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Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i). Additional credit will be given for a
substantially complete answer to either Part.

Begin each answer on a separate sheet.

Write legibly and on only one side of the paper.

At the end of the examination:

Tie your answers in separate bundles, marked A, B, C, . . . , J according to the
letter affixed to each question. (For example, 16E, 19E should be in one bundle and
4F, 8F in another bundle.)

Attach a completed cover sheet to each bundle listing the Parts of questions at-
tempted.

Complete a master cover sheet listing separately all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1J Markov Chains

(i) What is meant by a Poisson process of rate λ? Show that if (Xt)t>0 and (Yt)t>0

are independent Poisson processes of rates λ and µ respectively, then (Xt + Yt)t>0 is also
a Poisson process, and determine its rate.

(ii) A Poisson process of rate λ is observed by someone who believes that the first
holding time is longer than all subsequent holding times. How long on average will it take
before the observer is proved wrong?

2D Principles of Dynamics

(i) The trajectory x(t) of a non-relativistic particle of mass m and charge q moving
in an electromagnetic field obeys the Lorentz equation

mẍ = q(E +
ẋ
c
∧B) .

Show that this equation follows from the Lagrangian

L =
1
2
mẋ2 − q

(
φ− ẋ ·A

c

)
where φ(x, t) is the electromagnetic scalar potential and A(x, t) the vector potential, so
that

E = −1
c
Ȧ−∇φ and B = ∇ ∧A .

(ii) Let E = 0. Consider a particle moving in a constant magnetic field which points
in the z direction. Show that the particle moves in a helix about an axis pointing in the
z direction. Evaluate the radius of the helix.
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3G Functional Analysis

(i) Define the dual of a normed vector space (E, || · ||). Show that the dual is always
a complete normed space.

Prove that the vector space `1, consisting of those real sequences (xn)∞n=1 for which
the norm

||(xn)||1 =
∞∑

n=1

|xn|

is finite, has the vector space `∞ of all bounded sequences as its dual.

(ii) State the Stone–Weierstrass approximation theorem.

Let K be a compact subset of Rn. Show that every f ∈ CR(K) can be uniformly
approximated by a sequence of polynomials in n variables.

Let f be a continuous function on [0, 1]× [0, 1]. Deduce that∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy =

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx .

4F Groups, Rings and Fields

(i) In each of the following two cases, determine a highest common factor in Z[i]:

(a) 3 + 4i, 4− 3i;

(b) 3 + 4i, 1 + 2i.

(ii) State and prove the Eisenstein criterion for irreducibility of polynomials with
integer coefficients. Show that, if p is prime, the polynomial

1 + x + · · ·+ xp−1

is irreducible over Z.
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5A Electromagnetism

(i) A plane electromagnetic wave has electric and magnetic fields

E = E0 ei(k·r−ωt) , B = B0 ei(k·r−ωt) (∗)

for constant vectors E0,B0, constant positive angular frequency ω and constant wave-
vector k. Write down the vacuum Maxwell equations and show that they imply

k ·E0 = 0 , k ·B0 = 0 , ωB0 = k×E0 .

Show also that |k| = ω/c, where c is the speed of light.

(ii) State the boundary conditions on E and B at the surface S of a perfect conductor.
Let σ be the surface charge density and s the surface current density on S. How are σ
and s related to E and B?

A plane electromagnetic wave is incident from the half-space x < 0 upon the surface
x = 0 of a perfectly conducting medium in x > 0. Given that the electric and magnetic
fields of the incident wave take the form (∗) with

k = k(cos θ, sin θ, 0) (0 < θ < π/2)

and
E0 = λ (− sin θ, cos θ, 0) ,

find B0.

Reflection of the incident wave at x = 0 produces a reflected wave with electric
field

E′0 ei(k′·r−ωt)

with
k′ = k(− cos θ, sin θ, 0).

By considering the boundary conditions at x = 0 on the total electric field, show that

E′0 = −λ (sin θ, cos θ, 0) .

Show further that the electric charge density on the surface x = 0 takes the form

σ = σ0e
ik(y sin θ−ct)

for a constant σ0 that you should determine. Find the magnetic field of the reflected wave
and hence the surface current density s on the surface x = 0.
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6D Dynamics of Differential Equations

(i) What is a Liapunov function?

Consider the second order ODE

ẋ = y , ẏ = −y − sin3 x .

