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1I Markov Chains

(i) Give the definition of the time-reversal of a discrete-time Markov chain (Xn).
Define a reversible Markov chain and check that every probability distribution satisfying
the detailed balance equations is invariant.

(ii) Customers arrive in a hairdresser’s shop according to a Poisson process of rate
λ > 0. The shop has s hairstylists and N waiting places; each stylist is working (on a
single customer) provided that there is a customer to serve, and any customer arriving
when the shop is full (i.e. the numbers of customers present is N + s) is not admitted
and never returns. Every admitted customer waits in the queue and then is served, in the
first-come-first-served order (say), the service taking an exponential time of rate µ > 0; the
service times of admitted customers are independent. After completing his/her service,
the customer leaves the shop and never returns.

Set up a Markov chain model for the number Xt of customers in the shop at
time t ≥ 0. Assuming λ < sµ, calculate the equilibrium distribution π of this chain
and explain why it is unique. Show that (Xt) in equilibrium is time-reversible, i.e.
∀ T > 0, (Xt, 0 ≤ t ≤ T ) has the same distribution as (Yt, 0 ≤ t ≤ T ) where Yt = XT−t,
and X0 ∼ π.

2F Functional Analysis

(i) Let H be an infinite-dimensional Hilbert space. Show that H has a (countable)
orthonormal basis if and only if H has a countable dense subset. [You may assume
familiarity with the Gram-Schmidt process.]

State and prove Bessel’s inequality.

(ii) State Parseval’s equation. Using this, prove that if H has a countable dense subset
then there is a surjective isometry from H to l2.

Explain carefully why the functions einθ, n ∈ Z, form an orthonormal basis for
L2(T).
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3C Electromagnetism

(i) State Maxwell’s equations and show that the electric field E and the magnetic
field B can be expressed in terms of a scalar potential φ and a vector potential A. Hence
derive the inhomogeneous wave equations that are satisfied by φ and A respectively.

(ii) The plane x = 0 separates a vacuum in the half-space x < 0 from a perfectly
conducting medium occupying the half-space x > 0. Derive the boundary conditions on
E and B at x = 0.

A plane electromagnetic wave with a magnetic field B = B(t, x, z)ŷ, travelling in
the xz-plane at an angle θ to the x-direction, is incident on the interface at x = 0. If the
wave has frequency ω show that the total magnetic field is given by

B = B0 cos
(

ωx
c cos θ

)
exp

[
i
(

ωz
c sin θ − ωt

)]
ŷ,

where B0 is a constant. Hence find the corresponding electric field E, and obtain the
surface charge density and the surface current at the interface.

4B Dynamics of Differential Equations

(i) Describe the use of the stroboscopic method for obtaining approximate solutions to
the second order equation

ẍ+ x = εf(x, ẋ, t)

when |ε| � 1. In particular, by writing x = R cos(t + φ), ẋ = −R sin(t + φ), obtain
expressions in terms of f for the rate of change of R and φ. Evaluate these expressions
when f = x2 cos t.

(ii) In planetary orbit theory a crude model of an orbit subject to perturbation from
a distant body is given by the equation

d2u

dθ2
+ u = λ− δ2u−2 − 2δ3u−3 cos θ,

where 0 < δ � 1, (u−1, θ) are polar coordinates in the plane, and λ is a positive constant.

(a) Show that when δ = 0 all bounded orbits are closed.

(b) Now suppose δ 6= 0, and look for almost circular orbits with u = λ+δw(θ)+aδ2,
where a is a constant. By writing w = R(θ) cos(θ+φ(θ)), and by making a suitable choice
of the constant a, use the stroboscopic method to find equations for dw/dθ and dφ/dθ.
By writing z = R exp(iφ) and considering dz/dθ, or otherwise, determine R(θ) and φ(θ)
in the case R(0) = R0, φ(0) = 0. Hence describe the orbits of the system.
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5G Representation Theory

Compute the character table for the group A5 of even permutations of five elements.
You may wish to follow the steps below.

(a) List the conjugacy classes in A5 and their orders.

(b) A5 acts on C5 by permuting the standard basis vectors. Show that C5 splits as
C⊕ V , where C is the trivial 1-dimensional representation and V is irreducible.

(c) By using the formula for the character of the symmetric square S2V ,

χS2V (g) =
1
2

[
χV (g)2 + χV (g2)

]
,

decompose S2V to produce a 5-dimensional, irreducible representation, and find
its character.

