
MATHEMATICAL TRIPOS Part IA 2004

List of Courses

Algebra and Geometry
Analysis
Differential Equations
Dynamics
Numbers and Sets
Probability
Vector Calculus

Part IA 2004



2

1/I/1B Algebra and Geometry

The linear map H : R3 → R3 represents reflection in the plane through the origin
with normal n, where |n| = 1, and n = (n1, n2, n3) referred to the standard basis. The
map is given by x 7→ x′ = Mx, where M is a (3× 3) matrix.

Show that
Mij = δij − 2ninj .

Let u and v be unit vectors such that (u,v,n) is an orthonormal set. Show that

Mn = −n, Mu = u, Mv = v ,

and find the matrix N which gives the mapping relative to the basis (u,v,n).

1/I/2C Algebra and Geometry

Show that
n∑

i=1

aibi 6
( n∑

i=1

a2
i

)1/2( n∑
i=1

b2i

)1/2

for any real numbers a1, . . . , an, b1, . . . , bn. Using this inequality, show that if a and b are
vectors of unit length in Rn then |a · b| 6 1.

1/II/5B Algebra and Geometry

The vector x =

x
y
z

 satisfies the equation

Ax = b ,

where A is a (3× 3) matrix and b is a (3× 1) column vector. State the conditions under
which this equation has (a) a unique solution, (b) an infinity of solutions, (c) no solution
for x.

Find all possible solutions for the unknowns x, y and z which satisfy the following
equations:

x+ y + z = 1
x+ y + λz = 2
x+ 2y + λz = 4 ,

in the cases (a) λ = 0, and (b) λ = 1.
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1/II/6A Algebra and Geometry

Express the product a · (a× b) in suffix notation and thence prove that the result
is zero.

Silver Beard the space pirate believed people relied so much on space-age navigation
techniques that he could safely write down the location of his treasure using the ancient
art of vector algebra. Spikey the space jockey thought he could follow the instructions, by
moving by the sequence of vectors a,b, . . . , f one stage at a time. The vectors (expressed
in 1000 parsec units) were defined as follows:

1. Start at the centre of the galaxy, which has coordinates (0, 0, 0).

2. Vector a has length
√

3, is normal to the plane x+ y+ z = 1 and is directed into
the positive quadrant.

3. Vector b is given by b = (a ·m)a×m, where m = (2, 0, 1).

4. Vector c has length 2
√

2, is normal to a and b, and moves you closer to the x
axis.

5. Vector d = (1,−2, 2).

6. Vector e has length a · b. Spikey was initially a little confused with this one,
but then realised the orientation of the vector did not matter.

7. Vector f has unknown length but is parallel to m and takes you to the treasure
located somewhere on the plane 2x− y + 4z = 10.

Determine the location of the way-points Spikey will use and thence the location
of the treasure.
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1/II/7A Algebra and Geometry

Simplify the fraction

ζ =
1

z̄ +
1

z +
1
z̄

,

where z̄ is the complex conjugate of z. Determine the geometric form that satisfies

Re(ζ) = Re

(
z + 1

4

|z|2

)
.

Find solutions to
Im(log z) =

π

3
and

z2 = x2 − y2 + 2ix,

where z = x+ iy is a complex variable. Sketch these solutions in the complex plane and
describe the region they enclose. Derive complex equations for the circumscribed and
inscribed circles for the region. [The circumscribed circle is the circle that passes through
the vertices of the region and the inscribed circle is the largest circle that fits within the
region.]

1/II/8C Algebra and Geometry

(i) The vectors a1,a2,a3 in R3 satisfy a1 · a2 × a3 6= 0. Are a1,a2,a3 necessarily
linearly independent? Justify your answer by a proof or a counterexample.

(ii) The vectors a1,a2, . . . ,an in Rn have the property that every subset comprising
(n − 1) of the vectors is linearly independent. Are a1,a2, . . . ,an necessarily linearly
independent? Justify your answer by a proof or a counterexample.

(iii) For each value of t in the range 0 6 t < 1, give a construction of a linearly
independent set of vectors a1,a2,a3 in R3 satisfying

ai · aj = δij + t(1− δij) ,

where δij is the Kronecker delta.

