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Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i). Additional credit will be given for a
substantially complete answer to either Part.

Begin each answer on a separate sheet.

Write legibly and on only one side of the paper.

At the end of the examination:

Tie your answers in separate bundles, marked A, B, C, . . . , J according to the
letter affixed to each question. (For example, 4F, 8F should be in one bundle and
1J, 11J in another bundle.)

Attach a completed cover sheet to each bundle listing the Parts of questions at-
tempted.

Complete a master cover sheet listing separately all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1J Markov Chains

(i) Let (Xn, Yn)n>0 be a simple symmetric random walk in Z2, starting from (0, 0),
and set T = inf{n > 0 : max{|Xn|, |Yn|} = 2}. Determine the quantities E(T ) and
P(XT = 2 and YT = 0).

(ii) Let (Xn)n>0 be a discrete-time Markov chain with state-space I and transition
matrix P . What does it mean to say that a state i ∈ I is recurrent? Prove that i is
recurrent if and only if

∑∞
n=0 p

(n)
ii = ∞, where p

(n)
ii denotes the (i, i) entry in Pn.

Show that the simple symmetric random walk in Z2 is recurrent.

2D Principles of Dynamics

(i) Consider N particles moving in 3 dimensions. The Cartesian coordinates of these
particles are xA(t), A = 1, . . . , 3N . Now consider an invertible change of coordinates to
coordinates qa(xA, t), a = 1, . . . , 3N , so that one may express xA as xA(qa, t). Show
that the velocity of the system in Cartesian coordinates ẋA(t) is given by the following
expression:

ẋA(q̇a, qa, t) =
3N∑
b=1

q̇b ∂xA

∂qb
(qa, t) +

∂xA

∂t
(qa, t) .

Furthermore, show that Lagrange’s equations in the two coordinate systems are
related via

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
=

3N∑
A=1

∂xA

∂qa

(
∂L

∂xA
− d

dt

∂L

∂ẋA

)
.

(ii) Now consider the case where there are p < 3N constraints applied, f `(xA, t) =
0, ` = 1, . . . , p. By considering the f `, ` = 1, . . . , p, and a set of independent coordinates
qa, a = 1, . . . , 3N − p, as a set of 3N new coordinates, show that the Lagrange equations
of the constrained system, i.e.

∂L

∂xA
− d

dt

(
∂L

∂ẋA

)
+

p∑
`=1

λ` ∂f `

∂xA
= 0, A = 1, . . . , 3N,

f ` = 0, ` = 1, . . . , p,

(where the λ` are Lagrange multipliers) imply Lagrange’s equations for the unconstrained
coordinates, i.e.

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0, a = 1, . . . , 3N − p .
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3G Functional Analysis

(i) Let T : H1 → H2 be a continuous linear map between two Hilbert spaces H1,H2.
Define the adjoint T ∗ of T . Explain what it means to say that T is Hermitian or unitary.

Let φ : R → C be a bounded continuous function. Show that the map

T : L2(R) → L2(R)

with Tf(x) = φ(x)f(x + 1) is a continuous linear map and find its adjoint. When is T
Hermitian? When is it unitary?

(ii) Let C be a closed, non-empty, convex subset of a real Hilbert space H. Show that
there exists a unique point xo ∈ C with minimal norm. Show that xo is characterised by
the property

〈xo − x, xo〉 6 0 for all x ∈ C .

Does this result still hold when C is not closed or when C is not convex? Justify your
answers.

4F Groups, Rings and Fields

(i) Let p be a prime number. Show that a group G of order pn (n > 2) has a nontrivial
normal subgroup, that is, G is not a simple group.

(ii) Let p and q be primes, p > q. Show that a group G of order pq has a normal
Sylow p-subgroup. If G has also a normal Sylow q-subgroup, show that G is cyclic. Give
a necessary and sufficient condition on p and q for the existence of a non-abelian group of
order pq. Justify your answer.

Paper 1 [TURN OVER



4

5A Electromagnetism

(i) Using Maxwell’s equations as they apply to magnetostatics, show that the magnetic
field B can be described in terms of a vector potential A on which the condition ∇·A = 0
may be imposed. Hence derive an expression, valid at any point in space, for the vector
potential due to a steady current distribution of density j that is non-zero only within a
finite domain.

(ii) Verify that the vector potential A that you found in Part (i) satisfies ∇ ·A = 0,
and use it to obtain the Biot–Savart law expression for B. What is the corresponding
result for a steady surface current distribution of density s?