By finding a suitable Liapunov function of the form V (x, y) = f(x) + g(y), where f and
g are to be determined, show that the origin is asymptotically stable. Using your form
of V , find the greatest value of y0 such that a trajectory through (0, y0) is guaranteed to
tend to the origin as t →∞.

[Any theorems you use need not be proved but should be clearly stated.]

(ii) Explain the use of the stroboscopic method for investigating the dynamics of
equations of the form ẍ+x = εf(x, ẋ, t), when |ε| � 1. In particular, for x = R cos(t+ θ),
ẋ = −R sin(t + θ) derive the equations, correct to order ε,

Ṙ = −ε〈f sin(t + θ)〉 , Rθ̇ = −ε〈f cos(t + θ)〉, (∗)

where the brackets denote an average over the period of the unperturbed oscillator.

Find the form of the right hand sides of these equations explicitly when f =
Γx2 cos t−3qx, where Γ > 0, q 6= 0. Show that apart from the origin there is another fixed
point of (∗), and determine its stability. Sketch the trajectories in (R, θ) space in the case
q > 0. What do you deduce about the dynamics of the full equation?

[You may assume that 〈cos2 t〉 = 1
2 , 〈cos4 t〉 = 3

8 , 〈cos2 t sin2 t〉 = 1
8 .]

7H Geometry of Surfaces

(i) What are geodesic polar coordinates at a point P on a surface M with a
Riemannian metric ds2 ?

Assume that
ds2 = dr2 + H(r, θ)2dθ2,

for geodesic polar coordinates r, θ and some function H. What can you say about H and
dH/dr at r = 0?

(ii) Given that the Gaussian curvature K may be computed by the formula
K = −H−1∂2H/∂r2, show that for small R the area of the geodesic disc of radius R
centred at P is

πR2 − (π/12)KR4 + a(R),

where a(R) is a function satisfying lim
R→0

a(R)/R4 = 0.
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8F Graph Theory

(i) State and prove a result of Euler relating the number of vertices, edges and faces
of a plane graph. Use this result to exhibit a non-planar graph.

(ii) State the vertex form of Menger’s Theorem and explain how it follows from an
appropriate version of the Max-flow-min-cut Theorem. Let k > 2. Show that every
k-connected graph of order at least 2k contains a cycle of length at least 2k.

9F Coding and Cryptography

(i) Answer the following questions briefly but clearly.

(a) How does coding theory apply when the error rate p > 1/2?

(b) Give an example of a code which is not a linear code.

(c) Give an example of a linear code which is not a cyclic code.

(d) Give an example of a general feedback register with output kj , and initial fill
(k0, k1, . . . , kN ), such that

(kn, kn+1, . . . , kn+N ) 6= (k0, k1, . . . , kN )

for all n > 1.

(e) Explain why the original Hamming code can not always correct two errors.

(ii) Describe the Rabin–Williams scheme for coding a message x as x2 modulo a certain
N . Show that, if N is chosen appropriately, breaking this code is equivalent to factorising
the product of two primes.
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10I Algorithms and Networks

(i) Consider a network with node set N and set of directed arcs A equipped with
functions d+ : A → Z and d− : A → Z with d− 6 d+. Given u : N → R we define the
differential ∆u : A → R by ∆u(j) = u(i′) − u(i) for j = (i, i′) ∈ A. We say that ∆u is a
feasible differential if

d−(j) 6 ∆u(j) 6 d+(j) for all j ∈ A.

Write down a necessary and sufficient condition on d+, d− for the existence of a feasible
differential and prove its necessity.

Assuming Minty’s Lemma, describe an algorithm to construct a feasible differential
and outline how this algorithm establishes the sufficiency of the condition you have given.

(ii) Let E ⊆ S × T , where S, T are finite sets. A matching in E is a subset M ⊆ E
such that, for all s, s′ ∈ S and t, t′ ∈ T ,

(s, t), (s′, t) ∈ M implies s = s′

(s, t), (s, t′) ∈ M implies t = t′ .

A matching M is maximal if for any other matching M ′ with M ⊆ M ′ we must have
M = M ′. Formulate the problem of finding a maximal matching in E in terms of an
optimal distribution problem on a suitably defined network, and hence in terms of a
standard linear optimization problem.

[You may assume that the optimal distribution subject to integer constraints is integer-
valued.]

11I Principles of Statistics

(i) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.

