
MATHEMATICAL TRIPOS Part II Alternative A

Monday 31 May 2004 1.30 to 4.30

PAPER 1

Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i).

Additional credit will be given for a substantially complete answer to
either Part.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie your answers in separate bundles, marked A, B, C, . . . , J according to the
letter affixed to each question. (For example, 3F, 7F should be in one bundle and
1J, 13J in another bundle.)

Attach a completed cover sheet to each bundle listing the Parts of questions at-
tempted.

Complete a master cover sheet listing separately all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate number and desk
number.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1I Markov Chains

(i) Give the definitions of a recurrent and a null recurrent irreducible Markov chain.

Let (Xn) be a recurrent Markov chain with state space I and irreducible transition
matrix P = (pij). Prove that the vectors γk = (γk

j , j ∈ I), k ∈ I, with entries γk
k = 1 and

γk
i = Ek(# of visits to i before returning to k), i 6= k ,

are P -invariant:
γk

j =
∑
i∈I

γk
i pij .

(ii) Let (Wn) be the birth and death process on Z+ = {0, 1, 2, . . .} with the following
transition probabilities:

pi,i+1 = pi,i−1 =
1
2
, i ≥ 1

p01 = 1 .

By relating (Wn) to the symmetric simple random walk (Yn) on Z, or otherwise,
prove that (Wn) is a recurrent Markov chain. By considering invariant measures, or
otherwise, prove that (Wn) is null recurrent.

Calculate the vectors γk = (γk
i , i ∈ Z+) for the chain (Wn), k ∈ Z+.

Finally, let W0 = 0 and let N be the number of visits to 1 before returning to 0.
Show that P0(N = n) = (1/2)n, n ≥ 1.

[You may use properties of the random walk (Yn) or general facts about Markov
chains without proof but should clearly state them.]
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2B Principles of Dynamics

(i) In Hamiltonian mechanics the action is written

S =
∫
dt

(
paq̇a −H(qa, pa, t)

)
. (1)

Starting from Maupertius’ principle δS = 0, derive Hamilton’s equations

q̇a =
∂H

∂pa
, ṗa = −∂H

∂qa
.

Show that H is a constant of the motion if ∂H/∂t = 0. When is pa a constant of the
motion?

(ii) Consider the action S given in Part (i), evaluated on a classical path, as a function
of the final coordinates qa

f and final time tf , with the initial coordinates and the initial
time held fixed. Show that S(qa

f , tf ) obeys

∂S

∂qa
f

= pa
f ,

∂S

∂tf
= −H(qa

f , p
a
f , tf ) . (2)

Now consider a simple harmonic oscillator with H = 1
2 (p2 + q2). Setting the initial

time and the initial coordinate to zero, find the classical solution for p and q with final
coordinate q = qf at time t = tf . Hence calculate S(tf , qf ), and explicitly verify (2) in
this case.

3F Functional Analysis

(i) Let H be a Hilbert space, and let M be a non-zero closed vector subspace of H.
For x ∈ H, show that there is a unique closest point PM (x) to x in M .

(ii) (a) Let x ∈ H. Show that x − PM (x) ∈ M⊥. Show also that if y ∈ M and
x− y ∈M⊥ then y = PM (x).

(b) Deduce that H = M
⊕
M⊥.

(c) Show that the map PM fromH toM is a continuous linear map, with ||PM || = 1.

(d) Show that PM is the projection onto M along M⊥.

Now suppose that A is a subspace of H that is not necessarily closed. Explain why
A⊥ = {0} implies that A is dense in H.

Give an example of a subspace of l2 that is dense in l2 but is not equal to l2.
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4G Groups, Rings and Fields

(i) Let R be a commutative ring. Define the terms prime ideal and maximal ideal,
and show that if an ideal M in R is maximal then M is also prime.

(ii) Let P be a non-trivial prime ideal in the commutative ring R (‘non-trivial’ meaning
that P 6= {0} and P 6= R). If P has finite index as a subgroup of R, show that P is also
maximal. Give an example to show that this may fail, if the assumption of finite index is
omitted. Finally, show that if R is a principal ideal domain, then every non-trivial prime
ideal in R is maximal.

5C Electromagnetism

(i) Show that the work done in assembling a localised charge distribution ρ(r) in a
region V with an associated potential φ(r) is

W = 1
2

∫
V
ρ(r)φ(r) dτ,

and that this can be written as an integral over all space

W = 1
2ε0

∫
|E|2 dτ,

where the electric field E = −∇φ.

(ii) What is the force per unit area on an infinite plane conducting sheet with a charge
density σ per unit area (a) if it is isolated in space and (b) if the electric field vanishes on
one side of the sheet?