In cylindrical polar coordinates (ρ, φ, z) (oriented so that eρ × eφ = ez) a surface
current

s = s(ρ)eφ

flows in the plane z = 0. Given that

s(ρ) =

{
4I

(
1 + a2

ρ2

) 1
2

a 6 ρ 6 3a

0 otherwise

show that the magnetic field at the point r = aez has z-component

Bz = µ0I log 5 .

State, with justification, the full result for B at the point r = aez.

6D Dynamics of Differential Equations

(i) State and prove Dulac’s Criterion for the non-existence of periodic orbits in R2.
Hence show (choosing a weighting factor of the form xαyβ) that there are no periodic
orbits of the equations

ẋ = x(2− 6x2 − 5y2) , ẏ = y(−3 + 10x2 + 3y2) .

(ii) State the Poincaré–Bendixson Theorem. A model of a chemical reaction (the
Brusselator) is defined by the second order system

ẋ = a− x(1 + b) + x2y , ẏ = bx− x2y,

where a, b are positive parameters. Show that there is a unique fixed point. Show that, for
a suitable choice of p > 0, trajectories enter the closed region bounded by x = p, y = b/p,
x + y = a + b/p and y = 0. Deduce that when b > 1 + a2, the system has a periodic orbit.
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7H Logic, Computation and Set Theory

(i) State Zorn’s Lemma. Use Zorn’s Lemma to prove that every real vector space has
a basis.

(ii) State the Bourbaki–Witt Theorem, and use it to prove Zorn’s Lemma, making
clear where in the argument you appeal to the Axiom of Choice.

Conversely, deduce the Bourbaki–Witt Theorem from Zorn’s Lemma.

If X is a non-empty poset in which every chain has an upper bound, must X be
chain-complete?

8F Graph Theory

(i) State Brooks’ Theorem, and prove it in the case of a 3-connected graph.

(ii) Let G be a bipartite graph, with vertex classes X and Y , each of order n. If G
contains no cycle of length 4 show that

e(G) 6
n

2
(1 +

√
4n− 3).

For which integers n ≤ 12 are there examples where equality holds?

9G Number Theory

(i) Let p be an odd prime and k a strictly positive integer. Prove that the
multiplicative group of relatively prime residue classes modulo pk is cyclic.

[You may assume that the result is true for k = 1.]

(ii) Let n = p1p2 . . . pr, where r > 2 and p1, p2, . . . , pr are distinct odd primes. Let B
denote the set of all integers which are relatively prime to n. We recall that n is said to
be an Euler pseudo-prime to the base b ∈ B if

b(n−1)/2 ≡
(

b

n

)
mod n .

If n is an Euler pseudo-prime to the base b1 ∈ B, but is not an Euler pseudo-prime to the
base b2 ∈ B, prove that n is not an Euler pseudo-prime to the base b1b2. Let p denote
any of the primes p1, p2, . . . , pr. Prove that there exists a b ∈ B such that(

b

p

)
= −1 and b ≡ 1 mod n/p ,

and deduce that n is not an Euler pseudo-prime to this base b. Hence prove that n is not
an Euler pseudo-prime to the base b for at least half of all the relatively prime residue
classes b mod n.

Paper 1 [TURN OVER



6

10F Coding and Cryptography

(i) We work over the field of two elements. Define what is meant by a linear code of
length n. What is meant by a generator matrix for a linear code?

Define what is meant by a parity check code of length n. Show that a code is linear
if and only if it is a parity check code.

Give the original Hamming code in terms of parity checks and then find a generator
matrix for it.

[You may use results from the theory of vector spaces provided that you quote them
correctly.]

(ii) Suppose that 1/4 > δ > 0 and let α(n, nδ) be the largest information rate of any
binary error correcting code of length n which can correct [nδ] errors.

Show that
1−H(2δ) 6 lim inf

n→∞
α(n, nδ) 6 1−H(δ)

where
H(η) = −η log2 η − (1− η) log2(1− η).

[You may assume any form of Stirling’s theorem provided that you quote it correctly.]
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11J Stochastic Financial Models

(i) In the context of a single-period financial market with d traded assets, what is an
arbitrage? What is an equivalent martingale measure?

A simple single-period financial market contains two assets, S0 (a bond), and S1

(a share). The period can be good, bad, or indifferent, with probabilities 1/3 each. At the
beginning of the period, time 0, both assets are worth 1, i.e.

