MATHEMATICAL TRIPOS Part IB

Tuesday 3 June 2003 9 to 12

PAPER 1

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. You should attempt at most **four** questions from Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles labelled $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{H}$ according to the code letter affixed to each question, including in the same bundle questions from Sections I and II with the same code letter.

Attach a completed blue cover sheet to each bundle; write the code letter in the box marked 'SECTION' on the cover sheet.

You must also complete a green master cover sheet listing all the questions you have attempted.

Every cover sheet <u>must</u> bear your examination number and desk number.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

SECTION I

1F Analysis II

Let E be a subset of \mathbb{R}^n . Prove that the following conditions on E are equivalent:

(i) E is closed and bounded.

(ii) E has the Bolzano–Weierstrass property (i.e., every sequence in E has a subsequence convergent to a point of E).

(iii) Every continuous real-valued function on E is bounded.

[The Bolzano–Weierstrass property for bounded closed intervals in \mathbb{R}^1 may be assumed.]

2D Methods

Fermat's principle of optics states that the path of a light ray connecting two points will be such that the travel time t is a minimum. If the speed of light varies continuously in a medium and is a function c(y) of the distance from the boundary y = 0, show that the path of a light ray is given by the solution to

$$c(y)y'' + c'(y)(1 + y'^2) = 0$$

where $y' = \frac{dy}{dx}$, etc. Show that the path of a light ray in a medium where the speed of light c is a constant is a straight line. Also find the path from (0,0) to (1,0) if c(y) = y, and sketch it.

3H Statistics

Derive the least squares estimators $\hat{\alpha}$ and $\hat{\beta}$ for the coefficients of the simple linear regression model

$$Y_i = \alpha + \beta(x_i - \bar{x}) + \varepsilon_i, \qquad i = 1, \dots, n,$$

where x_1, \ldots, x_n are given constants, $\bar{x} = n^{-1} \sum_{i=1}^n x_i$, and ε_i are independent with $\mathrm{E} \varepsilon_i = 0$, $\mathrm{Var} \varepsilon_i = \sigma^2$, $i = 1, \ldots, n$.

A manufacturer of optical equipment has the following data on the unit cost (in pounds) of certain custom-made lenses and the number of units made in each order:

No. of units, x_i	1	3	5	10	12
Cost per unit, y_i	58	55	40	37	$\overline{22}$

Assuming that the conditions underlying simple linear regression analysis are met, estimate the regression coefficients and use the estimated regression equation to predict the unit cost in an order for 8 of these lenses.

[*Hint: for the data above,* $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})y_i = -257.4.$]

4F Geometry

Describe the geodesics (that is, hyperbolic straight lines) in **either** the disc model **or** the half-plane model of the hyperbolic plane. Explain what is meant by the statements that two hyperbolic lines are parallel, and that they are ultraparallel.

Show that two hyperbolic lines l and l' have a unique common perpendicular if and only if they are ultraparallel.

[You may assume standard results about the group of isometries of whichever model of the hyperbolic plane you use.]

5E Linear Mathematics

Let V be the subset of \mathbb{R}^5 consisting of all quintuples $(a_1, a_2, a_3, a_4, a_5)$ such that

$$a_1 + a_2 + a_3 + a_4 + a_5 = 0$$

and

$$a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5 = 0 \; .$$

Prove that V is a subspace of \mathbb{R}^5 . Solve the above equations for a_1 and a_2 in terms of a_3 , a_4 and a_5 . Hence, exhibit a basis for V, explaining carefully why the vectors you give form a basis.

6C Fluid Dynamics

An unsteady fluid flow has velocity field given in Cartesian coordinates (x, y, z) by $\mathbf{u} = (1, xt, 0)$, where t denotes time. Dye is released into the fluid from the origin continuously. Find the position at time t of the dye particle that was released at time s and hence show that the dye streak lies along the curve

$$y = \frac{1}{2}tx^2 - \frac{1}{6}x^3$$

7B Complex Methods

Let u(x, y) and v(x, y) be a pair of conjugate harmonic functions in a domain D. Prove that

$$U(x,y) = e^{-2uv} \cos(u^2 - v^2)$$
 and $V(x,y) = e^{-2uv} \sin(u^2 - v^2)$

also form a pair of conjugate harmonic functions in D.

