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1I Markov Chains

(i) Give the definitions of a recurrent and a null recurrent irreducible Markov chain.

Let (Xn) be a recurrent Markov chain with state space I and irreducible transition
matrix P = (pij). Prove that the vectors γk = (γk

j , j ∈ I), k ∈ I, with entries γk
k = 1 and

γk
i = Ek(# of visits to i before returning to k), i 6= k ,

are P -invariant:
γk

j =
∑
i∈I

γk
i pij .

(ii) Let (Wn) be the birth and death process on Z+ = {0, 1, 2, . . .} with the following
transition probabilities:

pi,i+1 = pi,i−1 =
1
2
, i ≥ 1

p01 = 1 .

By relating (Wn) to the symmetric simple random walk (Yn) on Z, or otherwise,
prove that (Wn) is a recurrent Markov chain. By considering invariant measures, or
otherwise, prove that (Wn) is null recurrent.

Calculate the vectors γk = (γk
i , i ∈ Z+) for the chain (Wn), k ∈ Z+.

Finally, let W0 = 0 and let N be the number of visits to 1 before returning to 0.
Show that P0(N = n) = (1/2)n, n ≥ 1.

[You may use properties of the random walk (Yn) or general facts about Markov
chains without proof but should clearly state them.]

Paper 1



3

2B Principles of Dynamics

(i) In Hamiltonian mechanics the action is written

S =
∫
dt

(
paq̇a −H(qa, pa, t)

)
. (1)

Starting from Maupertius’ principle δS = 0, derive Hamilton’s equations

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
.

Show that H is a constant of the motion if ∂H/∂t = 0. When is pa a constant of the
motion?

(ii) Consider the action S given in Part (i), evaluated on a classical path, as a function
of the final coordinates qa

f and final time tf , with the initial coordinates and the initial
time held fixed. Show that S(qa

f , tf ) obeys

∂S

∂qa
f

= pa
f ,

∂S

∂tf
= −H(qa

f , p
a
f , tf ) . (2)

Now consider a simple harmonic oscillator with H = 1
2 (p2 + q2). Setting the initial

time and the initial coordinate to zero, find the classical solution for p and q with final
coordinate q = qf at time t = tf . Hence calculate S(tf , qf ), and explicitly verify (2) in
this case.

3G Groups, Rings and Fields

(i) Let R be a commutative ring. Define the terms prime ideal and maximal ideal,
and show that if an ideal M in R is maximal then M is also prime.

(ii) Let P be a non-trivial prime ideal in the commutative ring R (‘non-trivial’ meaning
that P 6= {0} and P 6= R). If P has finite index as a subgroup of R, show that P is also
maximal. Give an example to show that this may fail, if the assumption of finite index is
omitted. Finally, show that if R is a principal ideal domain, then every non-trivial prime
ideal in R is maximal.
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4C Electromagnetism

(i) Show that the work done in assembling a localised charge distribution ρ(r) in a
region V with an associated potential φ(r) is

W = 1
2

∫
V
ρ(r)φ(r) dτ,

and that this can be written as an integral over all space

W = 1
2ε0

∫
|E|2 dτ,

where the electric field E = −∇φ.

(ii) What is the force per unit area on an infinite plane conducting sheet with a charge
density σ per unit area (a) if it is isolated in space and (b) if the electric field vanishes on
one side of the sheet?

An infinite cylindrical capacitor consists of two concentric cylindrical conductors
with radii a, b (a < b), carrying charges ±q per unit length respectively. Calculate the
capacitance per unit length and the energy per unit length. Next determine the total
force on each conductor, and calculate the rate of change of energy of the inner and outer
conductors if they are moved radially inwards and outwards respectively with speed v.
What is the corresponding rate of change of the capacitance?

5F Combinatorics

State and prove Menger’s theorem (vertex form).

Let G be a graph of connectivity κ(G) ≥ k and let S, T be disjoint subsets of V (G)
with |S|, |T | ≥ k. Show that there exist k vertex disjoint paths from S to T .

The graph H is said to be k-linked if, for every sequence s1, . . . , sk, t1, . . . , tk of 2k
distinct vertices, there exist si – ti paths, 1 ≤ i ≤ k, that are vertex disjoint. By removing
an edge from K2k, or otherwise, show that, for k > 2, H need not be k-linked even if
κ(H) ≥ 2k − 2.