S0
0 = 1 = S1

0 ,

and at the end of the period, time 1, the share is worth

S1
1 =

{
a if the period was bad,
b if the period was indifferent,
c if the period was good,

where a < b < c. The bond is always worth 1 at the end of the period. Show that there
is no arbitrage in this market if and only if a < 1 < c.

(ii) An agent with C2 strictly increasing strictly concave utility U has wealth w0 at
time 0, and wishes to invest his wealth in shares and bonds so as to maximise his expected
utility of wealth at time 1. Explain how the solution to his optimisation problem generates
an equivalent martingale measure.

Assume now that a = 3/4, b = 1, and c = 3/2. Characterise all equivalent
martingale measures for this problem. Characterise all equivalent martingale measures
which arise as solutions of an agent’s optimisation problem.

Calculate the largest and smallest possible prices for a European call option with
strike 1 and expiry 1, as the pricing measure ranges over all equivalent martingale measures.
Calculate the corresponding bounds when the pricing measure is restricted to the set
arising from expected-utility-maximising agents’ optimisation problems.
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12I Principles of Statistics

(i) A public health official is seeking a rational policy of vaccination against a relatively
mild ailment which causes absence from work. Surveys suggest that 60% of the population
are already immune, but accurate tests to detect vulnerability in any individual are too
costly for mass screening. A simple skin test has been developed, but is not completely
reliable. A person who is immune to the ailment will have a negligible reaction to the skin
test with probability 0.4, a moderate reaction with probability 0.5 and a strong reaction
with probability 0.1. For a person who is vulnerable to the ailment the corresponding
probabilities are 0.1, 0.4 and 0.5. It is estimated that the money-equivalent of work-
hours lost from failing to vaccinate a vulnerable person is 20, that the unnecessary cost of
vaccinating an immune person is 8, and that there is no cost associated with vaccinating
a vulnerable person or failing to vaccinate an immune person. On the basis of the skin
test, it must be decided whether to vaccinate or not. What is the Bayes decision rule that
the health official should adopt?

(ii) A collection of I students each sit J exams. The ability of the ith student is
represented by θi and the performance of the ith student on the jth exam is measured
by Xij . Assume that, given θ = (θ1, . . . , θI), an appropriate model is that the variables
{Xij , 1 6 i 6 I, 1 6 j 6 J} are independent, and

Xij ∼ N(θi, τ
−1),

for a known positive constant τ . It is reasonable to assume, a priori , that the θi are
independent with

θi ∼ N(µ, ζ−1),

where µ and ζ are population parameters, known from experience with previous cohorts
of students.

Compute the posterior distribution of θ given the observed exam marks vector
X = {Xij , 1 6 i 6 I, 1 6 j 6 J}.

Suppose now that τ is also unknown, but assumed to have a Gamma(α0, β0)
distribution, for known α0, β0. Compute the posterior distribution of τ given θ and X.
Find, up to a normalisation constant, the form of the marginal density of θ given X.
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13I Computational Statistics and Statistical Modelling

(i) Suppose Yi, 1 6 i 6 n, are independent binomial observations, with Yi ∼ Bi(ti, πi),
1 6 i 6 n, where t1, . . . , tn are known, and we wish to fit the model

ω : log
πi

1− πi
= µ + βT xi for each i,

where x1, . . . , xn are given covariates, each of dimension p. Let µ̂, β̂ be the maximum
likelihood estimators of µ, β. Derive equations for µ̂, β̂ and state without proof the form
of the approximate distribution of β̂.

(ii) In 1975, data were collected on the 3-year survival status of patients suffering from
a type of cancer, yielding the following table

survive?
age in years malignant yes no

under 50 no 77 10
under 50 yes 51 13

50-69 no 51 11
50-69 yes 38 20
70+ no 7 3
70+ yes 6 3

Here the second column represents whether the initial tumour was not malignant or was
malignant.

Let Yij be the number surviving, for age group i and malignancy status j, for
i = 1, 2, 3 and j = 1, 2, and let tij be the corresponding total number. Thus Y11 = 77,
t11 = 87. Assume Yij ∼ Bi(tij , πij), 1 6 i 6 3, 1 6 j 6 2. The results from fitting the
model

log(πij/(1− πij)) = µ + αi + βj

with α1 = 0, β1 = 0 give β̂2 = −0.7328 (se = 0.2985), and deviance = 0.4941. What do
you conclude?

Why do we take α1 = 0, β1 = 0 in the model?