An infinite cylindrical capacitor consists of two concentric cylindrical conductors
with radii a, b (a < b), carrying charges ±q per unit length respectively. Calculate the
capacitance per unit length and the energy per unit length. Next determine the total
force on each conductor, and calculate the rate of change of energy of the inner and outer
conductors if they are moved radially inwards and outwards respectively with speed v.
What is the corresponding rate of change of the capacitance?
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6B Nonlinear Dynamical Systems

(i) State Liapunov’s First Theorem and La Salle’s Invariance Principle. Use these
results to show that the system

ẍ+ kẋ+ sinx = 0, k > 0

has an asymptotically stable fixed point at the origin.

(ii) Define the basin of attraction of an invariant set of a dynamical system.

Consider the equations

ẋ = −x+ βxy2 + x3, ẏ = −y + βyx2 + y3, β > 2.

(a) Find the fixed points of the system and determine their type.

(b) Show that the basin of attraction of the origin includes the union over α of the
regions

x2 + α2y2 <
4α2(1 + α2)(β − 1)
β2(1 + α2)2 − 4α2

.

Sketch these regions for α2 = 1, 1/2, 2 in the case β = 3.

7F Logic, Computation and Set Theory

(i) State and prove the Knaster-Tarski Fixed-Point Theorem.

(ii) A subset S of a poset X is called an up-set if whenever x, y ∈ X satisfy x ∈ S
and x 6 y then also y ∈ S. Show that the set of up-sets of X (ordered by inclusion) is a
complete poset.

Let X and Y be totally ordered sets, such that X is isomorphic to an up-set in Y
and Y is isomorphic to the complement of an up-set in X. Prove that X is isomorphic to
Y . Indicate clearly where in your argument you have made use of the fact that X and Y
are total orders, rather than just partial orders.

[Recall that posets X and Y are called isomorphic if there exists a bijection f from
X to Y such that, for any x, y ∈ X, we have f(x) 6 f(y) if and only if x 6 y.]
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8F Graph Theory

(i) Let G be a connected graph of order n ≥ 3 such that for any two vertices x and y,

d(x) + d(y) ≥ k.

Show that if k < n then G has a path of length k, and if k = n then G is Hamiltonian.

(ii) State and prove Hall’s theorem.

[If you use any form of Menger’s theorem, you must state it clearly.]

Let G be a graph with directed edges. For S ⊂ V (G), let

Γ+(S) = {y ∈ V (G) : xy ∈ E(G) for some x ∈ S} .

Find a necessary and sufficient condition, in terms of the sizes of the sets Γ+(S), for the
existence of a set F ⊂ E(G) such that at every vertex there is exactly one incoming edge
and exactly one outgoing edge belonging to F .

9H Number Theory

(i) State the law of quadratic reciprocity. For p 6= 5 an odd prime, evaluate the
Legendre symbol (

5
p

)
.

(ii) (a) Let p1, . . . , pm and q1, . . . , qn be distinct odd primes. Show that there exists an
integer x that is a quadratic residue modulo each of p1, . . . , pm and a quadratic non-residue
modulo each of q1, . . . , qn.

(b) Let p be an odd prime. Show that

p−1∑
a=1

(
a

p

)
= 0 .

(c) Let p be an odd prime. Using (b) or otherwise, evaluate

p−2∑
a=1

(
a

p

) (
a+ 1
p

)
.

[Hint for (c): Use the equality
(

x2y
p

)
=

(
y
p

)
, valid when p does not divide x.]
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10H Coding and Cryptography

(i) What is a linear code? What does it mean to say that a linear code has length n
and minimum weight d? When is a linear code perfect? Show that, if n = 2r − 1, there
exists a perfect linear code of length n and minimum weight 3.

(ii) Describe the construction of a Reed-Muller code. Establish its information rate
and minimum weight.

11J Stochastic Financial Models

(i) What does it mean to say that U is a utility function? What is a utility function
with constant absolute risk aversion (CARA)?

Let St ≡ (S1
t , . . . , S

d
t )T denote the prices at time t = 0, 1 of d risky assets, and

suppose that there is also a riskless zeroth asset, whose price at time 0 is 1, and whose price
at time 1 is 1+r. Suppose that S1 has a multivariate Gaussian distribution, with mean µ1

and non-singular covariance V . An agent chooses at time 0 a portfolio θ = (θ1, . . . , θd)T

of holdings of the d risky assets, at total cost θ · S0, and at time 1 realises his gain
X = θ · (S1 − (1 + r)S0 ). Given that he wishes the mean of X to be equal to m, find the
smallest value that the variance v of X can be. What is the portfolio that achieves this
smallest variance? Hence sketch the region in the (v,m) plane of pairs (v,m) that can be
achieved by some choice of θ, and indicate the mean-variance efficient frontier.