3/I/1D Algebra and Geometry

State Lagrange’s Theorem.

Show that there are precisely two non-isomorphic groups of order 10. [You may
assume that a group whose elements are all of order 1 or 2 has order 2k.]
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3/I/2D Algebra and Geometry

Define the Möbius group, and describe how it acts on C ∪ {∞}.

Show that the subgroup of the Möbius group consisting of transformations which
fix 0 and ∞ is isomorphic to C∗ = C \ {0}.

Now show that the subgroup of the Möbius group consisting of transformations
which fix 0 and 1 is also isomorphic to C∗.

3/II/5D Algebra and Geometry

Let G = 〈g, h | h2 = 1, g6 = 1, hgh−1 = g−1〉 be the dihedral group of order 12.

i) List all the subgroups of G of order 2. Which of them are normal?

ii) Now list all the remaining proper subgroups of G. [There are 6+3 of them.]

iii) For each proper normal subgroup N of G, describe the quotient group G/N .

iv) Show that G is not isomorphic to the alternating group A4.

3/II/6D Algebra and Geometry

State the conditions on a matrix A that ensure it represents a rotation of R3 with
respect to the standard basis.

Check that the matrix

A =
1
3

−1 2 −2
2 2 1
2 −1 −2


represents a rotation. Find its axis of rotation n.

Let Π be the plane perpendicular to the axis n. The matrix A induces a rotation
of Π by an angle θ. Find cos θ.
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3/II/7D Algebra and Geometry

Let A be a real symmetric matrix. Show that all the eigenvalues of A are real, and
that the eigenvectors corresponding to distinct eigenvalues are orthogonal to each other.

Find the eigenvalues and eigenvectors of

A =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Give an example of a non-zero complex (2 × 2) symmetric matrix whose only
eigenvalues are zero. Is it diagonalisable?

3/II/8D Algebra and Geometry

Compute the characteristic polynomial of

A =

 3 −1 2
0 4− s 2s− 2
0 −2s+ 2 4s− 1

 .

Find the eigenvalues and eigenvectors of A for all values of s.

For which values of s is A diagonalisable?
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1/I/3D Analysis

Define the supremum or least upper bound of a non-empty set of real numbers.

State the Least Upper Bound Axiom for the real numbers.

Starting from the Least Upper Bound Axiom, show that if (an) is a bounded
monotonic sequence of real numbers, then it converges.

1/I/4E Analysis

Let f(x) = (1 + x)1/2 for x ∈ (−1, 1). Show by induction or otherwise that for
every integer r ≥ 1,

f (r)(x) = (−1)r−1 (2r − 2)!
22r−1(r − 1)!

(1 + x)
1
2−r.

Evaluate the series
∞∑

r=1

(−1)r−1 (2r − 2)!
8rr!(r − 1)!

.

[You may use Taylor’s Theorem in the form

f(x) = f(0) +
n∑

r=1

f (r)(0)
r!

xr +
∫ x

0

(x− t)nf (n+1)(t)
n!

dt

without proof.]

1/II/9D Analysis

i) State Rolle’s theorem.

Let f, g : [a, b] → R be continuous functions which are differentiable on (a, b).

ii) Prove that for some c ∈ (a, b),

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c).

iii) Suppose that f(a) = g(a) = 0, and that lim
x→a+

f ′(x)
g′(x)

exists and is equal to L.

Prove that lim
x→a+

f(x)
g(x)

exists and is also equal to L.

[You may assume there exists a δ > 0 such that, for all x ∈ (a, a + δ), g′(x) 6= 0 and
g(x) 6= 0.]

iv) Evaluate lim
x→0

log cosx
x2

.
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1/II/10E Analysis

Define, for an integer n ≥ 0,

In =
∫ π/2

0

sinn x dx.

Show that for every n ≥ 2, nIn = (n− 1)In−2, and deduce that

I2n =
(2n)!

(2nn!)2
π

2
and I2n+1 =

(2nn!)2

(2n+ 1)!
.