What “residuals” should you compute, and to which distribution would you refer
them?
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14C Quantum Physics

(i) An electron of mass m and spin 1
2 moves freely inside a cubical box of side L . Verify

that the energy eigenstates of the system are φlmn(r)χ± where the spatial wavefunction
is given by

φlmn(r) =
(

2
L

)3/2

sin
(

lπx

L

)
sin

(mπy

L

)
sin

(nπz

L

)
,

and

χ+ =
(

1
0

)
, χ− =

(
0
1

)
.

Give the corresponding energy eigenvalues.

A second electron is inserted into the box. Explain how the Pauli principle
determines the structure of the wavefunctions associated with the lowest energy level
and the first excited energy level. What are the values of the energy in these two levels
and what are the corresponding degeneracies?

(ii) When the side of the box, L, is large, the number of eigenstates available to the
electron with energy in the range E → E + dE is ρ(E)dE . Show that

ρ(E) =
L3

π2~3

√
2m3E .

A large number, N , of electrons are inserted into the box. Explain how the ground state
is constructed and define the Fermi energy, EF . Show that in the ground state

N =
2
3

L3

π2~3

√
2m3 (EF )3/2

.

When a magnetic field H in the z-direction is applied to the system, an electron
with spin up acquires an additional energy +µH and an electron with spin down an energy
−µH, where −µ is the magnetic moment of the electron and µ > 0. Describe, for the case
EF > µH, the structure of the ground state of the system of N electrons in the box and
show that

N =
1
3

L3

π2~3

√
2m3

(
(EF + µH)3/2 + (EF − µH)3/2

)
.

Calculate the induced magnetic moment, M , of the ground state of the system and show
that for a weak magnetic field the magnetic moment is given by

M ≈ 3
2
N

µ2H

EF
.
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15A General Relativity

(i) The worldline xa(λ) of a massive particle moving in a spacetime with metric gab

obeys the geodesic equation

d2xa

dτ2
+

{
b
a

c

}dxb

dτ

dxc

dτ
= 0

where τ is the particle’s proper time and
{

b
a

c

}
are the Christoffel symbols; these are the

equations of motion for the Lagrangian

L1 = −m
√
−gabẋaẋb

where m is the particle’s mass, and ẋa = dxa/dλ. Why is the choice of worldline parameter
λ irrelevant? Among all possible worldlines passing through points A and B, why is xa(λ)
the one that extremizes the proper time elapsed between A and B?

Explain how the equations of motion for a massive particle may be obtained from
the alternative Lagrangian

L2 =
1
2
gabẋ

aẋb .

What can you conclude from the fact that L2 has no explicit dependence on λ? How are
the equations of motion for a massless particle obtained from L2?

(ii) A photon moves in the Schwarzschild metric

ds2 =
(

1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
−

(
1− 2M

r

)
dt2.

Given that the motion is confined to the plane θ = π/2, obtain the radial equation(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
,

where E and h are constants, the physical meaning of which should be stated.

Setting u = 1/r, obtain the equation

d2u

dφ2
+ u = 3Mu2.

Using the approximate solution

u =
1
b

sinφ +
M

2b2
(3 + cos 2φ) + . . . ,

obtain the standard formula for the deflection of light passing far from a body of mass
M with impact parameter b. Reinstate factors of G and c to give your result in physical
units.
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16A Statistical Physics and Cosmology

(i) Explain briefly how the relative motion of galaxies in a homogeneous and isotropic
universe is described in terms of the scale factor a(t) (where t is time). In particular, show
that the relative velocity v(t) of two galaxies is given in terms of their relative displacement
r(t) by the formula v(t) = H(t)r(t), where H(t) is a function that you should determine
in terms of a(t). Given that a(0) = 0, obtain a formula for the distance R(t) to the
cosmological horizon at time t. Given further that a(t) = (t/t0)α, for 0 < α < 1 and
constant t0, compute R(t). Hence show that R(t)/a(t) → 0 as t → 0.