Prove that if |H| = n and δ(H) ≥ 1
2 (n+ 3k)− 2 then H is k-linked.

6G Representation Theory

(a) Show that every irreducible complex representation of an abelian group is one-
dimensional.

(b) Show, by example, that the analogue of (a) fails for real representations.

(c) Let the cyclic group of order n act on Cn by cyclic permutation of the standard
basis vectors. Decompose this representation explicitly into irreducibles.
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7H Galois Theory

Let L/K be a finite extension of fields. Define the trace TrL/K(x) and norm
NL/K(x) of an element x ∈ L.

Assume now that the extension L/K is Galois, with cyclic Galois group of prime
order p, generated by σ.

i) Show that TrL/K(x) =
∑p−1

n=0 σ
n(x).

ii) Show that {σ(x) − x | x ∈ L} is a K-vector subspace of L of dimension p − 1.
Deduce that if y ∈ L, then TrL/K(y) = 0 if and only if y = σ(x) − x for some x ∈ L.
[You may assume without proof that TrL/K is surjective for any finite separable extension
L/K.]

iii) Suppose that L has characteristic p. Deduce from (i) that every element of K
can be written as σ(x) − x for some x ∈ L. Show also that if σ(x) = x + 1, then xp − x
belongs to K. Deduce that L is the splitting field over K of Xp −X − a for some a ∈ K.

8H Differentiable Manifolds

What is a smooth vector bundle over a manifold M?

Assuming the existence of “bump functions”, prove that every compact manifold
embeds in some Euclidean space Rn.

By choosing an inner product on Rn, or otherwise, deduce that for any compact
manifold M there exists some vector bundle η → M such that the direct sum TM ⊕ η is
isomorphic to a trivial vector bundle.

9H Number Fields

Let K = Q(θ), where θ is a root of X3 − 4X + 1. Prove that K has degree 3 over
Q, and admits three distinct embeddings in R. Find the discriminant of K and determine
the ring of integers O of K. Factorise 2O and 3O into a product of prime ideals.

Using Minkowski’s bound, show thatK has class number 1 provided all prime ideals
in O dividing 2 and 3 are principal. Hence prove that K has class number 1.

[You may assume that the discriminant of X3 + aX + b is −4a3 − 27b2.]
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10G Hilbert Spaces

Suppose that (en) and (fm) are orthonormal bases of a Hilbert space H and that
T ∈ L(H).

(a) Show that
∑∞

n=1 ‖T (en)‖2 =
∑∞

m=1 ‖T ∗(fm)‖2.

(b) Show that
∑∞

n=1 ‖T (en)‖2 =
∑∞

m=1 ‖T (fm)‖2.

T ∈ L(H) is a Hilbert-Schmidt operator if
∑∞

n=1 ‖T (en)‖2 <∞ for some (and hence
every) orthonormal basis (en).

(c) Show that the set HS of Hilbert-Schmidt operators forms a linear subspace of
L(H), and that 〈T, S〉 =

∑∞
n=1〈T (en), S(en)〉 is an inner product on HS; show that this

inner product does not depend on the choice of the orthonormal basis (en).

(d) Let ‖T‖HS be the corresponding norm. Show that ‖T‖ 6 ‖T‖HS , and show
that a Hilbert-Schmidt operator is compact.

11H Riemann Surfaces

Let τ be a fixed complex number with positive imaginary part. For z ∈ C, define

v(z) =
∞∑

n=−∞
exp

(
πiτn2 + 2πin(z + 1

2 )
)
.

Prove the identities

v(z + 1) = v(z), v(−z) = v(z), v(z + τ) = − exp(−πiτ − 2πiz) · v(z)

and deduce that v(τ/2) = 0. Show further that τ/2 is the only zero of v in the
parallelogram P with vertices −1/2, 1/2, 1/2 + τ , −1/2 + τ .

[You may assume that v is holomorphic on C.]

Now let {a1, . . . , ak} and {b1, . . . , bk} be two sets of complex numbers and

f(z) =
k∏

j=1

v(z − aj)
v(z − bj)

.