(ii) Suppose that the agent has a CARA utility with coefficient γ of absolute risk
aversion. What portfolio will he choose in order to maximise EU(X)? What then is the
mean of X?

Regulation requires that the agent’s choice of portfolio θ has to satisfy the value-
at-risk (VaR) constraint

m > −L+ a
√
v,

where L > 0 and a > 0 are determined by the regulatory authority. Show that this
constraint has no effect on the agent’s decision if κ ≡

√
µ · V −1µ > a. If κ < a, will this

constraint necessarily affect the agent’s choice of portfolio?
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12J Principles of Statistics

(i) What does it mean to say that a family {f(·|θ) : θ ∈ Θ} of densities is an
exponential family?

Consider the family of densities on (0,∞) parametrised by the positive parameters
a, b and defined by

f(x|a, b) =
a exp(−(a− bx)2/2x)√

2πx3
(x > 0).

Prove that this family is an exponential family, and identify the natural parameters and
the reference measure.

(ii) Let (X1, . . . , Xn) be a sample drawn from the above distribution. Find the
maximum-likelihood estimators of the parameters (a, b). Find the Fisher information
matrix of the family (in terms of the natural parameters). Briefly explain the significance
of the Fisher information matrix in relation to unbiased estimation. Compute the mean
of X1 and of X−1

1 .

13I Computational Statistics and Statistical Modelling

(i) Assume that the n-dimensional vector Y may be written as Y = Xβ+ ε, where X
is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ2I).

Let Q(β) = (Y − Xβ)T (Y − Xβ). Find β̂, the least-squares estimator of β, and state
without proof the joint distribution of β̂ and Q(β̂).

(ii) Now suppose that we have observations (Yij , 1 6 i 6 I, 1 6 j 6 J) and consider
the model

Ω : Yij = µ+ αi + βj + εij ,

where (αi), (βj) are fixed parameters with Σαi = 0, Σβj = 0, and (εij) may be assumed
independent normal variables, with εij ∼ N(0, σ2), where σ2 is unknown.

(a) Find (α̂i), (β̂j), the least-squares estimators of (αi), (βj).

(b) Find the least-squares estimators of (αi) under the hypothesis H0 : βj = 0 for
all j.

(c) Quoting any general theorems required, explain carefully how to test H0,
assuming Ω is true.

(d) What would be the effect of fitting the model Ω1 : Yij = µ+αi + βj + γij + εij ,
where now (αi), (βj), (γij) are all fixed unknown parameters, and (εij) has the distribution
given above?
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14E Quantum Physics

(i) Each particle in a system of N identical fermions has a set of energy levels Ei with
degeneracy gi, where i = 1, 2, . . .. Derive the expression

N̄i =
gi

eβ(Ei−µ) + 1
,

for the mean number of particles N̄i with energy Ei. Explain the physical significance of
the parameters β and µ.

(ii) The spatial eigenfunctions of energy for an electron of mass m moving in two
dimensions and confined to a square box of side L are

ψn1n2(x) =
2
L

sin
(n1πx

L

)
sin

(n2πy

L

)
,

where ni = 1, 2, . . . (i = 1, 2). Calculate the associated energies.

Hence show that when L is large the number of states in energy range E → E + dE is

mL2

2π~2
dE .

How is this formula modified when electron spin is taken into account?

The box is filled with N electrons in equilibrium at temperature T . Show that the
chemical potential µ is given by

µ =
1
β

log
(
eβπ~2ρ/m − 1

)
,

where ρ is the number of particles per unit area in the box.

What is the value of µ in the limit T → 0?

Calculate the total energy of the lowest state of the system of particles as a function of N
and L.
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15C General Relativity

(i) What is an affine parameter λ of a timelike or null geodesic? Prove that for a
timelike geodesic one may take λ to be proper time τ . The metric

ds2 = −dt2 + a2(t) dx2,

with ȧ(t) > 0 represents an expanding universe. Calculate the Christoffel symbols.

(ii) Obtain the law of spatial momentum conservation for a particle of rest mass m in
the form

ma2 dx
dτ

= p = constant.

Assuming that the energy E = mdt/dτ , derive an expression for E in terms of m, p and
a(t) and show that the energy is not conserved but rather that it decreases with time. In
particular, show that if the particle is moving extremely relativistically then the energy
decreases as a−1(t), and if it is moving non-relativistically then the kinetic energy, E−m,
decreases as a−2(t).

Show that the frequency ωe of a photon emitted at time te will be observed at time
to to have frequency

ωo = ωe
a(te)
a(to)

.
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16C Statistical Physics and Cosmology

(i) Consider a homogeneous and isotropic universe with mass density ρ(t), pressure
P (t) and scale factor a(t). As the universe expands its energy E decreases according
to the thermodynamic relation dE = −PdV where V is the volume. Deduce the fluid
conservation law

ρ̇ = −3
ȧ

a

(
ρ+

P

c2

)
.