(ii) A homogeneous and isotropic model universe has energy density ρ(t)c2 and pressure
P (t), where c is the speed of light. The evolution of its scale factor a(t) is governed by
the Friedmann equation

ȧ2 =
8πG

3
ρa2 − kc2

where the overdot indicates differentiation with respect to t. Use the “Fluid” equation

ρ̇ = −3
(

ρ +
P

c2

) (
ȧ

a

)
to obtain an equation for the acceleration ä(t). Assuming ρ > 0 and P > 0, show that ρa3

cannot increase with time as long as ȧ > 0, nor decrease if ȧ < 0. Hence determine the
late time behaviour of a(t) for k < 0. For k > 0 show that an initially expanding universe
must collapse to a “big crunch” at which a → 0. How does ȧ behave as a → 0? Given
that P = 0, determine the form of a(t) near the big crunch. Discuss the qualitative late
time behaviour for k = 0.

Cosmological models are often assumed to have an equation of state of the form
P = σρc2 for constant σ. What physical principle requires σ 6 1? Matter with P = ρc2

(σ = 1) is called “stiff matter” by cosmologists. Given that k = 0, determine a(t) for
a universe that contains only stiff matter. In our Universe, why would you expect stiff
matter to be negligible now even if it were significant in the early Universe?

17C Symmetries and Groups in Physics

(i) Define the character χ of a representation D of a finite group G. Show that
< χ | χ >= 1 if and only if D is irreducible, where

< χ | χ >=
1

| G |
∑
g∈G

χ(g)χ(g−1) .

If | G |= 8 and < χ | χ >= 2, what are the possible dimensions of the representation
D?

(ii) State and prove Schur’s first and second lemmas.
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18E Transport Processes

(i) A solute occupying a domain V0 has concentration C(x, t) and is created at a rate
S(x, t) per unit volume; J(x, t) is the flux of solute per unit area; x, t are position and
time. Derive the transport equation

Ct +∇ · J = S.

State Fick’s Law of diffusion and hence write down the diffusion equation for C(x, t) for
a case in which the solute flux occurs solely by diffusion, with diffusivity D(x).

In a finite domain 0 6 x 6 L, D, S and the steady-state distribution of C depend
only on x; C is equal to C0 at x = 0 and C1 6= C0 at x = L. Find C(x) in the following
two cases:

(a) D = D0, S = 0,

(b) D = D1x
1/2, S = 0,

where D0 and D1 are positive constants.

Show that there is no steady solution satisfying the boundary conditions if D =
D1x, S = 0.

(ii) For the problem of Part (i), consider the case D = D0, S = kC, where D0 and
k are positive constants. Calculate the steady-state solution, C = Cs(x), assuming that√

k/D0 6= nπ/L for any integer n.

Now let

C(x, 0) = C0
sinα(L− x)

sinαL
,

where α =
√

k/D0. Find the equations, boundary and initial conditions satisfied by
C ′(x, t) = C(x, t)−Cs(x). Solve the problem using separation of variables and show that

C ′(x, t) =
∞∑

n=1

An sin
nπx

L
exp

[(
α2 − n2π2

L2

)
D0t

]
,

for some constants An. Write down an integral expression for An, show that

A1 = − 2πC1

α2L2 − π2
,

and comment on the behaviour of the solution for large times in the two cases αL < π
and αL > π.
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19E Theoretical Geophysics

(i) Explain the concepts of: traction on an element of surface; the stress tensor; the
strain tensor in an elastic medium. Derive a relationship between the two tensors for a
linear isotropic elastic medium, stating clearly any assumption you need to make.

(ii) State what is meant by an SH wave in a homogeneous isotropic elastic medium.
An SH wave in a medium with shear modulus µ and density ρ is incident at angle θ on
an interface with a medium with shear modulus µ′ and density ρ′. Evaluate the form and
amplitude of the reflected wave and transmitted wave. Comment on the case c′ sin θ/c > 1,
where c2 = µ/ρ and (c′)2 = µ′/ρ′.

20E Numerical Analysis

(i) The linear algebraic equations Au = b, where A is symmetric and positive-definite,
are solved with the Gauss–Seidel method. Prove that the iteration always converges.

(ii) The Poisson equation ∇2u = f is given in the bounded, simply connected domain
Ω ⊆ R2, with zero Dirichlet boundary conditions on ∂Ω. It is approximated by the five-
point formula

Um−1,n + Um,n−1 + Um+1,n + Um,n+1 − 4Um,n = (∆x)2fm,n,

where Um,n ≈ u(m∆x, n∆x), fm,n = f(m∆x, n∆x), and (m∆x, n∆x) is in the interior
of Ω.

Assume for the sake of simplicity that the intersection of ∂Ω with the grid consists
only of grid points, so that no special arrangements are required near the boundary. Prove
that the method can be written in a vector notation, Au = b with a negative-definite
matrix A.
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