(d) Show that the exterior square Λ2V decomposes into two distinct irreducibles and
compute their characters, to complete the character table of A5.

[Hint: You can save yourself some computational effort if you can explain why the
automorphism of A5, defined by conjugation by a transposition in S5, must swap the two
summands of Λ2V .]

6H Galois Theory

Let K be a field, and G a finite subgroup of K∗. Show that G is cyclic.

Define the cyclotomic polynomials Φm, and show from your definition that

Xm − 1 =
∏
d|m

Φd(X).

Deduce that Φm is a polynomial with integer coefficients.

Let p be a prime with (m, p) = 1. Let Φm ≡ f1 . . . fr (mod p), where fi ∈ Fp[X]
are irreducible. Show that for each i the degree of fi is equal to the order of p in the group
(Z/mZ)∗.

Use this to write down an irreducible polynomial of degree 10 over F2.
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7G Algebraic Topology

A finite simplicial complex K is the union of subcomplexes L and M . Describe
the Mayer-Vietoris exact sequence that relates the homology groups of K to those of L,
M and L ∩M . Define all the homomorphisms in the sequence, proving that they are
well-defined (a proof of exactness is not required).

A surface X is constructed by identifying together (by means of a homeomorphism)
the boundaries of two Möbius strips Y and Z. Assuming relevant triangulations exist,
determine the homology groups of X.

8G Hilbert Spaces

Let H be a Hilbert space. An operator T in L(H) is normal if TT ∗ = T ∗T . Suppose
that T is normal and that σ(T ) ⊆ R. Let U = (T + iI)(T − iI)−1.

(a) Suppose that A is invertible and AT = TA. Show that A−1T = TA−1.

(b) Show that U is normal, and that σ(U) ⊆ {λ : |λ| = 1}.

(c) Show that U−1 is normal.

(d) Show that U is unitary.

(e) Show that T is Hermitian.

[You may use the fact that, if S is normal, the spectral radius of S is equal to ‖S‖.]

9H Riemann Surfaces

(a) Let f : R→ S be a non-constant holomorphic map between compact connected
Riemann surfaces R and S.

Define the branching order vf (p) at a point p ∈ R and show that it is well-defined.
Show further that if h is a holomorphic map on S then vh◦f (p) = vh(f(p)) vf (p).

Define the degree of f and state the Riemann–Hurwitz formula. Show that if R has
Euler characteristic 0 then either S is the 2-sphere or vp(f) = 1 for all p ∈ R.

(b) Let P and Q be complex polynomials of degree m ≥ 2 with no common roots.
Explain briefly how the rational function P (z)/Q(z) induces a holomorphic map F from
the 2-sphere S2 ∼= C∪{∞} to itself. What is the degree of F? Show that there is at least
one and at most 2m− 2 points w ∈ S2 such that the number of distinct solutions z ∈ S2

of the equation F (z) = w is strictly less than degF .
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10H Algebraic Curves

(i) Let f : X → Y be a morphism of smooth projective curves. Define the divisor
f∗(D) if D is a divisor on Y , and state the “finiteness theorem”.

(ii) Suppose f : X → P1 is a morphism of degree 2, that X is smooth projective,
and that X 6= P1. Let P,Q ∈ X be distinct ramification points for f . Show that, as
elements of cl(X), we have [P ] 6= [Q], but 2[P ] = 2[Q].

11F Logic, Computation and Set Theory

(i) State and prove the Compactness Theorem for first-order predicate logic.

State and prove the Upward Löwenheim-Skolem Theorem.

[You may use the Completeness Theorem for first-order predicate logic.]

(ii) For each of the following theories, either give axioms (in the language of posets)
for the theory or prove carefully that the theory is not axiomatisable.

(a) The theory of posets having no maximal element.

(b) The theory of posets having a unique maximal element.

(c) The theory of posets having infinitely many maximal elements.

(d) The theory of posets having finitely many maximal elements.

(e) The theory of countable posets having a unique maximal element.
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12I Probability and Measure

(a) Let (Ω,F ,P) be a probability space and let θ : Ω → Ω be measurable. What is
meant by saying that θ is measure-preserving? Define an invariant event and an
invariant random variable, and explain what is meant by saying that θ is ergodic.