Prove that f is a doubly-periodic meromorphic function, with periods 1 and τ , if and only
if

∑k
j=1(aj − bj) is an integer.
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12F Logic, Computation and Set Theory

(i) State and prove the Knaster-Tarski Fixed-Point Theorem.

(ii) A subset S of a poset X is called an up-set if whenever x, y ∈ X satisfy x ∈ S
and x 6 y then also y ∈ S. Show that the set of up-sets of X (ordered by inclusion) is a
complete poset.

Let X and Y be totally ordered sets, such that X is isomorphic to an up-set in Y
and Y is isomorphic to the complement of an up-set in X. Prove that X is isomorphic to
Y . Indicate clearly where in your argument you have made use of the fact that X and Y
are total orders, rather than just partial orders.

[Recall that posets X and Y are called isomorphic if there exists a bijection f from
X to Y such that, for any x, y ∈ X, we have f(x) 6 f(y) if and only if x 6 y.]

13I Probability and Measure

Let (Ω,F ,P) be a probability space and let A = (Ai : i = 1, 2, . . .) be a sequence
of events.

(a) What is meant by saying that A is a family of independent events?

(b) Define the events {An infinitely often} and {An eventually}. State and prove
the two Borel–Cantelli lemmas for A.

(c) Let X1, X2, . . . be the outcomes of a sequence of independent flips of a fair coin,

P(Xi = 0) = P(Xi = 1) = 1
2 for i > 1.

Let Ln be the length of the run beginning at the nth flip. For example, if the first fourteen
outcomes are 01110010000110, then L1 = 1, L2 = 3, L3 = 2, etc.

Show that

P
(

lim sup
n→∞

Ln

log2 n
> 1

)
= 0 ,

and furthermore that

P
(

lim sup
n→∞

Ln

log2 n
= 1

)
= 1 .
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14J Information Theory

State the formula for the capacity of a memoryless channel.

(a) Consider a memoryless channel where there are two input symbols, A andB, and
three output symbols, A,B, ∗. Suppose each input symbol is left intact with probability
1/2, and transformed into a ∗ with probability 1/2. Write down the channel matrix, and
calculate the capacity.

(b) Now suppose the output is further processed by someone who cannot distinguish
A and ∗, so that the matrix becomes(

1 0
1/2 1/2

)
.

Calculate the new capacity.

15J Principles of Statistics

(i) What does it mean to say that a family {f(·|θ) : θ ∈ Θ} of densities is an
exponential family?

Consider the family of densities on (0,∞) parametrised by the positive parameters
a, b and defined by

f(x|a, b) =
a exp(−(a− bx)2/2x)√

2πx3
(x > 0).

Prove that this family is an exponential family, and identify the natural parameters and
the reference measure.

(ii) Let (X1, . . . , Xn) be a sample drawn from the above distribution. Find the
maximum-likelihood estimators of the parameters (a, b). Find the Fisher information
matrix of the family (in terms of the natural parameters). Briefly explain the significance
of the Fisher information matrix in relation to unbiased estimation. Compute the mean
of X1 and of X−1

1 .
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16J Stochastic Financial Models

(i) What does it mean to say that U is a utility function? What is a utility function
with constant absolute risk aversion (CARA)?

Let St ≡ (S1
t , . . . , S

d
t )T denote the prices at time t = 0, 1 of d risky assets, and

suppose that there is also a riskless zeroth asset, whose price at time 0 is 1, and whose price
at time 1 is 1+r. Suppose that S1 has a multivariate Gaussian distribution, with mean µ1

and non-singular covariance V . An agent chooses at time 0 a portfolio θ = (θ1, . . . , θd)T

of holdings of the d risky assets, at total cost θ · S0, and at time 1 realises his gain
X = θ · (S1 − (1 + r)S0 ). Given that he wishes the mean of X to be equal to m, find the
smallest value that the variance v of X can be. What is the portfolio that achieves this
smallest variance? Hence sketch the region in the (v,m) plane of pairs (v,m) that can be
achieved by some choice of θ, and indicate the mean-variance efficient frontier.

(ii) Suppose that the agent has a CARA utility with coefficient γ of absolute risk
aversion. What portfolio will he choose in order to maximise EU(X)? What then is the
mean of X?