Apply the conservation of total energy (kinetic plus gravitational potential) to a test
particle on the edge of a spherical region in this universe to obtain the Friedmann equation(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
,

where k is a constant. State clearly any assumptions you have made.

(ii) Our universe is believed to be flat (k = 0) and filled with two major components:
pressure-free matter (PM = 0) and dark energy with equation of state PQ = −ρQc

2 where
the mass densities today (t = t0) are given respectively by ρM0 and ρQ0. Assume that
each component independently satisfies the fluid conservation equation to show that the
total mass density can be expressed as

ρ(t) =
ρM0

a3
+ ρQ0 ,

where we have set a(t0) = 1.

Now consider the substitution b = a3/2 in the Friedmann equation to show that the
solution for the scale factor can be written in the form

a(t) = α(sinhβt)2/3 ,

where α and β are constants. Setting a(t0) = 1, specify α and β in terms of ρM0, ρQ0 and
t0. Show that the scale factor a(t) has the expected behaviour for an Einstein-de Sitter
universe at early times (t→ 0) and that the universe accelerates at late times (t→∞).

[Hint: Recall that
∫
dx/

√
x2 + 1 = sinh−1 x .]
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17A Theoretical Geophysics

(i) What is the polarisation P and slowness s of the time-harmonic plane elastic wave
u = A exp[i(k · x− ωt)]?

Use the equation of motion for an isotropic homogenous elastic medium,

ρ
∂2u
∂t2

= (λ+ 2µ)∇(∇ · u)− µ∇ ∧ (∇ ∧ u),

to show that s · s takes one of two values and obtain the corresponding conditions on P.
If s is complex show that Re(s) · Im(s) = 0.

(ii) A homogeneous elastic layer of uniform thickness h, S-wave speed β1 and shear
modulus µ1 has a stress-free surface z = 0 and overlies a lower layer of infinite depth,
S-wave speed β2 (> β1) and shear modulus µ2. Show that the horizontal phase speed c
of trapped Love waves satisfies β1 < c < β2. Show further that

tan

[(
c2

β2
1

− 1
)1/2

kh

]
=
µ2

µ1

(
1− c2/β2

2

c2/β2
1 − 1

)1/2

(1)

where k is the horizontal wavenumber.

Assuming that (1) can be solved to give c(k), explain how to obtain the propagation
speed of a pulse of Love waves with wavenumber k.
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18A Transport Processes

(i) In an experiment, a finite amount M of marker gas of diffusivity D is released at
time t = 0 into an infinite tube in the neighbourhood of the origin x = 0. Starting from
the one-dimensional diffusion equation for the concentration C(x, t) of marker gas,

Ct = DCxx,

use dimensional analysis to show that

C =
M

(Dt)1/2
f(ξ)

for some dimensionless function f of the similarity variable ξ = x/(Dt)1/2.

Write down the equation and boundary conditions satisfied by f(ξ).

(ii) Consider the experiment of Part (i). Find f(ξ) and sketch your answer in the form
of a plot of C against x at a few different times t.

Calculate C(x, t) for a second experiment in which the concentration of marker gas
at x = 0 is instead raised to the value C0 at t = 0 and maintained at that value thereafter.
Show that the total amount of marker gas released in this case becomes greater than M
after a time

t =
π

16D

(
M

C0

)2

.

Show further that, at much larger times than this, the concentration in the first experiment
still remains greater than that in the second experiment for positions x with |x| >
4C0Dt/M .

[Hint: erfc(z) ≡ 2√
π

∫ ∞

z

e−u2
du ∼ 1√

πz
e−z2

as z →∞. ]

19E Symmetries and Groups in Physics

(i) State and prove Maschke’s theorem for finite-dimensional representations of finite
groups.

(ii) S3 is the group of bijections on {1, 2, 3}. Find the irreducible representations of
S3, state their dimensions and give their character table.

Let T2 be the set of objects T2 = {ai1i2 : i1, i2 = 1, 2, 3}. The operation of the
permutation group S3 on T2 is defined by the operation of the elements of S3 separately
on each index i1 and i2. For example,

P12 : a13 → a23, P231 : a23 → a31, P13 : a33 → a11 .

By considering a representative operator from each conjugacy class of S3, find the
table of group characters for the representation T2 of S3 acting on T2. Hence, deduce the
irreducible representations into which T2 decomposes.
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20D Numerical Analysis

(i) Define the Backward Difference Formula (BDF) method for ordinary differential
equations and derive its two-step version.

(ii) Prove that the interval (−∞, 0) belongs to the linear stability domain of the two-
step BDF method.
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