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1I Markov Chains

(a) Give three definitions of a continuous-time Markov chain with a given Q-matrix
on a finite state space: (i) in terms of holding times and jump probabilities, (ii) in terms
of transition probabilities over small time intervals, and (iii) in terms of finite-dimensional
distributions.

(b) A flea jumps clockwise on the vertices of a triangle; the holding times are
independent exponential random variables of rate one. Find the eigenvalues of the
corresponding Q-matrix and express transition probabilities pxy(t), t ≥ 0, x, y = A,B,C,
in terms of these roots. Deduce the formulas for the sums

S0(t) =
∞∑

n=0

t3n

(3n)!
, S1(t) =

∞∑
n=0

t3n+1

(3n+ 1)!
, S2(t) =

∞∑
n=0

t3n+2

(3n+ 2)!
,

in terms of the functions et, e−t/2, cos(
√

3t/2) and sin(
√

3t/2).

Find the limits
lim

t→∞
e−tSj(t), j = 0, 1, 2 .

What is the connection between the decompositions et = S0(t) + S1(t) + S2(t) and
et = cosh t+ sinh t?
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2B Principles of Dynamics

Consider a system of coordinates rotating with angular velocity ω relative to an
inertial coordinate system.

Show that if a vector v is changing at a rate dv/dt in the inertial system, then it
is changing at a rate

dv
dt


rot

=
dv
dt

− ω ∧ v

with respect to the rotating system.

A solid body rotates with angular velocity ω in the absence of external torque.
Consider the rotating coordinate system aligned with the principal axes of the body.

(a) Show that in this system the motion is described by the Euler equations

I1
dω1

dt


rot

= ω2ω3(I2 − I3) , I2
dω2

dt


rot

= ω3ω1(I3 − I1) , I3
dω3

dt


rot

= ω1ω2(I1 − I2) ,

where (ω1, ω2, ω3) are the components of the angular velocity in the rotating system and
I1,2,3 are the principal moments of inertia.

(b) Consider a body with three unequal moments of inertia, I3 < I2 < I1. Show
that rotation about the 1 and 3 axes is stable to small perturbations, but rotation about
the 2 axis is unstable.

(c) Use the Euler equations to show that the kinetic energy, T , and the magnitude
of the angular momentum, L, are constants of the motion. Show further that

2TI3 ≤ L2 ≤ 2TI1 .

3F Functional Analysis

State and prove the Dominated Convergence Theorem. [You may assume the
Monotone Convergence Theorem.]

Let a and p be real numbers, with a > 0. Prove carefully that∫ ∞

0

e−ax sin px dx =
p

a2 + p2
.

[Any standard results that you use should be stated precisely.]
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4G Groups, Rings and Fields

(a) Let t be the maximal power of the prime p dividing the order of the finite group
G, and let N(pt) denote the number of subgroups of G of order pt. State clearly the
numerical restrictions on N(pt) given by the Sylow theorems.

If H and K are subgroups of G of orders r and s respectively, and their intersection
H ∩K has order t, show the set HK = {hk : h ∈ H, k ∈ K} contains rs/t elements.

(b) The finite group G has 48 elements. By computing the possible values of N(16),
show that G cannot be simple.

5C Electromagnetism

Consider a frame S′ moving with velocity v relative to the laboratory frame S
where |v|2 � c2. The electric and magnetic fields in S are E and B, while those measured
in S′ are E′ and B′. Given that B′ = B, show that∮

Γ

E′ · dl =
∮

Γ

(E + v ∧B) · dl,

for any closed circuit Γ and hence that E′ = E + v ∧B.

Now consider a fluid with electrical conductivity σ and moving with velocity v(r).
Use Ohm’s law in the moving frame to relate the current density j to the electric field E
in the laboratory frame, and show that if j remains finite in the limit σ →∞ then

∂B
∂t

= ∇∧ (v ∧B).

The magnetic helicity H in a volume V is given by
∫

V
A · B dτ where A is the

vector potential. Show that if the normal components of v and B both vanish on the
surface bounding V then dH/dt = 0.
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6B Nonlinear Dynamical Systems

(a) Consider the map G1(x) = f(x+a), defined on 0 6 x < 1, where f(x) = x [mod 1],
0 6 f < 1, and the constant a satisfies 0 6 a < 1. Give, with reasons, the values of a (if
any) for which the map has (i) a fixed point, (ii) a cycle of least period n, (iii) an aperiodic
orbit. Does the map exhibit sensitive dependence on initial conditions?