Regulation requires that the agent’s choice of portfolio θ has to satisfy the value-
at-risk (VaR) constraint

m > −L+ a
√
v,

where L > 0 and a > 0 are determined by the regulatory authority. Show that this
constraint has no effect on the agent’s decision if κ ≡

√
µ · V −1µ > a. If κ < a, will this

constraint necessarily affect the agent’s choice of portfolio?

17B Nonlinear Dynamical Systems

(i) State Liapunov’s First Theorem and La Salle’s Invariance Principle. Use these
results to show that the system

ẍ+ kẋ+ sinx = 0, k > 0

has an asymptotically stable fixed point at the origin.

(ii) Define the basin of attraction of an invariant set of a dynamical system.

Consider the equations

ẋ = −x+ βxy2 + x3, ẏ = −y + βyx2 + y3, β > 2.

(a) Find the fixed points of the system and determine their type.

(b) Show that the basin of attraction of the origin includes the union over α of the
regions

x2 + α2y2 <
4α2(1 + α2)(β − 1)
β2(1 + α2)2 − 4α2

.

Sketch these regions for α2 = 1, 1/2, 2 in the case β = 3.

Paper 1 [TURN OVER



10

18D Partial Differential Equations

(a) State and prove the Mean Value Theorem for harmonic functions.

(b) Let u > 0 be a harmonic function on an open set Ω ⊂ Rn. Let B(x, a) = {y ∈
Rn : |x− y| < a}. For any x ∈ Ω and for any r > 0 such that B(x, 4r) ⊂ Ω, show that

sup
{y∈B(x,r)}

u(y) 6 3n inf
{y∈B(x,r)}

u(y) .

19D Methods of Mathematical Physics

State the convolution theorem for Laplace transforms.

The temperature T (x, t) in a semi-infinite rod satisfies the heat equation

∂2T

∂x2
=

1
k

∂T

∂t
, x ≥ 0, t ≥ 0

and the conditions T (x, 0) = 0 for x ≥ 0, T (0, t) = f(t) for t ≥ 0 and T (x, t) → 0 as
x→∞. Show that

T (x, t) =
∫ t

0

f(τ)G(x, t− τ)dτ,

where

G(x, t) =

√
x2

4πkt3
e−x2/4kt .

20D Numerical Analysis

(i) Define the Backward Difference Formula (BDF) method for ordinary differential
equations and derive its two-step version.

(ii) Prove that the interval (−∞, 0) belongs to the linear stability domain of the two-
step BDF method.
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21C Electrodynamics

The Maxwell field tensor is

F ab =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 ,

and the 4-current density is Ja = (ρ, j). Write down the 3-vector form of Maxwell’s
equations and the continuity equation, and obtain the equivalent 4-vector equations.

Consider a Lorentz transformation from a frame F to a frame F ′ moving with
relative (coordinate) velocity v in the x-direction

La
b =


γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1

 ,

where γ = 1/
√

1− v2. Obtain the transformation laws for E and B. Which quantities,
quadratic in E and B, are Lorentz scalars?

22E Statistical Physics

Define the notions of entropy S and thermodynamic temperature T for a gas of
particles in a variable volume V . Derive the fundamental relation

dE = TdS − PdV .

The free energy of the gas is defined as F = E−TS. Why is it convenient to regard
F as a function of T and V ? By considering F , or otherwise, show that

∂S

∂V

∣∣∣∣∣
T

=
∂P

∂T

∣∣∣∣∣
V

.

Deduce that the entropy of an ideal gas, whose equation of state is PV = NT (using
energy units), has the form

S = N log
(
V

N

)
+ Nc(T ) ,

where c(T ) is independent of N and V .

Show that if the gas is in contact with a heat bath at temperature T , then the
probability of finding the gas in a particular quantum microstate of energy Er is

Pr = e(F−Er)/T .
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23E Applications of Quantum Mechanics

The operator corresponding to a rotation through an angle θ about an axis n, where
n is a unit vector, is

U(n, θ) = eiθ n·J/~ .

If U is unitary show that J must be hermitian. Let V = (V1, V2, V3) be a vector operator
such that

U(n, δθ)VU(n, δθ)−1 = V + δθ n×V .

Work out the commutators [Ji, Vj ]. Calculate

U(ẑ, θ)VU(ẑ, θ)−1 ,

for each component of V.

