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Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i).

Additional credit will be given for a substantially complete answer to
either Part.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie your answers in separate bundles, marked A, B, C, . . . , J according to the
letter affixed to each question. (For example, 5C, 14C should be in one bundle and
10J, 12J in another bundle.)

Attach a completed cover sheet to each bundle listing the Parts of questions at-
tempted.

Complete a master cover sheet listing separately all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate number and desk
number.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1I Markov Chains

(i) Give the definition of the time-reversal of a discrete-time Markov chain (Xn).
Define a reversible Markov chain and check that every probability distribution satisfying
the detailed balance equations is invariant.

(ii) Customers arrive in a hairdresser’s shop according to a Poisson process of rate
λ > 0. The shop has s hairstylists and N waiting places; each stylist is working (on a
single customer) provided that there is a customer to serve, and any customer arriving
when the shop is full (i.e. the numbers of customers present is N + s) is not admitted
and never returns. Every admitted customer waits in the queue and then is served, in the
first-come-first-served order (say), the service taking an exponential time of rate µ > 0; the
service times of admitted customers are independent. After completing his/her service,
the customer leaves the shop and never returns.

Set up a Markov chain model for the number Xt of customers in the shop at
time t ≥ 0. Assuming λ < sµ, calculate the equilibrium distribution π of this chain
and explain why it is unique. Show that (Xt) in equilibrium is time-reversible, i.e.
∀ T > 0, (Xt, 0 ≤ t ≤ T ) has the same distribution as (Yt, 0 ≤ t ≤ T ) where Yt = XT−t,
and X0 ∼ π.

2B Principles of Dynamics

(i) Explain the concept of a canonical transformation from coordinates (qa, pa) to
(Qa, P a). Derive the transformations corresponding to generating functions F1(t, qa, Qa)
and F2(t, qa, P a).

(ii) A particle moving in an electromagnetic field is described by the Lagrangian

L =
1
2
mẋ2 − e

(
φ− ẋ ·A

c

)
,

where c is constant.

(a) Derive the equations of motion in terms of the electric and magnetic fields E
and B.

(b) Show that E and B are invariant under the gauge transformation

A → A +∇Λ, φ→ φ− 1
c

∂Λ
∂t

, (1)

for arbitrary Λ(t,x).

(c) Construct the Hamiltonian. Find the generating function F2 for the canonical
transformation which implements the gauge transformation (1).
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3F Functional Analysis

(i) Let H be an infinite-dimensional Hilbert space. Show that H has a (countable)
orthonormal basis if and only if H has a countable dense subset. [You may assume
familiarity with the Gram-Schmidt process.]

State and prove Bessel’s inequality.

(ii) State Parseval’s equation. Using this, prove that if H has a countable dense subset
then there is a surjective isometry from H to l2.

Explain carefully why the functions einθ, n ∈ Z, form an orthonormal basis for
L2(T).

4G Groups, Rings and Fields

(i) Let K 6 C be a field and L 6 C a finite normal extension of K. If H is a finite
subgroup of order m in the Galois group G(L | K), show that L is a normal extension of
the H-invariant subfield I(H) of degree m and that G(L | I(H)) = H. [You may assume
the theorem of the primitive element.]

(ii) Show that the splitting field over Q of the polynomial x4+2 is Q[ 4
√

2, i] and deduce
that its Galois group has order 8. Exhibit a subgroup of order 4 of the Galois group, and
determine the corresponding invariant subfield.

5C Electromagnetism

(i) State Maxwell’s equations and show that the electric field E and the magnetic
field B can be expressed in terms of a scalar potential φ and a vector potential A. Hence
derive the inhomogeneous wave equations that are satisfied by φ and A respectively.

(ii) The plane x = 0 separates a vacuum in the half-space x < 0 from a perfectly
conducting medium occupying the half-space x > 0. Derive the boundary conditions on
E and B at x = 0.

A plane electromagnetic wave with a magnetic field B = B(t, x, z)ŷ, travelling in
the xz-plane at an angle θ to the x-direction, is incident on the interface at x = 0. If the
wave has frequency ω show that the total magnetic field is given by

B = B0 cos
(

ωx
c cos θ

)
exp

[
i
(

ωz
c sin θ − ωt

)]
ŷ,

where B0 is a constant. Hence find the corresponding electric field E, and obtain the
surface charge density and the surface current at the interface.
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6B Nonlinear Dynamical Systems

(i) Consider a system in R2 that is almost Hamiltonian:

ẋ =
∂H

∂y
+ εg1(x, y), ẏ = −∂H

∂x
+ εg2(x, y) ,

where H = H(x, y) and |ε| � 1. Show that if the system has a periodic orbit C then∮
C g2dx − g1dy = 0, and explain how to evaluate this orbit approximately for small ε.