Show (graphically if you wish) that if the map has an n-cycle then it has an infinite
number of such cycles. Is this still true if G1 is replaced by f(cx+ a), 0 < c < 1?

(b) Consider the map

G2(x) = f(x+ a+
b

2π
sin 2πx),

where f(x) and a are defined as in Part (a), and b > 0 is a parameter.

Find the regions of the (a, b) plane for which the map has (i) no fixed points,
(ii) exactly two fixed points.

Now consider the possible existence of a 2-cycle of the map G2 when b � 1, and
suppose the elements of the cycle are X,Y with X < 1

2 . By expanding X,Y, a in powers
of b, so that X = X0 + bX1 + b2X2 +O(b3), and similarly for Y and a, show that

a =
1
2

+
b2

8π
sin 4πX0 +O(b3).

Use this result to sketch the region of the (a, b) plane in which 2-cycles exist. How many
distinct cycles are there for each value of a in this region?

7G Geometry of Surfaces

Write an essay on the Gauss–Bonnet theorem and its proof.

8F Logic, Computation and Set Theory

Write an essay on recursive functions. Your essay should include a sketch of
why every computable function is recursive, and an explanation of the existence of a
universal recursive function, as well as brief discussions of the Halting Problem and of the
relationship between recursive sets and recursively enumerable sets.

[You may assume that every recursive function is computable. You do not need to
give proofs that particular functions to do with prime-power decompositions are recursive.]
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9F Graph Theory

Write an essay on trees. You should include a proof of Cayley’s result on the
number of labelled trees of order n.

Let G be a graph of order n ≥ 2. Which of the following statements are equivalent
to the statement that G is a tree? Give a proof or counterexample in each case.

(a) G is acyclic and e(G) ≥ n− 1.

(b) G is connected and e(G) ≤ n− 1.

(c) G is connected, triangle-free and has at least two leaves.

(d) G has the same degree sequence as T , for some tree T .

10H Number Theory

Write an essay on pseudoprimes and their role in primality testing. You should
discuss pseudoprimes, Carmichael numbers, and Euler and strong pseudoprimes. Where
appropriate, your essay should include small examples to illustrate your statements.

11J Algorithms and Networks

(i) Consider an unrestricted geometric programming problem

min g(t), t = (t1, . . . , tm) > 0 , (∗)

where g(t) is given by

g(t) =
n∑

i=1

cit
ai1
1 . . . taim

m

with n ≥ m and positive coefficients c1 . . . , cn. State the dual problem of (∗) and show
that if λ∗ = (λ∗1, . . . , λ

∗
n) is a dual optimum then any positive solution to the system

tai1
1 . . . taim

m =
1
ci
λ∗i v(λ

∗), i = 1, . . . , n ,

gives an optimum for primal problem (∗). Here v(λ) is the dual objective function.

(ii) An amount of ore has to be moved from a pit in an open rectangular skip which
is to be ordered from a supplier.

The skip cost is £36 per 1m2 for the bottom and two side walls and £18 per 1m2

for the front and the back walls. The cost of loading ore into the skip is £3 per 1m3, the
cost of lifting is £2 per 1m3, and the cost of unloading is £1 per 1m3. The cost of moving
an empty skip is negligible.

Write down an unconstrained geometric programming problem for the optimal size
(length, width, height) of skip minimizing the cost of moving 48m3 of ore. By considering
the dual problem, or otherwise, find the optimal cost and the optimal size of the skip.
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12J Stochastic Financial Models

What is Brownian motion (Bt)t>0? Briefly explain how Brownian motion can be
considered as a limit of simple random walks. State the Reflection Principle for Brownian
motion, and use it to derive the distribution of the first passage time τa ≡ inf{t : Bt = a}
to some level a > 0.

Suppose that Xt = Bt + ct, where c > 0 is constant. Stating clearly any results to
which you appeal, derive the distribution of the first-passage time τ (c)

a ≡ inf{t : Xt = a}
to a > 0.

Now let σa ≡ sup{t : Xt = a}, where a > 0. Find the density of σa.

13J Principles of Statistics

Suppose that θ ∈ Rd is the parameter of a non-degenerate exponential family.
Derive the asymptotic distribution of the maximum-likelihood estimator θ̂n of θ based
on a sample of size n. [You may assume that the density is infinitely differentiable with
respect to the parameter, and that differentiation with respect to the parameter commutes
with integration.]
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14I Computational Statistics and Statistical Modelling

Suppose that Y1, . . . , Yn are independent observations, with Yi having probability
density function of the following form

f(yi|θi, φ) = exp
[
yiθi − b(θi)

φ
+ c(yi, φ)

]
where E(Yi) = µi and g(µi) = βTxi. You should assume that g( ) is a known function,
and β, φ are unknown parameters, with φ > 0, and also x1, . . . , xn are given linearly
independent covariate vectors. Show that

∂`

∂β
=

∑ (yi − βi)
g′(µi)Vi

xi,

where ` is the log-likelihood and Vi = var (Yi) = φb′′(θi).