[TURN OVER

8G Quadratic Mathematics

Let U and V be finite-dimensional vector spaces. Suppose that b and c are bilinear forms on $U \times V$ and that b is non-degenerate. Show that there exist linear endomorphisms S of U and T of V such that c(x, y) = b(S(x), y) = b(x, T(y)) for all $(x, y) \in U \times V$.

9A Quantum Mechanics

A particle of mass m is confined inside a one-dimensional box of length a. Determine the possible energy eigenvalues.

SECTION II

10F Analysis II

Explain briefly what is meant by a *metric space*, and by a *Cauchy sequence* in a metric space.

A function $d: X \times X \to \mathbb{R}$ is called a pseudometric on X if it satisfies all the conditions for a metric except the requirement that d(x, y) = 0 implies x = y. If d is a pseudometric on X, show that the binary relation R on X defined by $x R y \Leftrightarrow d(x, y) = 0$ is an equivalence relation, and that the function d induces a metric on the set X/R of equivalence classes.

Now let (X, d) be a metric space. If (x_n) and (y_n) are Cauchy sequences in X, show that the sequence whose *n*th term is $d(x_n, y_n)$ is a Cauchy sequence of real numbers. Deduce that the function \overline{d} defined by

$$\overline{d}((x_n), (y_n)) = \lim_{n \to \infty} d(x_n, y_n)$$

is a pseudometric on the set C of all Cauchy sequences in X. Show also that there is an isometric embedding (that is, a distance-preserving mapping) $X \to C/R$, where R is the equivalence relation on C induced by the pseudometric \overline{d} as in the previous paragraph. Under what conditions on X is $X \to C/R$ bijective? Justify your answer.

11D Methods

(a) Determine the Green's function $G(x,\xi)$ for the operator $\frac{d^2}{dx^2} + k^2$ on $[0,\pi]$ with Dirichlet boundary conditions by solving the boundary value problem

$$\frac{d^2G}{dx^2} + k^2G = \delta(x-\xi) , \quad G(0) = 0, \ G(\pi) = 0$$

when k is not an integer.

(b) Use the method of Green's functions to solve the boundary value problem

$$\frac{d^2y}{dx^2} + k^2y = f(x) , \quad y(0) = a, \ y(\pi) = b$$

when k is not an integer.

Paper 1

[TURN OVER

12H Statistics

Suppose that six observations X_1, \ldots, X_6 are selected at random from a normal distribution for which both the mean μ_X and the variance σ_X^2 are unknown, and it is found that $S_{XX} = \sum_{i=1}^6 (x_i - \bar{x})^2 = 30$, where $\bar{x} = \frac{1}{6} \sum_{i=1}^6 x_i$. Suppose also that 21 observations Y_1, \ldots, Y_{21} are selected at random from another normal distribution for which both the mean μ_Y and the variance σ_Y^2 are unknown, and it is found that $S_{YY} = 40$. Derive carefully the likelihood ratio test of the hypothesis H_0 : $\sigma_X^2 = \sigma_Y^2$ against H_1 : $\sigma_X^2 > \sigma_Y^2$ and apply it to the data above at the 0.05 level.

[Hint:

Distribution	χ_5^2	χ_6^2	χ^2_{20}	χ^2_{21}	$F_{5,20}$	$F_{6,21}$	
$95\% \ percentile$	11.07	12.59	31.41	32.68	2.71	2.57]

13F Geometry

Write down the Riemannian metric in the half-plane model of the hyperbolic plane. Show that Möbius transformations mapping the upper half-plane to itself are isometries of this model.

Calculate the hyperbolic distance from ib to ic, where b and c are positive real numbers. Assuming that the hyperbolic circle with centre ib and radius r is a Euclidean circle, find its Euclidean centre and radius.

Suppose that a and b are positive real numbers for which the points ib and a + ib of the upper half-plane are such that the hyperbolic distance between them coincides with the Euclidean distance. Obtain an expression for b as a function of a. Hence show that, for any b with 0 < b < 1, there is a unique positive value of a such that the hyperbolic distance between ib and a + ib coincides with the Euclidean distance.

14E Linear Mathematics

(a) Let U, U' be subspaces of a finite-dimensional vector space V. Prove that $\dim(U+U') = \dim U + \dim U' - \dim(U \cap U').$

(b) Let V and W be finite-dimensional vector spaces and let α and β be linear maps from V to W. Prove that

$$\operatorname{rank}(\alpha + \beta) \leq \operatorname{rank} \alpha + \operatorname{rank} \beta$$
.