Show that 0 < In < In−1, and that

2n
2n+ 1

<
I2n+1

I2n
< 1.

Hence prove that

lim
n→∞

24n+1(n!)4

(2n+ 1)(2n)!2
= π.

1/II/11F Analysis

Let f be defined on R, and assume that there exists at least one point x0 ∈ R at
which f is continuous. Suppose also that, for every x, y ∈ R, f satisfies the equation

f(x+ y) = f(x) + f(y).

Show that f is continuous on R.

Show that there exists a constant c such that f(x) = cx for all x ∈ R.

Suppose that g is a continuous function defined on R and that, for every x, y ∈ R,
g satisfies the equation

g(x+ y) = g(x)g(y).

Show that if g is not identically zero, then g is everywhere positive. Find the general form
of g.
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1/II/12F Analysis

(i) Show that if an > 0, bn > 0 and

an+1

an
6
bn+1

bn

for all n > 1, and if
∞∑

n=1
bn converges, then

∞∑
n=1

an converges.

(ii) Let

cn =
(

2n
n

)
4−n.

By considering log cn, or otherwise, show that cn → 0 as n→∞.

[Hint: log(1− x) 6 −x for x ∈ (0, 1).]

(iii) Determine the convergence or otherwise of

∞∑
n=1

(
2n
n

)
xn

for (a) x = 1
4 , (b) x = − 1

4 .
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2/I/1B Differential Equations

By writing y(x) = mx where m is a constant, solve the differential equation

dy

dx
=
x− 2y
2x+ y

and find the possible values of m.

Describe the isoclines of this differential equation and sketch the flow vectors. Use
these to sketch at least two characteristically different solution curves.

Now, by making the substitution y(x) = xu(x) or otherwise, find the solution of
the differential equation which satisfies y(0) = 1.

2/I/2B Differential Equations

Find two linearly independent solutions of the differential equation

d2y

dx2
+ 2p

dy

dx
+ p2y = 0 .

Find also the solution of

d2y

dx2
+ 2p

dy

dx
+ p2y = e−px

that satisfies
y = 0,

dy

dx
= 0 at x = 0 .
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2/II/5B Differential Equations

Construct a series solution y = y1(x) valid in the neighbourhood of x = 0, for the
differential equation

d2y

dx2
+ 4x3 dy

dx
+ x2y = 0 ,

satisfying

y1 = 1,
dy1
dx

= 0 at x = 0 .

Find also a second solution y = y2(x) which satisfies

y2 = 0,
dy2
dx

= 1 at x = 0 .

Obtain an expression for the Wronskian of these two solutions and show that

y2(x) = y1(x)
∫ x

0

e−ξ4

y2
1(ξ)

dξ .

2/II/6B Differential Equations

Two solutions of the recurrence relation

xn+2 + b(n)xn+1 + c(n)xn = 0

are given as pn and qn, and their Wronskian is defined to be

Wn = pnqn+1 − pn+1qn .

Show that

Wn+1 = W1

n∏
m=1

c(m) . (∗)

Suppose that b(n) = α, where α is a real constant lying in the range [−2, 2], and
that c(n) = 1. Show that two solutions are xn = einθ and xn = e−inθ, where cos θ = −α/2.
Evaluate the Wronskian of these two solutions and verify (∗).
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2/II/7B Differential Equations

Show how a second-order differential equation ẍ = f(x, ẋ) may be transformed
into a pair of coupled first-order equations. Explain what is meant by a critical point on
the phase diagram for a pair of first-order equations. Hence find the critical points of
the following equations. Describe their stability type, sketching their behaviour near the
critical points on a phase diagram.

(i) ẍ+ cosx = 0
(ii) ẍ+ x(x2 + λx+ 1) = 0, for λ = 1, 5/2 .

Sketch the phase portraits of these equations marking clearly the direction of flow.

2/II/8B Differential Equations

Construct the general solution of the system of equations

ẋ+ 4x+ 3y = 0
ẏ + 4y − 3x = 0

in the form (
x(t)
y(t)

)
= x =

2∑
j=1

ajx(j)eλjt

and find the eigenvectors x(j) and eigenvalues λj .