(ii) Let Y1, Y2 be independent random variables, both uniformly distributed on
(θ − 1

2 , θ + 1
2 ). Find a minimal sufficient statistic for θ. Let Y(1) = min{Y1, Y2},

Y(2) = max{Y1, Y2}. Show that R = Y(2) − Y(1) is ancilliary and explain why the
Conditionality Principle would lead to inference about θ being drawn from the conditional
distribution of 1

2{Y(1) + Y(2)} given R. Find the form of this conditional distribution.
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12I Computational Statistics and Statistical Modelling

(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi , log µi = α + βti , for i = 1, . . . , n ,

where α, β are two unknown parameters, and t1, . . . , tn are given covariates, each of
dimension 1. Find equations for α̂, β̂, the maximum likelihood estimators of α, β, and
show how an estimate of var(β̂) may be derived, quoting any standard theorems you may
need.

(ii) By 31 December 2001, the number of new vCJD patients, classified by reported
calendar year of onset, were

8, 10, 11, 14, 17, 29, 23

for the years
1994, . . . , 2000 respectively.

Discuss carefully the (slightly edited) R output for these data given below, quoting
any standard theorems you may need.

> year

year

[1] 1994 1995 1996 1997 1998 1999 2000

> tot

[1] 8 10 11 14 17 29 23

>first.glm _ glm(tot ~ year, family = poisson)

> summary(first.glm)

Call:

glm(formula = tot ~ year, family = poisson)

Coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -407.81285 99.35366 -4.105 4.05e-05

year 0.20556 0.04973 4.133 3.57e-05

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 20.7753 on 6 degrees of freedom

Residual deviance: 2.7931 on 5 degrees of freedom

Number of Fisher Scoring iterations: 3
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13C Foundations of Quantum Mechanics

(i) Define the Heisenberg picture of quantum mechanics in relation to the Schrödinger
picture. Explain how the two pictures provide equivalent descriptions of observable results.

Derive the equation of motion for an operator in the Heisenberg picture.

(ii) For a particle moving in one dimension, the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂),

where x̂ and p̂ are the position and momentum operators, and the state vector is |Ψ〉.
Eigenstates of x̂ and p̂ satisfy

〈x|p〉 =
(

1
2π~

)1/2

eipx/~, 〈x|x′〉 = δ(x− x′), 〈p|p′〉 = δ(p− p′) .

Use standard methods in the Dirac formalism to show that

〈x|p̂|x′〉 = −i~
∂

∂x
δ(x− x′)

〈p|x̂|p′〉 = i~
∂

∂p
δ(p− p′) .

Calculate 〈x|Ĥ|x′〉 and express 〈x|p̂|Ψ〉, 〈x|Ĥ|Ψ〉 in terms of the position space wave
function Ψ(x).

Compute the momentum space Hamiltonian for the harmonic oscillator with
potential V (x̂) = 1

2mω2x̂2.
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14C Quantum Physics

(i) A system of N distinguishable non-interacting particles has energy levels Ei with
degeneracy gi, 1 6 i < ∞, for each particle. Show that in thermal equilibrium the number
of particles Ni with energy Ei is given by

Ni = gie
−β(Ei−µ),

where β and µ are parameters whose physical significance should be briefly explained.

A gas comprises a set of atoms with non-degenerate energy levels Ei, 1 6 i < ∞ .
Assume that the gas is dilute and the motion of the atoms can be neglected. For such a gas
the atoms can be treated as distinguishable. Show that when the system is at temperature
T , the number of atoms Ni at level i and the number Nj at level j satisfy

Ni

Nj
= e−(Ei−Ej)/kT ,

where k is Boltzmann’s constant.

(ii) A system of bosons has a set of energy levels Wa with degeneracy fa, 1 6 a < ∞,
for each particle. In thermal equilibrium at temperature T the number na of particles in
level a is

na =
fa

e(Wa−µ)/kT − 1
.

What is the value of µ when the particles are photons?

Given that the density of states ρ(ω) for photons of frequency ω in a cubical box
of side L is

ρ(ω) = L3 ω2

π2c3
,

where c is the speed of light, show that at temperature T the density of photons in the
frequency range ω → ω + dω is n(ω)dω where

n(ω) =
ω2

π2c3

1
e~ω/kT − 1

.

Deduce the energy density, ε(ω), for photons of frequency ω .