Illustrate your method by means of the system

ẋ = y + εx(1− x2), ẏ = −x.

(ii) Consider the system

ẋ = y, ẏ = x− x3 + εy(1− αx2).

(a) Show that when ε = 0 the system is Hamiltonian, and find the Hamiltonian.
Sketch the trajectories in the case ε = 0. Identify the value Hc of H for which there is a
homoclinic orbit.

(b) Suppose ε > 0. Show that the small change ∆H in H around an orbit of the
Hamiltonian system can be expressed to leading order as an integral of the form∫ x2

x1

F(x,H)dx,

where x1, x2 are the extrema of the x-coordinates of the orbits of the Hamiltonian system,
distinguishing between the cases H < Hc, H > Hc.

(c) Find the value of α, correct to leading order in ε, at which the system has a
homoclinic orbit.

(d) By examining the eigenvalues of the Jacobian at the origin, determine the
stability of the homoclinic orbit, being careful to state clearly any standard results that
you use.
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7G Geometry of Surfaces

(i) The catenoid is the surface C in Euclidean R3, with co-ordinates x, y, z and
Riemannian metric ds2 = dx2 + dy2 + dz2 obtained by rotating the curve y = coshx
about the x-axis, while the helicoid is the surface H swept out by a line which lies along
the x-axis at time t = 0, and at time t = t0 is perpendicular to the z-axis, passes through
the point (0, 0, t0) and makes an angle t0 with the x-axis.

Find co-ordinates on each of C andH and write x, y, z in terms of these co-ordinates.

(ii) Compute the induced Riemannian metrics on C and H in terms of suitable co-
ordinates. Show that H and C are locally isometric. By considering the x-axis in H,
show that this local isometry cannot be extended to a rigid motion of any open subset of
Euclidean R3.

8F Logic, Computation and Set Theory

(i) State and prove the Compactness Theorem for first-order predicate logic.

State and prove the Upward Löwenheim-Skolem Theorem.

[You may use the Completeness Theorem for first-order predicate logic.]

(ii) For each of the following theories, either give axioms (in the language of posets)
for the theory or prove carefully that the theory is not axiomatisable.

(a) The theory of posets having no maximal element.

(b) The theory of posets having a unique maximal element.

(c) The theory of posets having infinitely many maximal elements.

(d) The theory of posets having finitely many maximal elements.

(e) The theory of countable posets having a unique maximal element.

9H Number Theory

(i) Find a solution in integers of the Pell equation x2 − 17y2 = 1.

(ii) Define the continued fraction expansion of a real number θ > 1 and show that it
converges to θ.

Show that if N > 0 is a nonsquare integer and x and y are integer solutions of
x2 −Ny2 = 1, then x/y is a convergent of

√
N .
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10J Algorithms and Networks

(i) Consider the problem

minimise f(x)
subject to g(x) = b, x ∈ X,

(∗)

where f : Rn −→ R, g : Rn −→ Rm, X ⊆ Rn, x ∈ Rn and b ∈ Rm. State the Lagrange
Sufficiency Theorem for problem (∗). What is meant by saying that this problem is strong
Lagrangian? How is this related to the Lagrange Sufficiency Theorem? Define a supporting
hyperplane and state a condition guaranteeing that problem (∗) is strong Lagrangian.

(ii) Define the terms flow, divergence, circulation, potential and differential for a
network with nodes N and arcs A.

State the feasible differential problem for a network with span intervals D(j) =
[d−(j), d+(j)], j ∈ A.

State, without proof, the Feasible Differential Theorem.

[You must carefully define all quantities used in your statements.]

Show that the network below does not support a feasible differential.

[−1, 7] [3, 9]

[−1, 6] [−6, 1] [2, 7]

[−1, 1] [−5, 2]

[0, 6]

[0, 2] [0, 6] [1, 3]

[−2, 2] [1, 5]

[−1, 1] [2, 6]

[1, 4]
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11J Stochastic Financial Models

(i) Consider a single-period binomial model of a riskless asset (asset 0), worth 1 at
time 0 and 1 + r at time 1, and a risky asset (asset 1), worth 1 at time 0 and worth u at
time 1 if the period was good, otherwise worth d. Assuming that

d < 1 + r < u (∗)

show how any contingent claim Y to be paid at time 1 can be priced and exactly replicated.
Briefly explain the significance of the condition (∗), and indicate how the analysis of the
single-period model extends to many periods.