Explain what is meant by resonance in a forced system of linear differential
equations.

Consider the forced system

ẋ+ 4x+ 3y =
2∑

j=1

pje
λjt

ẏ + 4y − 3x =
2∑

j=1

qje
λjt .

Find conditions on pj and qj (j = 1, 2) such that there is no resonant response to the
forcing.
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4/I/3A Dynamics

A lecturer driving his car of mass m1 along the flat at speed U1 accidentally collides
with a stationary vehicle of mass m2. As both vehicles are old and very solidly built,
neither suffers damage in the collision: they simply bounce elastically off each other in a
straight line. Determine how both vehicles are moving after the collision if neither driver
applied their brakes. State any assumptions made and consider all possible values of the
mass ratio R = m1/m2. You may neglect friction and other such losses.

An undergraduate drives into a rigid rock wall at speed V . The undergraduate’s
car of mass M is modern and has a crumple zone of length L at its front. As this zone
crumples upon impact, it exerts a net force F = (L − y)−1/2 on the car, where y is the
amount the zone has crumpled. Determine the value of y at the point the car stops moving
forwards as a function of V , where V < 2L

1
4 /M

1
2 .

4/I/4A Dynamics

A small spherical bubble of radius a containing carbon dioxide rises in water due
to a buoyancy force ρgV , where ρ is the density of water, g is gravitational attraction and
V is the volume of the bubble. The drag on a bubble moving at speed u is 6πµau, where
µ is the dynamic viscosity of water, and an accelerating bubble acts like a particle of mass
αρV , for some constant α. Find the location at time t of a bubble released from rest at
t = 0 and show the bubble approaches a steady rise speed

U =
2
9
ρg

µ
a2. (∗)

Under some circumstances the carbon dioxide gradually dissolves in the water,
which leads to the bubble radius varying as a2 = a2

0 − βt, where a0 is the bubble radius
at t = 0 and β is a constant. Under the assumption that the bubble rises at speed given
by (∗), determine the height to which it rises before it disappears.
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4/II/9A Dynamics

A horizontal table oscillates with a displacement A sinωt , where A = (Ax, 0, Az)
is the amplitude vector and ω the angular frequency in an inertial frame of reference with
the z axis vertically upwards, normal to the table. A block sitting on the table has mass
m and linear friction that results in a force F = −λu, where λ is a constant and u is the
velocity difference between the block and the table. Derive the equations of motion for
this block in the frame of reference of the table using axes (ξ, η, ζ) on the table parallel to
the axes (x, y, z) in the inertial frame.

For the case where Az = 0, show that at late time the block will approach the
steady orbit

ξ = ξ0 −Ax sin θ cos(ωt− θ),

where

sin2 θ =
m2ω2

λ2 +m2ω2

and ξ0 is a constant.

Given that there are no attractive forces between block and table, show that the
block will only remain in contact with the table if ω2Az < g.

4/II/10A Dynamics

A small probe of mass m is in low orbit about a planet of mass M . If there is no
drag on the probe then its orbit is governed by

r̈ = −GM
|r|3

r,

where r is the location of the probe relative to the centre of the planet and G is the
gravitational constant. Show that the basic orbital trajectory is elliptical. Determine the
orbital period for the probe if it is in a circular orbit at a distance r0 from the centre of
the planet.

Data returned by the probe shows that the planet has a very extensive but diffuse
atmosphere. This atmosphere induces a drag on the probe that may be approximated by
the linear law D = −Aṙ, where D is the drag force and A is a constant. Show that the
angular momentum of the probe about the planet decays exponentially.
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4/II/11A Dynamics

A particle of mass m and charge q moves through a magnetic field B. There is no
electric field or external force so that the particle obeys

mr̈ = q ṙ×B,

where r is the location of the particle. Prove that the kinetic energy of the particle is
preserved.

Consider an axisymmetric magnetic field described by B = (0, 0, B(r)) in cylindrical
polar coordinates r = (r, θ, z). Determine the angular velocity of a circular orbit centred
on r = 0.