If |jm〉 are standard angular momentum states determine 〈jm′|U(ẑ, θ)|jm〉 for any
j,m,m′ and also determine 〈 1

2m
′|U(ŷ, θ)| 12m〉.[

Hint : J3|jm〉 = m~|jm〉, J+| 12−
1
2 〉 = ~| 12

1
2 〉, J−|

1
2

1
2 〉 = ~| 12−

1
2 〉.

]

24C General Relativity

(i) What is an affine parameter λ of a timelike or null geodesic? Prove that for a
timelike geodesic one may take λ to be proper time τ . The metric

ds2 = −dt2 + a2(t) dx2,

with ȧ(t) > 0 represents an expanding universe. Calculate the Christoffel symbols.

(ii) Obtain the law of spatial momentum conservation for a particle of rest mass m in
the form

ma2 dx
dτ

= p = constant.

Assuming that the energy E = mdt/dτ , derive an expression for E in terms of m, p and
a(t) and show that the energy is not conserved but rather that it decreases with time. In
particular, show that if the particle is moving extremely relativistically then the energy
decreases as a−1(t), and if it is moving non-relativistically then the kinetic energy, E−m,
decreases as a−2(t).

Show that the frequency ωe of a photon emitted at time te will be observed at time
to to have frequency

ωo = ωe
a(te)
a(to)

.
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25A Fluid Dynamics II

Consider a uniform stream of inviscid incompressible fluid incident onto a two-
dimensional body (such as a circular cylinder). Sketch the flow in the region close to the
stagnation point, S, at the front of the body.

Let the fluid now have a small but non-zero viscosity. Using local co-ordinates x
along the boundary and y normal to it, with the stagnation point as origin and y > 0 in
the fluid, explain why the local outer, inviscid flow is approximately of the form

u = (Ex,−Ey)

for some positive constant E.

Use scaling arguments to find the thickness δ of the boundary layer on the body
near S. Hence show that there is a solution of the boundary layer equations of the form

u(x, y) = Exf ′(η),

where η is a suitable similarity variable and f satisfies

f ′′′ + ff ′′ − f ′
2

= −1. (∗)

What are the appropriate boundary conditions for (∗) and why? Explain briefly how you
would obtain a numerical solution to (∗) subject to the appropriate boundary conditions.

Explain why it is neither possible nor appropriate to perform a similar analysis
near the rear stagnation point of the inviscid flow.

26A Waves in Fluid and Solid Media

A physical system permits one-dimensional wave propagation in the x-direction
according to the equation

∂2ψ

∂t2
− α2 ∂

6ψ

∂x6
= 0 ,

where α is a real positive constant. Derive the corresponding dispersion relation and sketch
graphs of frequency, phase velocity and group velocity as functions of the wave number.
Is it the shortest or the longest waves that are at the front of a dispersing wave train
arising from a localised initial disturbance? Do the wave crests move faster or slower than
a packet of waves?

Find the solution of the above equation for the initial disturbance given by

ψ(x, 0) =
∫ ∞

−∞
A(k)eikx dk ,

∂ψ

∂t
(x, 0) = 0 ,

where A(k) is real and A(−k) = A(k).

Use the method of stationary phase to obtain a leading-order approximation to this
solution for large t when V = x/t is held fixed.

[Note that ∫ ∞

−∞
e±iu2

du = π
1
2 e±iπ/4 . ]

Paper 1


	Rubric
	1I Markov Chains
	2B Principles of Dynamics
	3G Groups, Rings and Fields
	4C Electromagnetism
	5F Combinatorics
	6G Representation Theory
	7H Galois Theory
	8H Differentiable Manifolds
	9H Number Fields
	10G Hilbert Spaces
	11H Riemann Surfaces
	12F Logic, Computation and Set Theory
	13I Probability and Measure
	14J Information Theory
	15J Principles of Statistics
	16J Stochastic Financial Models
	17B Nonlinear Dynamical Systems
	18D Partial Differential Equations
	19D Methods of Mathematical Physics
	20D Numerical Analysis
	21C Electrodynamics
	22E Statistical Physics
	23E Applications of Quantum Mechanics
	24C General Relativity
	25A Fluid Dynamics II
	26A Waves in Fluid and Solid Media