Discuss carefully the (slightly edited) R output given below, and briefly suggest
another possible method of analysis using the function glm ( ).

> s <- scan()

1: 33 63 157 38 108 159

7:

Read 6 items

> r <- scan()

1: 3271 7256 5065 2486 8877 3520

7:

Read 6 items

> gender <- scan(,"")

1: b b b g g g

7:

Read 6 items

> age <- scan(,"")

1: 13&under 14-18 19&over

4: 13&under 14-18 19&over

7:

Read 6 items

> gender <- factor(gender) ; age <- factor(age)

> summary(glm(s/r ~ gender + age,binomial, weights=r))

Coefficients:

Question continues on next page.
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Estimate Std.Error z-value Pr(>|z|)

(Intercept) -4.56479 0.12783 -35.710 < 2e-16

genderg 0.38028 0.08689 4.377 1.21e-05

age14-18 -0.19797 0.14241 -1.390 0.164

age19&over 1.12790 0.13252 8.511 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 221.797542 on 5 degrees of freedom

Residual deviance: 0.098749 on 2 degrees of freedom

Number of Fisher Scoring iterations: 3
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15E Foundations of Quantum Mechanics

The states of the hydrogen atom are denoted by |nlm〉 with l < n,−l ≤ m ≤ l and
associated energy eigenvalue En, where

En = − e2

8πε0a0n2
.

A hydrogen atom is placed in a weak electric field with interaction Hamiltonian

H1 = −eEz .

a) Derive the necessary perturbation theory to show that to O(E2) the change in the
energy associated with the state |100〉 is given by

∆E1 = e2E2
∞∑

n=2

n−1∑
l=0

l∑
m=−l

〈100|z|nlm〉
2

E1 − En
. (∗)

The wavefunction of the ground state |100〉 is

ψn=1(r) =
1

(πa3
0)1/2

e−r/a0 .

By replacing En, ∀ n > 1, in the denominator of (∗) by E2 show that

|∆E1| <
32π
3
ε0E2a3

0 .

b) Find a matrix whose eigenvalues are the perturbed energies to O(E) for the states
|200〉 and |210〉. Hence, determine these perturbed energies to O(E) in terms of the
matrix elements of z between these states.

[Hint:
〈nlm|z|nlm〉 = 0 ∀ n, l,m
〈nlm|z|nl′m′〉 = 0 ∀ n, l, l′,m,m′, m 6= m′

]
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16E Quantum Physics

Explain the operation of the np junction. Your account should include a discussion
of the following topics:

(a) the rôle of doping and the fermi-energy;

(b) the rôle of majority and minority carriers;

(c) the contact potential;

(d) the relationship I(V ) between the current I flowing through the junction and the
external voltage V applied across the junction;

(e) the property of rectification.
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17C General Relativity

Starting from the Ricci identity

Va;b;c − Va;c;b = VeR
e
abc,

give an expression for the curvature tensor Re
abc of the Levi-Civita connection in terms

of the Christoffel symbols and their partial derivatives. Using local inertial coordinates,
or otherwise, establish that

Re
abc +Re

bca +Re
cab = 0. (∗)

A vector field with components V a satisfies

Va;b + Vb;a = 0. (∗∗)

Show, using equation (∗) that
Va;b;c = VeR

e
cba,

and hence that
Va;b

;b +Ra
cVc = 0,

where Rab is the Ricci tensor. Show that equation (∗∗) may be written as

(∂cgab)V c + gcb∂aV
c + gac∂bV

c = 0. (∗∗∗)

If the metric is taken to be the Schwarzschild metric

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2),

show that V a = δa
0 is a solution of (∗∗∗). Calculate V a

;a.

Electromagnetism can be described by a vector potential Aa and a Maxwell field
tensor Fab satisfying

Fab = Ab;a −Aa;b and Fab
;b = 0. (∗∗∗∗)

The divergence of Aa is arbitrary and we may choose Aa
;a = 0. With this choice show

that in a general spacetime
Aa;b

;b −Ra
cAc = 0.