(b) Let m be a probability measure on (R,B). Let

Ω = RN = {x = (x1, x2, . . .) : xi ∈ R for i > 1} ,

let F be the smallest σ-field of Ω with respect to which the coordinate maps
Xn(x) = xn, for x ∈ Ω, n > 1, are measurable, and let P be the unique probability
measure on (Ω,F) satisfying

P(Xi ∈ Ai for 1 6 i 6 n) =
n∏

i=1

m(Ai)

for all Ai ∈ B, n > 1. Define θ : Ω → Ω by θ(x) = (x2, x3, . . .) for x = (x1, x2, . . .).

(i) Show that θ is measurable and measure-preserving.

(ii) Define the tail σ-field T of the coordinate maps X1, X2, . . ., and show that
the invariant σ-field I of θ satisfies I ⊆ T . Deduce that θ is ergodic. [Any
general result used must be stated clearly but the proof may be omitted.]

(c) State Birkhoff’s ergodic theorem and explain how to deduce that, given independent
identically-distributed integrable random variables Y1, Y2, . . ., there exists ν ∈ R
such that

1
n

(Y1 + Y2 + · · ·+ Yn) → ν a.e. as n→∞ .
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13I Applied Probability

Let (Xt, t≥0) be a renewal process with holding times (Sn, n=1, 2, . . .) and
(Yt, t≥0) be a renewal-reward process over (Xt) with a sequence of rewards
(Wn, n = 1, 2, . . .). Under assumptions on (Sn) and (Wn) which you should state clearly,
prove that the ratios

Xt/t and Yt/t

converge as t → ∞. You should specify the form of convergence guaranteed by your
assumptions. The law of large numbers, in the appropriate form, for sums S1 + . . . + Sn

and W1 + . . .+Wn can be used without proof.

In a mountain resort, when you rent skiing equipment you are given two options.
(1) You buy an insurance waiver that costs C/4 where C is the daily equipment rent.
Under this option, the shop will immediately replace, at no cost to you, any piece of
equipment you break during the day, no matter how many breaks you had. (2) If you
don’t buy the waiver, you’ll pay 3C in the case of any break.

To find out which option is better for me, I decided to set up two models of renewal-
reward process (Yt). In the first model, (Option 1), all of the holding times Sn are equal
to 6. In the second model, given that there is no break on day n (an event of probability
4/5), we have Sn = 6,Wn = C, but given that there is a break on day n, we have that
Sn is uniformly distributed on (0, 6), and Wn = 4C. (In the second model, I would not
continue skiing after a break, whereas in the first I would.)

Calculate in each of these models the limit

lim
t→∞

Yt/t

representing the long-term average cost of a unit of my skiing time.

14I Optimization and Control

The strength of the economy evolves according to the equation

ẍt = −α2xt + ut ,

where x0 = ẋ0 = 0 and ut is the effort that the government puts into reform at time
t, t ≥ 0. The government wishes to maximize its chance of re-election at a given future
time T , where this chance is some monotone increasing function of

xT −
1
2

∫ T

0

u2
tdt .

Use Pontryagin’s maximum principle to determine the government’s optimal reform
policy, and show that the optimal trajectory of xt is

xt =
t

2
α−2 cos(α(T − t))− 1

2
α−3 cos(αT ) sin(αt) .
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15J Principles of Statistics

(i) What is a sufficient statistic? What is a minimal sufficient statistic? Explain the
terms nuisance parameter and ancillary statistic.

(ii) Let U1, . . . , Un be independent random variables with common uniform([0, 1])
distribution, and suppose you observe Xi ≡ aU−β

i , i = 1, . . . , n, where the positive
parameters a, β are unknown. Write down the joint density of X1, . . . , Xn and prove
that the statistic

(m, p) ≡ ( min
16j6n

{Xj},
n∏

j=1

Xj)

is minimal sufficient for (a, β). Find the maximum-likelihood estimator (â, β̂) of (a, β).

Regarding β as the parameter of interest and a as the nuisance parameter, is m
ancillary? Find the mean and variance of β̂. Hence find an unbiased estimator of β.

16J Stochastic Financial Models

(i) Consider a single-period binomial model of a riskless asset (asset 0), worth 1 at
time 0 and 1 + r at time 1, and a risky asset (asset 1), worth 1 at time 0 and worth u at
time 1 if the period was good, otherwise worth d. Assuming that

d < 1 + r < u (∗)

show how any contingent claim Y to be paid at time 1 can be priced and exactly replicated.
Briefly explain the significance of the condition (∗), and indicate how the analysis of the
single-period model extends to many periods.