For a general orbit when B(r) = B0/r, show that the angular momentum about
the z-axis varies as L = L0 − qB0(r − r0), where L0 is the angular momentum at radius
r0. Determine and sketch the relationship between ṙ2 and r. [Hint: Use conservation of
energy.] What is the escape velocity for the particle?

4/II/12A Dynamics

A circular cylinder of radius a, length L and mass m is rolling along a surface.
Show that its moment of inertia is given by 1

2ma
2.

At t = 0 the cylinder is at the bottom of a slope making an angle α to the horizontal,
and is rolling with velocity V and angular velocity V/a. Assuming slippage does not occur,
determine the position of the cylinder as a function of time. What is the maximum height
that the cylinder reaches?

The frictional force between the cylinder and surface is given by µmg cosα, where
µ is the friction coefficient. Show that the cylinder begins to slip rather than roll if
tanα > 3µ. Determine as a function of time the location, speed and angular velocity of
the cylinder on the slope if this condition is satisfied. Show that slipping continues as
the cylinder ascends and descends the slope. Find also the maximum height the cylinder
reaches, and its speed and angular velocity when it returns to the bottom of the slope.
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4/I/1E Numbers and Sets

(a) Use Euclid’s algorithm to find positive integers m, n such that 79m− 100n = 1.

(b) Determine all integer solutions of the congruence

237x ≡ 21 (mod 300).

(c) Find the set of all integers x satisfying the simultaneous congruences

x ≡ 8 (mod 79)
x ≡ 11 (mod 100).

4/I/2E Numbers and Sets

Prove by induction the following statements:

i) For every integer n ≥ 1,

12 + 32 + · · ·+ (2n− 1)2 =
1
3
(4n3 − n).

ii) For every integer n ≥ 1, n3 + 5n is divisible by 6.

4/II/5E Numbers and Sets

Show that the set of all subsets of N is uncountable, and that the set of all finite
subsets of N is countable.

Let X be the set of all bijections from N to N, and let Y ⊂ X be the set

Y = {f ∈ X | for all but finitely many n ∈ N, f(n) = n}.

Show that X is uncountable, but that Y is countable.
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4/II/6E Numbers and Sets

Prove Fermat’s Theorem: if p is prime and (x, p) = 1 then xp−1 ≡ 1 (mod p).

Let n and x be positive integers with (x, n) = 1. Show that if n = mp where p is
prime and (m, p) = 1, then

xn−1 ≡ 1 (mod p) if and only if xm−1 ≡ 1 (mod p).

Now assume that n is a product of distinct primes. Show that xn−1 ≡ 1 (mod n)
if and only if, for every prime divisor p of n,

x(n/p)−1 ≡ 1 (mod p).

Deduce that if every prime divisor p of n satisfies (p− 1)|(n− 1), then for every x
with (x, n) = 1, the congruence

xn−1 ≡ 1 (mod n)

holds.

4/II/7E Numbers and Sets

Polynomials Pr(X) for r ≥ 0 are defined by

P0(X) = 1

Pr(X) =
X(X − 1) · · · (X − r + 1)

r!
=

r∏
i=1

X − i+ 1
i

for r ≥ 1.

Show that Pr(n) ∈ Z for every n ∈ Z, and that if r ≥ 1 then Pr(X) − Pr(X − 1) =
Pr−1(X − 1).

Prove that if F is any polynomial of degree d with rational coefficients, then there
are unique rational numbers cr(F ) (0 ≤ r ≤ d) for which

F (X) =
d∑

r=0

cr(F )Pr(X).

Let ∆F (X) = F (X + 1)− F (X). Show that

∆F (X) =
d−1∑
r=0

cr+1(F )Pr(X).

Show also that, if F and G are polynomials such that ∆F = ∆G, then F−G is a constant.

By induction on the degree of F , or otherwise, show that if F (n) ∈ Z for every
n ∈ Z, then cr(F ) ∈ Z for all r.
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4/II/8E Numbers and Sets

Let X be a finite set, X1, . . . , Xm subsets of X and Y = X \
⋃
Xi. Let gi be the

characteristic function of Xi, so that

gi(x) =
{ 1 if x ∈ Xi

0 otherwise.