Hence show that in the Schwarzschild spacetime a tensor field whose only non-trivial
components are Ftr = −Frt = Q/r2, where Q is a constant, satisfies the field equations
(∗∗∗∗).
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18C Statistical Physics and Cosmology

(a) Consider an ideal gas of Fermi particles obeying the Pauli exclusion principle
with a set of one-particle energy eigenstates Ei. Given the probability pi(ni) at tempera-
ture T that there are ni particles in the eigenstate Ei:

pi(ni) =
e(µ−Ei)ni/kT

Zi
,

determine the appropriate normalization factor Zi. Use this to find the average number
n̄i of Fermi particles in the eigenstate Ei.

Explain briefly why in generalizing these discrete eigenstates to a continuum in
momentum space (in the range p to p+ dp) we must multiply by the density of states

g(p)dp =
4πgsV

h3
p2dp ,

where gs is the degeneracy of the eigenstates and V is the volume.

(b) With the energy expressed as a momentum integral

E =
∫ ∞

0

E(p)n̄(p)dp ,

consider the effect of changing the volume V so slowly that the occupation numbers do not
change (i.e. particle number N and entropy S remain fixed). Show that the momentum
varies as dp/dV = −p/3V and so deduce from the first law expression(

∂E

∂V

)
N,S

= −P

that the pressure is given by

P =
1

3V

∫ ∞

0

pE′(p)n̄(p)dp .

Show that in the non-relativistic limit P = 2
3U/V where U is the internal energy, while

for ultrarelativistic particles P = 1
3E/V .

(c) Now consider a Fermi gas in the limit T → 0 with all momentum eigenstates
filled up to the Fermi momentum pF. Explain why the number density can be written as

n =
4πgs

h3

∫ pF

0

p2dp ∝ p3
F .

From similar expressions for the energy, deduce in both the non-relativistic and ultra-
relativistic limits that the pressure may be written as

P ∝ nγ ,

where γ should be specified in each case.

(d) Examine the stability of an object of radius R consisting of such a Fermi
degenerate gas by comparing the gravitational binding energy with the total kinetic energy.
Briefly point out the relevance of these results to white dwarfs and neutron stars.
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19A Transport Processes

(a) Solute diffuses and is advected in a moving fluid. Derive the transport equation
and deduce that the solute concentration C(x, t) satisfies the advection–diffusion equation

Ct + ∇ · (uC) = ∇ · (D∇C),

where u is the velocity field and D the diffusivity. Write down the form this equation
takes when ∇ · u = 0, both u and ∇C are unidirectional, in the x-direction, and D is a
constant.

(b) A solution occupies the region x > 0, bounded by a semi-permeable membrane at
x = 0 across which fluid passes (by osmosis) with velocity

u = −k (C1 − C(0, t)) ,

where k is a positive constant, C1 is a fixed uniform solute concentration in the region
x < 0, and C(x, t) is the solute concentration in the fluid. The membrane does not allow
solute to pass across x = 0, and the concentration at x = L is a fixed value CL (where
C1 > CL > 0).

Write down the differential equation and boundary conditions to be satisfied by C
in a steady state. Make the equations non-dimensional by using the substitutions

X =
xkC1

D
, θ(X) =

C(x)
C1

, θL =
CL

C1
,

and show that the concentration distribution is given by

θ(X) = θL exp [(1− θ0)(Λ−X)] ,

where Λ and θ0 should be defined, and θ0 is given by the transcendental equation

θ0 = θLe
Λ−Λθ0 . (∗)

What is the dimensional fluid velocity u, in terms of θ0?

(c) Show that if, instead of taking a finite value of L, you had tried to take L infinite,
then you would have been unable to solve for θ unless θL = 0, but in that case there would
be no way of determining θ0.

(d) Find asymptotic expansions for θ0 from equation (∗) in the following limits:

(i) For θL → 0, Λ fixed, expand θ0 as a power series in θL, and equate coefficients
to show that

θ0 ∼ eΛθL − Λe2Λθ2L +O
(
θ3L

)
.

(ii) For Λ → ∞, θL fixed, take logarithms, expand θ0 as a power series in 1/Λ,
and show that

θ0 ∼ 1 +
log θL

Λ
+O

(
1
Λ2

)
.

What is the limiting value of θ0 in the limits (i) and (ii)?
Question continues on next page.
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(e) Both the expansions in (d) break down when θL = O(e−Λ). To investigate the
double limit Λ →∞, θL → 0, show that (∗) can be written as

λ = φeφ

where φ = Λθ0 and λ is to be determined. Show that φ ∼ λ − λ2 + . . . for λ � 1, and
φ ∼ log λ− log log λ+ . . . for λ� 1.

Briefly discuss the implication of your results for the problem raised in (c) above.