(ii) Now suppose that u = 5/3, d = 2/3, r = 1/3, and that the risky asset is worth
S0 = 864 = 25 × 33 at time zero. Show that the time-0 value of an American put option
with strike K = S0 and expiry at time t = 3 is equal to 79, and find the optimal exercise
policy.
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17B Nonlinear Dynamical Systems

(i) Consider a system in R2 that is almost Hamiltonian:

ẋ =
∂H

∂y
+ εg1(x, y), ẏ = −∂H

∂x
+ εg2(x, y) ,

where H = H(x, y) and |ε| � 1. Show that if the system has a periodic orbit C then∮
C g2dx − g1dy = 0, and explain how to evaluate this orbit approximately for small ε.

Illustrate your method by means of the system

ẋ = y + εx(1− x2), ẏ = −x.

(ii) Consider the system

ẋ = y, ẏ = x− x3 + εy(1− αx2).

(a) Show that when ε = 0 the system is Hamiltonian, and find the Hamiltonian.
Sketch the trajectories in the case ε = 0. Identify the value Hc of H for which there is a
homoclinic orbit.

(b) Suppose ε > 0. Show that the small change ∆H in H around an orbit of the
Hamiltonian system can be expressed to leading order as an integral of the form∫ x2

x1

F(x,H)dx,

where x1, x2 are the extrema of the x-coordinates of the orbits of the Hamiltonian system,
distinguishing between the cases H < Hc, H > Hc.

(c) Find the value of α, correct to leading order in ε, at which the system has a
homoclinic orbit.

(d) By examining the eigenvalues of the Jacobian at the origin, determine the
stability of the homoclinic orbit, being careful to state clearly any standard results that
you use.
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18D Partial Differential Equations

(i) Find w : [0,∞)× R −→ R such that w(t, ·) is a Schwartz function of ξ for each
t and solves

wt(t, ξ) + (1 + ξ2)w(t, ξ) = g(ξ) ,

w(0, ξ) = w0(ξ) ,

where g and w0 are given Schwartz functions and wt denotes ∂tw. If F represents the
Fourier transform operator in the ξ variables only and F−1 represents its inverse, show
that the solution w satisfies

∂t(F−1)w(t, x) = F−1(∂tw)(t, x)

and calculate lim
t→∞

w(t, ·) in Schwartz space.

(ii) Using the results of Part (i), or otherwise, show that there exists a solution of
the initial value problem

ut(t, x)− uxx(t, x) + u(t, x) = f(x)

u(0, x) = u0 ,

with f and u0 given Schwartz functions, such that

‖u(t, ·)− φ‖L∞(R) −→ 0

as t→∞ in Schwartz space, where φ is the solution of

−φ
′′

+ φ = f.

19D Methods of Mathematical Physics

The function w(z) satisfies the third-order differential equation

d3w

dz3
− zw = 0

subject to the conditions w(z) → 0 as z → ±i∞ and w(0) = 1 . Obtain an integral
representation for w(z) of the form

w(z) =
∫

γ

eztf(t)dt ,

and determine the function f(t) and the contour γ.

Using the change of variable t = z1/3τ , or otherwise, compute the leading term in
the asymptotic expansion of w(z) as z → +∞.
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20D Numerical Analysis

(i) The diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 1, t > 0 ,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and with zero boundary conditions at
x = 0 and x = 1, can be solved by the method

un+1
m = un

m + µ(un
m−1 − 2un

m + un
m+1), m = 1, 2, . . . ,M, n > 0 ,

where ∆x = 1/(M+1), µ = ∆t/(∆x)2, and un
m ≈ u(m∆x, n∆t). Prove that µ 6 1

2 implies
convergence.

(ii) By discretizing the same equation and employing the same notation as in Part (i),
determine conditions on µ > 0 such that the method( 1

12
− 1

2
µ
)
un+1

m−1 +
(5

6
+ µ

)
un+1

m +
( 1

12
− 1

2
µ
)
un+1

m+1 =( 1
12

+
1
2
µ
)
un

m−1 +
(5

6
− µ

)
un

m +
( 1

12
+

1
2
µ
)
un

m+1

is stable.

21E Foundations of Quantum Mechanics

(i) A quantum mechanical system consists of two identical non-interacting particles
with associated single-particle wave functions ψi(x) and energies Ei, i = 1, 2, . . . ., where
E1 < E2 < . . . . Show how the states for the two lowest energy levels of the system are
constructed and discuss their degeneracy when the particles have (a) spin 0, (b) spin 1/2.