Let f :X → R be any function. By considering the expression

∑
x∈X

f(x)
m∏

i=1

(1− gi(x)) ,

or otherwise, prove the Inclusion–Exclusion Principle in the form

∑
x∈Y

f(x) =
∑
r≥0

(−1)r
∑

i1<···<ir

( ∑
x∈Xi1∩···∩Xir

f(x)
)
.

Let n > 1 be an integer. For an integer m dividing n let

Xm = {0 ≤ x < n | x ≡ 0 (mod m)}.

By considering the sets Xp for prime divisors p of n, show that

φ(n) = n
∏
p|n

(
1− 1

p

)

(where φ is Euler’s function) and

∑
0<x<n
(x,n)=1

x =
n2

2

∏
p|n

(
1− 1

p

)
.
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2/I/3F Probability

Define the covariance, cov(X,Y ), of two random variables X and Y .

Prove, or give a counterexample to, each of the following statements.

(a) For any random variables X,Y, Z

cov(X + Y, Z) = cov(X,Z) + cov(Y, Z).

(b) If X and Y are identically distributed, not necessarily independent, random
variables then

cov(X + Y,X − Y ) = 0.

2/I/4F Probability

The random variable X has probability density function

f(x) =
{
cx(1− x) if 0 6 x 6 1
0 otherwise.

Determine c, and the mean and variance of X.

2/II/9F Probability

LetX be a positive-integer valued random variable. Define its probability generating
function pX . Show that if X and Y are independent positive-integer valued random
variables, then pX+Y = pXpY .

A non-standard pair of dice is a pair of six-sided unbiased dice whose faces are
numbered with strictly positive integers in a non-standard way (for example, (2, 2, 2, 3, 5, 7)
and (1, 1, 5, 6, 7, 8)). Show that there exists a non-standard pair of dice A and B such that
when thrown

P{total shown by A and B is n} = P{total shown by pair of ordinary dice is n}

for all 2 6 n 6 12.

[Hint: (x+x2 +x3 +x4 +x5 +x6) = x(1+x)(1+x2 +x4) = x(1+x+x2)(1+x3).]
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2/II/10F Probability

Define the conditional probability P (A | B) of the event A given the event B.

A bag contains four coins, each of which when tossed is equally likely to land on
either of its two faces. One of the coins shows a head on each of its two sides, while each
of the other three coins shows a head on only one side. A coin is chosen at random, and
tossed three times in succession. If heads turn up each time, what is the probability that
if the coin is tossed once more it will turn up heads again? Describe the sample space you
use and explain carefully your calculations.

2/II/11F Probability

The random variables X1 and X2 are independent, and each has an exponential
distribution with parameter λ. Find the joint density function of

Y1 = X1 +X2 , Y2 = X1/X2 ,

and show that Y1 and Y2 are independent. What is the density of Y2?

2/II/12F Probability

Let A1, A2, . . . , Ar be events such that Ai∩Aj = ∅ for i 6= j. Show that the number
N of events that occur satisfies

P (N = 0) = 1 −
r∑

i=1

P (Ai) .

Planet Zog is a sphere with centre O. A number N of spaceships land at random
on its surface, their positions being independent, each uniformly distributed over the
surface. A spaceship at A is in direct radio contact with another point B on the surface
if ∠AOB < π

2 . Calculate the probability that every point on the surface of the planet is
in direct radio contact with at least one of the N spaceships.

[Hint: The intersection of the surface of a sphere with a plane through the centre of
the sphere is called a great circle. You may find it helpful to use the fact that N random
great circles partition the surface of a sphere into N(N − 1) + 2 disjoint regions with
probability one.]
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3/I/3C Vector Calculus

If F and G are differentiable vector fields, show that

(i) ∇× (F×G) = F(∇ ·G)−G(∇ · F) + (G ·∇)F− (F ·∇)G ,

(ii) ∇(F ·G) = (F ·∇)G + (G ·∇)F + F× (∇×G) + G× (∇× F) .

3/I/4C Vector Calculus

Define the curvature, κ, of a curve in R3.