(ii) Now suppose that u = 5/3, d = 2/3, r = 1/3, and that the risky asset is worth
S0 = 864 = 25 × 33 at time zero. Show that the time-0 value of an American put option
with strike K = S0 and expiry at time t = 3 is equal to 79, and find the optimal exercise
policy.

12J Principles of Statistics

(i) What is a sufficient statistic? What is a minimal sufficient statistic? Explain the
terms nuisance parameter and ancillary statistic.

(ii) Let U1, . . . , Un be independent random variables with common uniform([0, 1])
distribution, and suppose you observe Xi ≡ aU−β

i , i = 1, . . . , n, where the positive
parameters a, β are unknown. Write down the joint density of X1, . . . , Xn and prove
that the statistic

(m, p) ≡ ( min
16j6n

{Xj},
n∏

j=1

Xj)

is minimal sufficient for (a, β). Find the maximum-likelihood estimator (â, β̂) of (a, β).

Regarding β as the parameter of interest and a as the nuisance parameter, is m
ancillary? Find the mean and variance of β̂. Hence find an unbiased estimator of β.
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13E Foundations of Quantum Mechanics

(i) A quantum mechanical system consists of two identical non-interacting particles
with associated single-particle wave functions ψi(x) and energies Ei, i = 1, 2, . . . ., where
E1 < E2 < . . . . Show how the states for the two lowest energy levels of the system are
constructed and discuss their degeneracy when the particles have (a) spin 0, (b) spin 1/2.

(ii) The Pauli matrices are defined to be

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

State how the spin operators s1, s2, s3 may be expressed in terms of the Pauli matrices,
and show that they describe states with total angular momentum 1

2~.

An electron is at rest in the presence of a magnetic field B = (B, 0, 0), and
experiences an interaction potential −µσ · B. At t = 0 the state of the electron is the
eigenstate of s3 with eigenvalue 1

2~. Calculate the probability that at later time t the
electron will be measured to be in the eigenstate of s3 with eigenvalue 1

2~.
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14C Statistical Physics and Cosmology

(i) In equilibrium, the number density of a non-relativistic particle species is given by

n = gs

(
2πmkT
h2

)3/2

e(µ−mc2)/kT ,

where m is the mass, µ is the chemical potential and gs is the spin degeneracy. At around
t = 100 seconds, deuterium D forms through the nuclear fusion of nonrelativistic protons
p and neutrons n via the interaction:

p+ n↔ D .

What is the relationship between the chemical potentials of the three species when they are
in chemical equilibrium? Show that the ratio of their number densities can be expressed
as

nD

nnnp
≈

(
h2

πmpkT

)3/2

eBD/kT ,

where the deuterium binding energy is BD = (mn+mp−mD)c2 and you may take gD = 4.
Now consider the fractional densities Xa = na/nB , where nB is the baryon number of the
universe, to re-express the ratio above in the form

XD

XnXp

which incorporates the baryon-to-photon ratio η of the universe. [You may assume that
the photon density is nγ = 16πζ(3)

(hc)3 (kT )3 .] From this expression, explain why deuterium
does not form until well below the temperature kT ≈ BD.

(ii) The number density n = N/V for a photon gas in equilibrium is given by the
formula

n =
8π
c3

∫ ∞

0

ν2dν

ehν/kT − 1
,

where ν is the photon frequency. By considering the substitution x = hν/kT , show that
the photon number density can be expressed in the form

n = αT 3 ,

where the constant α need not be evaluated explicitly.

State the equation of state for a photon gas and explain why the chemical potential
of the photon vanishes. Assuming that the photon energy density ε = E/V = (4σ/c)T 4,
use the first law dE = TdS − PdV + µdN to show that the entropy density is given by

s = S/V =
16σ
3c

T 3 .

Hence explain why, when photons are in equilibrium at early times in our universe, their
temperature varies inversely with the scale factor: T ∝ a−1.
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15E Symmetries and Groups in Physics

(i) Show that the character of an SU(2) transformation in the 2l + 1 dimensional
irreducible representation dl is given by

χl(θ) =
sin [(l + 1/2)θ]

sin [θ/2]
.

What are the characters of irreducible SO(3) representations?

(ii) The isospin representation of two-particle states of pions and nucleons is spanned
by the basis T = {|π+p〉, |π+n〉, |π0p〉, |π0n〉, |π−p〉, |π−n〉}.

Pions form an isospin triplet with π+ = |1, 1〉, π0 = |1, 0〉, π− = |1,−1〉; and
nucleons form an isospin doublet with p = |1/2, 1/2〉, n = |1/2,−1/2〉. Find the values of
the isospin for the irreducible representations into which T will decompose.