(ii) The Pauli matrices are defined to be

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

State how the spin operators s1, s2, s3 may be expressed in terms of the Pauli matrices,
and show that they describe states with total angular momentum 1

2~.

An electron is at rest in the presence of a magnetic field B = (B, 0, 0), and
experiences an interaction potential −µσ · B. At t = 0 the state of the electron is the
eigenstate of s3 with eigenvalue 1

2~. Calculate the probability that at later time t the
electron will be measured to be in the eigenstate of s3 with eigenvalue 1

2~.
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22E Statistical Physics

Describe briefly why a low density gas can be investigated using classical statistical
mechanics.

Explain why, for a gas of N structureless atoms, the measure on phase space is

1
N !

d3Nq d3Np

(2π~)3N
,

and the probability density in phase space is proportional to

e−E(q,p)/T ,

where T is the temperature in energy units.

Derive the Maxwell probability distribution for atomic speeds v,

ρ(v) =
( m

2πT

)3/2

4πv2e−mv2/2T .

Why is this valid even if the atoms interact?

Find the mean value v̄ of the speed of the atoms.

Is 1
2m(v̄)2 the mean kinetic energy of the atoms?

23E Applications of Quantum Mechanics

For a periodic potential V (r) = V (r + `), where ` is a lattice vector, show that we
may write

V (r) =
∑
g

ag e
ig·r , ag

∗ = a−g ,

where the set of g should be defined.

Show how to construct general wave functions satisfying ψ(r + `) = eik·`ψ(r) in terms of
free plane-wave wave-functions.

Show that the nearly free electron model gives an energy gap 2|ag| when k = 1
2g.

Explain why, for a periodic potential, the allowed energies form bands En(k) where k may
be restricted to a single Brillouin zone. Show that En(k) = En(k + g) if k and k + g
belong to the Brillouin zone.

How are bands related to whether a material is a conductor or an insulator?

Paper 3 [TURN OVER



14

24A Fluid Dynamics II

Using the Milne-Thompson circle theorem, or otherwise, write down the complex
potential w describing inviscid incompressible two-dimensional flow past a circular cylinder
of radius a centred on the origin, with circulation κ and uniform velocity (U, V ) in the far
field.

Hence, or otherwise, find an expression for the velocity field if the cylinder is
replaced by a flat plate of length 4a, centred on the origin and aligned with the x-axis.
Evaluate the velocity field on the two sides of the plate and confirm that the normal
velocity is zero.

Explain the significance of the Kutta condition, and determine the value of the
circulation that satisfies the Kutta condition when U > 0.

With this value of the circulation, calculate the difference in pressure between the
upper and lower sides of the plate at position x (−2a ≤ x ≤ 2a). Comment briefly on the
value of the pressure at the leading edge and the force that this would produce if the plate
had a small non-zero thickness.

Determine the force on the plate, explaining carefully the direction in which it acts.

[The Blasius formula Fx − iFy =
iρ

2

∮
C

(
dw

dz

)2

dz, where C is a closed contour lying just

outside the body, may be used without proof.]

25A Waves in Fluid and Solid Media

The dispersion relation for sound waves of frequency ω in a stationary, homogeneous
gas is ω = c|k|, where c is the speed of sound and k is the wavevector. Derive the dispersion
relation for sound waves of frequency ω in a uniform flow with velocity U.

For a slowly-varying medium with a local dispersion relation ω = Ω(k;x, t), derive
the ray-tracing equations

dxi

dt
=
∂Ω
∂ki

,
dki

dt
= − ∂Ω

∂xi
,

dω

dt
=
∂Ω
∂t

.

The meaning of the notation d/dt should be carefully explained.

Suppose that two-dimensional sound waves with initial wavevector (k0, l0) are
generated at the origin in a gas occupying the half-space y > 0. The gas has a mean
velocity (γy, 0), where 0 < γ � (k2

0 + l20)
1
2 . Show that

(a) if k0 > 0 and l0 > 0 then an initially upward propagating wavepacket returns to
the level y = 0 within a finite time, after having reached a maximum height that
should be identified;

(b) if k0 < 0 and l0 > 0 then an initially upward propagating wavepacket continues to
propagate upwards for all time.

For the case of a fixed frequency disturbance comment briefly on whether or not there is
a quiet zone.
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