The curve C is parametrised by

x(t) =
(1

2
et cos t,

1
2
et sin t,

1√
2
et
)

for −∞ < t <∞ .

Obtain a parametrisation of the curve in terms of its arc length, s, measured from the
origin. Hence obtain its curvature, κ(s), as a function of s.
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3/II/9C Vector Calculus

For a function f : R2 → R state if the following implications are true or false. (No
justification is required.)

(i) f is differentiable ⇒ f is continuous.

(ii)
∂f

∂x
and

∂f

∂y
exist ⇒ f is continuous.

(iii) directional derivatives
∂f

∂n
exist for all unit vectors n ∈ R2 ⇒ f is differentiable.

(iv) f is differentiable ⇒ ∂f

∂x
and

∂f

∂y
are continuous.

(v) all second order partial derivatives of f exist ⇒ ∂2f

∂x ∂y
=

∂2f

∂y ∂x
.

Now let f : R2 → R be defined by

f(x, y) =

 xy(x2 − y2)
(x2 + y2)

if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Show that f is continuous at (0, 0) and find the partial derivatives
∂f

∂x
(0, y) and

∂f

∂y
(x, 0). Then show that f is differentiable at (0, 0) and find its derivative. Investigate

whether the second order partial derivatives
∂2f

∂x ∂y
(0, 0) and

∂2f

∂y ∂x
(0, 0) are the same.

Are the second order partial derivatives of f at (0, 0) continuous? Justify your answer.
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3/II/10C Vector Calculus

Explain what is meant by an exact differential. The three-dimensional vector field
F is defined by

F =
(
exz3 + 3x2(ey − ez), ey(x3 − z3), 3z2(ex − ey)− ezx3

)
.

Find the most general function that has F · dx as its differential.

Hence show that the line integral∫ P2

P1

F · dx

along any path in R3 between points P1 = (0, a, 0) and P2 = (b, b, b) vanishes for any
values of a and b.

The two-dimensional vector field G is defined at all points in R2 except (0, 0) by

G =
(

−y
x2 + y2

,
x

x2 + y2

)
.

(G is not defined at (0, 0).) Show that∮
C

G · dx = 2π

for any closed curve C in R2 that goes around (0, 0) anticlockwise precisely once without
passing through (0, 0).

3/II/11C Vector Calculus

Let S1 be the 3-dimensional sphere of radius 1 centred at (0, 0, 0), S2 be the sphere
of radius 1

2 centred at ( 1
2 , 0, 0) and S3 be the sphere of radius 1

4 centred at (−1
4 , 0, 0). The

eccentrically shaped planet Zog is composed of rock of uniform density ρ occupying the
region within S1 and outside S2 and S3. The regions inside S2 and S3 are empty. Give an
expression for Zog’s gravitational potential at a general coordinate x that is outside S1.
Is there a point in the interior of S3 where a test particle would remain stably at rest?
Justify your answer.
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3/II/12C Vector Calculus

State (without proof) the divergence theorem for a vector field F with continuous
first-order partial derivatives throughout a volume V enclosed by a bounded oriented
piecewise-smooth non-self-intersecting surface S.

By calculating the relevant volume and surface integrals explicitly, verify the
divergence theorem for the vector field

F =
(
x3 + 2xy2, y3 + 2yz2, z3 + 2zx2

)
,

defined within a sphere of radius R centred at the origin.

Suppose that functions φ, ψ are continuous and that their first and second partial
derivatives are all also continuous in a region V bounded by a smooth surface S.

Show that∫
V

(φ∇2ψ + ∇φ ·∇ψ) dτ =
∫

S

φ∇ψ · dS .(1) ∫
V

(φ∇2ψ − ψ∇2φ) dτ =
∫

S

φ∇ψ · dS−
∫

S

ψ∇φ · dS .(2)

Hence show that if ρ(x) is a continuous function on V and g(x) a continuous
function on S and φ1 and φ2 are two continuous functions such that

∇2φ1(x) = ∇2φ2(x) = ρ(x) for all x in V , and
φ1(x) = φ2(x) = g(x) for all x on S,

then φ1(x) = φ2(x) for all x in V .
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