace(BAB−1) = trace(A) for any invertible matrix B.]

Prove that det(A− I) = 4(cos θ − 1).
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9A Vector Calculus

Let V be a bounded region of R3 and S be its boundary. Let φ be the unique
solution to ∇2φ = 0 in V , with φ = f(x) on S, where f is a given function. Consider
any smooth function w also equal to f(x) on S. Show, by using Green’s first theorem or
otherwise, that ∫

V

| ∇w |2 dV >
∫

V

| ∇φ |2 dV .

[Hint: Set w = φ + δ.]

Consider the partial differential equation

∂

∂t
w = ∇2w ,

for w(t,x), with initial condition w(0,x) = w0(x) in V , and boundary condition w(t,x) =
f(x) on S for all t > 0. Show that

∂

∂t

∫
V

| ∇w |2 dV 6 0 , (∗)

with equality holding only when w(t,x) = φ(x).

Show that (∗) remains true with the boundary condition

∂w

∂t
+ α(x)

∂w

∂n
= 0

on S, provided α(x) > 0.

10A Vector Calculus

Write down Stokes’ theorem for a vector field B(x) on R3.

Consider the bounded surface S defined by

z = x2 + y2,
1
4

6 z 6 1 .

Sketch the surface and calculate the surface element dS. For the vector field

B = (−y3, x3, z3) ,

calculate I =
∫

S
(∇×B) · dS directly.

Show using Stokes’ theorem that I may be rewritten as a line integral and verify
this yields the same result.
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11A Vector Calculus

Explain, with justification, the significance of the eigenvalues of the Hessian in
classifying the critical points of a function f : Rn → R. In what circumstances are the
eigenvalues inconclusive in establishing the character of a critical point?

Consider the function on R2,

f(x, y) = xye−α(x2+y2) .

Find and classify all of its critical points, for all real α. How do the locations of the critical
points change as α → 0?

12A Vector Calculus

Express the integral

I =
∫ ∞

0

dx

∫ 1

0

dy

∫ x

0

dz xe−Ax/y−Bxy−Cyz

in terms of the new variables α = x/y, β = xy, and γ = yz. Hence show that

I =
1

2A(A + B)(A + B + C)
.

You may assume A,B and C are positive. [Hint: Remember to calculate the limits of the
integral.]

END OF PAPER
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