The cubical box is occupied by the gas of atoms described in Part (i) in the presence
of photons at temperature T . Consider the two atomic levels i and j where Ei > Ej and
Ei − Ej = ~ω. The rate of spontaneous photon emission for the transition i → j is Aij .
The rate of absorption is Bji ε(ω) and the rate of stimulated emission is Bij ε(ω) . Show
that the requirement that these processes maintain the atoms and photons in thermal
equilibrium yields the relations

Bij = Bji

and

Aij =
(

~ω3

π2c3

)
Bij .
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15A General Relativity

(i) What is a “stationary” metric? What distinguishes a stationary metric from a
“static” metric?

A Killing vector field Ka of a metric gab satisfies

Ka;b + Kb;a = 0.

Show that this is equivalent to

gab,cK
c + gacK

c
,b + gcbK

c
,a = 0.

Hence show that a constant vector field Ka with one non-zero component, K4 say, is a
Killing vector field if gab is independent of x4.

(ii) Given that Ka is a Killing vector field, show that Kaua is constant along the
geodesic worldline of a massive particle with 4-velocity ua. Hence find the energy ε of a
particle of unit mass moving in a static spacetime with metric

ds2 = hijdxidxj − e2Udt2,

where hij and U are functions only of the space coordinates xi. By considering a particle
with speed small compared with that of light, and given that U � 1, show that hij = δij

to lowest order in the Newtonian approximation, and that U is the Newtonian potential.

A metric admits an antisymmetric tensor Yab satisfying

Yab;c + Yac;b = 0.

Given a geodesic xa(λ), let sa = Yab ẋb. Show that sa is parallelly propagated along the
geodesic, and that it is orthogonal to the tangent vector of the geodesic. Hence show that
the scalar

φ = sasa

is constant along the geodesic.
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16E Theoretical Geophysics

(i) Explain briefly what is meant by the concepts of hydrostatic equilibrium and
the buoyancy frequency. Evaluate an expression for the buoyancy frequency in an
incompressible inviscid fluid with stable density profile ρ(z).

(ii) Explain briefly what is meant by the Boussinesq approximation.

Write down the equations describing motions of small amplitude in an incompress-
ible, stratified, Boussinesq fluid of constant buoyancy frequency.

Derive the resulting dispersion relationship for plane wave motion. Show that there
is a maximum frequency for the waves and explain briefly why this is the case.

What would be the response to a solid body oscillating at a frequency in excess of
the maximum?

17B Mathematical Methods

(i) Explain how to solve the Fredholm integral equation of the second kind,

f(x) = µ

∫ b

a

K(x, t)f(t)dt + g(x) ,

in the case where K(x, t) is of the separable (degenerate) form

K(x, t) = a1(x)b1(t) + a2(x)b2(t) .

(ii) For what values of the real constants λ and A does the equation

u(x) = λ sinx + A

∫ π

0

(cos x cos t + cos 2x cos 2t) u(t)dt

have (a) a unique solution, (b) no solution?
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18B Nonlinear Waves and Integrable Systems

(i) Write down the shock condition associated with the equation

ρt + qx = 0,

where q = q(ρ). Discuss briefly two possible heuristic approaches to justifying this shock
condition.

(ii) According to shallow water theory, waves on a uniformly sloping beach are
described by the equations

∂h

∂t
+

∂

∂x
(hu) = 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, h = αx + η,

where α is the constant slope of the beach, g is the gravitational acceleration, u(x, t) is
the fluid velocity, and η(x, t) is the elevation of the fluid surface above the undisturbed
level.

Find the characteristic velocities and the characteristic form of the equations.

What are the Riemann variables and how do they vary with t on the characteristics?

19E Numerical Analysis

(i) Explain briefly what is meant by the convergence of a numerical method for
ordinary differential equations.

(ii) Suppose the sufficiently-smooth function f : R × Rd → Rd obeys the Lipschitz
condition: there exists λ > 0 such that

||f(t,x)− f(t,y)|| 6 λ||x− y||, x,y ∈ Rd, t > 0 .

Prove from first principles, without using the Dahlquist equivalence theorem, that the
trapezoidal rule

yn+1 = yn +
1
2
h[f(tn,yn) + f(tn+1,yn+1)]

for the solution of the ordinary differential equation

y′ = f(t,y), t > 0, y(0) = y0,

converges.
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