20A Theoretical Geophysics

In a reference frame rotating about a vertical axis with angular velocity f/2,
the horizontal components of the momentum equation for a shallow layer of inviscid,
incompressible, fluid of uniform density ρ are

Du

Dt
− fv = −1

ρ

∂p

∂x

Dv

Dt
+ fu = −1

ρ

∂p

∂y
,

where u and v are independent of the vertical coordinate z, and p is given by hydrostatic
balance. State the nonlinear equations for conservation of mass and of potential vorticity
for such a flow in a layer occupying 0 < z < h(x, y, t). Find the pressure p.

By linearising the equations about a state of rest and uniform thickness H, show
that small disturbances η = h−H, where η � H, to the height of the free surface obey

∂2η

∂t2
− gH

(
∂2η

∂x2
+
∂2η

∂y2

)
+ f2η = f2η0 − fHζ0,

where η0 and ζ0 are the values of η and the vorticity ζ at t = 0.

Obtain the dispersion relation for homogeneous solutions of the form η ∝ exp[i(kx−
ωt)] and calculate the group velocity of these Poincaré waves. Comment on the form of
these results when ak � 1 and ak � 1, where the lengthscale a should be identified.

Explain what is meant by geostrophic balance. Find the long-time geostrophically
balanced solution, η∞ and (u∞, v∞), that results from initial conditions η0 = A sgn(x)
and (u, v) = 0. Explain briefly, without detailed calculation, how the evolution from the
initial conditions to geostrophic balance could be found.
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21A Mathematical Methods

State Watson’s lemma, describing the asymptotic behaviour of the integral

I(λ) =
∫ A

0

e−λtf(t) dt, A > 0,

as λ→∞, given that f(t) has the asymptotic expansion

f(t) ∼
∞∑

n=0

ant
nβ

as t→ 0+, where β > 0.

Consider the integral

J(λ) =
∫ b

a

eλφ(t)F (t)dt,

where λ � 1 and φ(t) has a unique maximum in the interval [a, b] at c, with a < c < b,
such that

φ′(c) = 0, φ′′(c) < 0.

By using the change of variable from t to ζ, defined by

φ(t)− φ(c) = −ζ2,

deduce an asymptotic expansion for J(λ) as λ → ∞. Show that the leading-order term
gives

J(λ) ∼ eλφ(c)F (c)
( 2π
λ|φ′′(c)|

) 1
2
.

The gamma function Γ(x) is defined for x > 0 by

Γ(x) =
∫ ∞

0

e(x−1) log t−t dt.

By means of the substitution t = (x− 1)s, or otherwise, deduce that

Γ(x+ 1) ∼ x(x+ 1
2 )e−x

√
2π

(
1 +

1
12x

+ . . .
)

as x→∞.

22D Numerical Analysis

Write an essay on the method of conjugate gradients. You should define the method,
list its main properties and sketch the relevant proof. You should also prove that (in
exact arithmetic) the method terminates in a finite number of steps, briefly mention the
connection with Krylov subspaces, and describe the approach of preconditioned conjugate
gradients.
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23B Nonlinear Waves

Let ψ(k;x, t) satisfy the linear integral equation

ψ(k;x, t) + iei(kx+k3t)

∫
L

ψ(l;x, t)
l + k

dλ(l) = ei(kx+k3t),

where the measure dλ(k) and the contour L are such that ψ(k;x, t) exists and is unique.
Let q(x, t) be defined in terms of ψ(k;x, t) by

q(x, t) = − ∂

∂x

∫
L

ψ(k;x, t)dλ(k).

(a) Show that

(Mψ) + iei(kx+k3t)

∫
L

(Mψ)(l;x, t)
l + k

dλ(l) = 0,

where

Mψ ≡ ∂2ψ

∂x2
− ik

∂ψ

∂x
+ qψ.

(b) Show that

(Nψ) + iei(kx+k3t)

∫
L

(Nψ)(l;x, t)
l + k

dλ(l) = 3kei(kx+k3t)

∫
L

(Mψ)(l;x, t)
l + k

dλ(l),

where

Nψ ≡ ∂ψ

∂t
+
∂3ψ

∂x3
+ 3q

∂ψ

∂x
.

(c) By recalling that the KdV equation

∂q

∂t
+
∂3q

∂x3
+ 6q

∂q

∂x
= 0

admits the Lax pair
Mψ = 0, Nψ = 0,

write down an expression for dλ(l) which gives rise to the one-soliton solution of the KdV
equation. Write down an expression for ψ(k;x, t) and for q(x, t).
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