Using I−|j,m〉 =
√

(j −m+ 1)(j +m) |j,m− 1〉, write the states of the basis T in
terms of isospin states.

Consider the transitions
π+p → π+p

π−p → π−p

π−p → π0n

and show that their amplitudes satisfy a linear relation.
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16A Transport Processes

(i) Viscous, incompressible fluid of viscosity µ flows steadily in the x-direction in a
uniform channel 0 < y < h. The plane y = 0 is fixed and the plane y = h has constant
x-velocity U . Neglecting gravity, derive from first principles the equations of motion of
the fluid and show that the x-component of the fluid velocity is u(y) and satisfies

0 = −Px + µuyy, (1)

where P (x) is the pressure in the fluid. Write down the boundary conditions on u. Hence
show that the volume flow rate Q =

∫ h

0
u dy is given by

Q =
Uh

2
− Pxh

3

12µ
. (2)

(ii) A heavy rectangular body of width L and infinite length (in the z-direction) is
pivoted about one edge at (x, y) = (0, 0) above a fixed rigid horizontal plane y = 0. The
body has weight W per unit length in the z-direction, its centre of mass is distance L/2
from the pivot, and it is falling under gravity towards the fixed plane through a viscous,
incompressible fluid. Let α(t) � 1 be the angle between the body and the plane. Explain
the approximations of lubrication theory which permit equations (1) and (2) of Part (i)
to apply to the flow in the gap between the two surfaces.

Deduce that, in the gap,

Px =
6µα̇
xα3

,

where α̇ = dα/dt. By taking moments about (x, y) = (0, 0), deduce that α(t) is given by

1
α2

− 1
α2

0

=
2Wt

3µL
,

where α(0) = α0.
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17A Mathematical Methods

(i) Give a brief description of the method of matched asymptotic expansions, as
applied to a differential equation of the type

εy′′ +Ky′ + f(y) = 0, 0 < x < 1,

where 0 < ε � 1, K is a non-zero constant, f is a suitable smooth function and the
boundary values y(0), y(1) are specified. An outline of Van Dyke’s asymptotic matching
principle should be included.

(ii) Consider the boundary-value problem

εy′′ + y′ − (2x+ 1)y = 0, y(0) = 0, y(1) = e2

with 0 < ε � 1. Find the integrating factor for the leading-order outer problem. Hence
obtain the first two terms in the outer expansion.

Rewrite the problem using an appropriate stretched inner variable. Hence obtain
the first two terms of the inner exansion.

Use van Dyke’s matching principle to determine all the constants. Hence show that
y′(0) = ε−1 + 25

3 +O(ε).

18B Nonlinear Waves

(i) Let Φ+(t) and Φ−(t) denote the boundary values of functions which are analytic
inside and outside the unit disc centred on the origin, respectively. Let C denote the
boundary of this disc. Suppose that Φ+(t) and Φ−(t) satisfy the jump condition

Φ+(t) = t−2Φ−(t) + t−1 + α(t−1 + t− t−3), t ∈ C,

where α is a constant.

Find the canonical solution of the associated homogeneous Riemann-Hilbert prob-
lem. Write down the orthogonality conditions.

(ii) Consider the linear singular integral equation

(t+ t−1)ψ(t) +
t− t−1

πi

∮
C

ψ(τ)
τ − t

dτ = 2 + 2α(1 + t2 − t−2), (∗)

where
∮

denotes the principal value integral.

Show that the associated Riemann-Hilbert problem has the jump condition defined
in Part (i) above. Using this fact, find the value of the constant α that allows equation
(∗) to have a solution. For this particular value of α find the unique solution ψ(t).
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19D Numerical Analysis

(i) The diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 1, t > 0 ,

with the initial condition u(x, 0) = φ(x), 0 6 x 6 1, and with zero boundary conditions at
x = 0 and x = 1, can be solved by the method

un+1
m = un

m + µ(un
m−1 − 2un

m + un
m+1), m = 1, 2, . . . ,M, n > 0 ,

where ∆x = 1/(M+1), µ = ∆t/(∆x)2, and un
m ≈ u(m∆x, n∆t). Prove that µ 6 1

2 implies
convergence.

(ii) By discretizing the same equation and employing the same notation as in Part (i),
determine conditions on µ > 0 such that the method( 1

12
− 1

2
µ
)
un+1

m−1 +
(5

6
+ µ

)
un+1

m +
( 1

12
− 1

2
µ
)
un+1

m+1 =( 1
12

+
1
2
µ
)
un

m−1 +
(5

6
− µ

)
un

m +
( 1

12
+

1
2
µ
)
un

m+1

is stable.
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