(c) Deduce from this result that

 $\operatorname{rank}(\alpha + \beta) \ge |\operatorname{rank} \alpha - \operatorname{rank} \beta|$.

(d) Let $V = W = \mathbb{R}^n$ and suppose that $1 \leq r \leq s \leq n$. Exhibit linear maps $\alpha, \beta \colon V \to W$ such that rank $\alpha = r$, rank $\beta = s$ and rank $(\alpha + \beta) = s - r$. Suppose that $r + s \geq n$. Exhibit linear maps $\alpha, \beta \colon V \to W$ such that rank $\alpha = r$, rank $\beta = s$ and rank $(\alpha + \beta) = n$.

6

7

15C Fluid Dynamics

Starting from the Euler equations for incompressible, inviscid flow

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p, \qquad \nabla \cdot \mathbf{u} = 0,$$

derive the vorticity equation governing the evolution of the vorticity $\boldsymbol{\omega} = \nabla \times \mathbf{u}$.

Consider the flow

$$\mathbf{u} = \beta(-x, -y, 2z) + \Omega(t)(-y, x, 0),$$

in Cartesian coordinates (x, y, z), where t is time and β is a constant. Compute the vorticity and show that it evolves in time according to

$$\boldsymbol{\omega} = \omega_0 \mathrm{e}^{2\beta t} \mathbf{k},$$

where ω_0 is the initial magnitude of the vorticity and **k** is a unit vector in the z-direction.

Show that the material curve C(t) that takes the form

$$x^2 + y^2 = 1 \quad \text{and} \quad z = 1$$

at t = 0 is given later by

$$x^{2} + y^{2} = a^{2}(t)$$
 and $z = \frac{1}{a^{2}(t)}$,

where the function a(t) is to be determined.

Calculate the circulation of ${\bf u}$ around C and state how this illustrates Kelvin's circulation theorem.

16B Complex Methods

Sketch the region A which is the intersection of the discs

 $D_0 = \{z \in \mathbb{C} : |z| < 1\}$ and $D_1 = \{z \in \mathbb{C} : |z - (1 + i)| < 1\}.$

Find a conformal mapping that maps A onto the right half-plane $H = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$. Also find a conformal mapping that maps A onto D_0 .

[Hint: You may find it useful to consider maps of the form $w(z) = \frac{az+b}{cz+d}$.]

8

17G Quadratic Mathematics

(a) Suppose p is an odd prime and a an integer coprime to p. Define the Legendre symbol $\left(\frac{a}{n}\right)$ and state Euler's criterion.

(b) Compute $\left(\frac{-1}{p}\right)$ and prove that

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

whenever a and b are coprime to p.

(c) Let n be any integer such that $1 \leq n \leq p-2$. Let m be the unique integer such that $1 \leq m \leq p-2$ and $mn \equiv 1 \pmod{p}$. Prove that

$$\left(\frac{n(n+1)}{p}\right) = \left(\frac{1+m}{p}\right) \,.$$

(d) Find

$$\sum_{n=1}^{p-2} \left(\frac{n(n+1)}{p} \right) \, .$$

18A Quantum Mechanics

What is the significance of the expectation value

$$\langle Q \rangle = \int \psi^*(x) \ Q \ \psi(x) dx$$

of an observable Q in the normalized state $\psi(x)$? Let Q and P be two observables. By considering the norm of $(Q + i\lambda P)\psi$ for real values of λ , show that

$$\langle Q^2 \rangle \langle P^2 \rangle \ge \frac{1}{4} |\langle [Q, P] \rangle|^2$$
.

The uncertainty ΔQ of Q in the state $\psi(x)$ is defined as

$$(\Delta Q)^2 = \langle (Q - \langle Q \rangle)^2 \rangle.$$

Deduce the generalized uncertainty relation,

$$\Delta Q \Delta P \ge \frac{1}{2} |\langle [Q, P] \rangle|.$$

A particle of mass m moves in one dimension under the influence of the potential $\frac{1}{2}m\omega^2 x^2$. By considering the commutator [x, p], show that the expectation value of the Hamiltonian satisfies

$$\langle H \rangle \geqslant \frac{1}{2} \hbar \omega$$
 .