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A2/7 Geometry of Surfaces

(i)

Consider the surface

z =
1
2
(λx2 + µy2) + h(x, y),

where h(x, y) is a term of order at least 3 in x, y. Calculate the first fundamental form at
x = y = 0.

(ii) Calculate the second fundamental form, at x = y = 0, of the surface given in
Part (i). Calculate the Gaussian curvature. Explain why your answer is consistent with
Gauss’ “Theorema Egregium”.

A3/7 Geometry of Surfaces

(i) State what it means for surfaces f : U → R3 and g : V → R3 to be isometric.

Let f : U → R3 be a surface, φ : V → U a diffeomorphism, and let g = f ◦ φ : V →
R3.

State a formula comparing the first fundamental forms of f and g.

(ii) Give a proof of the formula referred to at the end of part (i). Deduce that
“isometry” is an equivalence relation.

The catenoid and the helicoid are the surfaces defined by

(u, v) → (u cos v, u sin v, v)

and
(ϑ, z) → (cosh z cosϑ, cosh z sinϑ, z).

Show that the catenoid and the helicoid are isometric.

A4/7 Geometry of Surfaces

Write an essay on the Euler number of topological surfaces. Your essay should
include a definition of subdivision, some examples of surfaces and their Euler numbers,
and a discussion of the statement and significance of the Gauss–Bonnet theorem.
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A1/8 Graph Theory

(i) State and prove a necessary and sufficient condition for a graph to be Eulerian
(that is, to have an Eulerian circuit).

Prove that, given any connected non-Eulerian graph G, there is an Eulerian graph
H and a vertex v ∈ H such that G = H − v.

(ii) Let G be a connected plane graph with n vertices, e edges and f faces. Prove that
n− e+ f = 2. Deduce that e ≤ g(n− 2)/(g − 2), where g is the smallest face size.

The crossing number c(G) of a non-planar graph G is the minimum number of edge-
crossings needed when drawing the graph in the plane. (The crossing of three edges at the
same point is not allowed.) Show that if G has n vertices and e edges then c(G) ≥ e−3n+6.
Find c(K6).

A2/8 Graph Theory

(i) Define the chromatic polynomial p(G ; t) of the graph G, and establish the standard
identity

p(G ; t) = p(G− e ; t) − p(G/e ; t),

where e is an edge of G. Deduce that, if G has n vertices and m edges, then

p(G ; t) = ant
n − an−1t

n−1 + an−2t
n−2 + . . .+ (−1)na0 ,

where an = 1, an−1 = m and aj ≥ 0 for 0 ≤ j ≤ n.

(ii) Let G and p(G ; t) be as in Part (i). Show that if G has k components G1, . . . , Gk

then p(G ; t) =
∏k

i=1 p(Gi ; t) . Deduce that ak > 0 and aj = 0 for 0 ≤ j < k.

Show that if G is a tree then p(G ; t) = t(t−1)n−1. Must the converse hold? Justify
your answer.

Show that if p(G ; t) = p(Tr(n) ; t), where Tr(n) is a Turán graph, then G = Tr(n).

A4/9 Graph Theory

Write an essay on connectivity in graphs.

Your essay should include proofs of at least two major theorems, along with a
discussion of one or two significant corollaries.
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A1/9 Number Theory

(i) Let p be a prime number. Prove that the multiplicative group of the field with p
elements is cyclic.

(ii) Let p be an odd prime, and let k > 1 be an integer. Prove that we have
x2 ≡ 1 mod pk if and only if either x ≡ 1 mod pk or x ≡ −1 mod pk. Is this statement true
when p = 2?

Let m be an odd positive integer, and let r be the number of distinct prime factors
of m. Prove that there are precisely 2r different integers x satisfying x2 ≡ 1 modm and
0 < x < m.

A3/9 Number Theory

(i) Let π(x) denote the number of primes 6 x, where x is a positive real number.
State and prove Legendre’s formula relating π(x) to π(

√
x). Use this formula to compute

π(100)− π(10).

(ii) Let ζ(s) =
∑∞

n=1 n
−s, where s is a real number greater than 1. Prove the following

two assertions rigorously, assuming always that s > 1.

(a) ζ(s) =
∏
p

(1− p−s)−1, where the product is taken over all primes p;

(b) ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
.

Explain why (b) enables us to define ζ(s) for 0 < s < 1. Deduce from (b) that
lim
s→1

(s− 1)ζ(s) = 1.

A4/10 Number Theory

Write an essay on quadratic reciprocity. Your essay should include (i) a proof of the
law of quadratic reciprocity for the Legendre symbol, (ii) a proof of the law of quadratic
reciprocity for the Jacobi symbol, and (iii) a comment on why this latter law is useful in
primality testing.
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A1/10 Coding and Cryptography

(i) Describe the original Hamming code of length 7. Show how to encode a message
word, and how to decode a received word involving at most one error. Explain why the
procedure works.

(ii) What is a linear binary code? What is its dual code? What is a cyclic binary
code? Explain how cyclic binary codes of length n correspond to polynomials in F2[X]
dividing Xn + 1. Show that the dual of a cyclic code of length n is cyclic of length n.

Using the factorization

X7 + 1 = (X + 1)(X3 +X + 1)(X3 +X2 + 1)

in F2[X], find all cyclic binary codes of length 7. Identify those which are Hamming codes
and their duals. Justify your answer.

A2/9 Coding and Cryptography

(i) Explain the idea of public key cryptography. Give an example of a public key
system, explaining how it works.

(ii) What is a general feedback register of length d with initial fill (X0, . . . , Xd−1)?
What is the maximal period of such a register, and why? What does it mean for such a
register to be linear?

Describe and justify the Berlekamp-Massey algorithm for breaking a cypher stream
arising from a general linear feedback register of unknown length.

Use the Berlekamp-Massey algorithm to find a linear recurrence in F2 with first
eight terms 1, 1, 0, 0, 1, 0, 1, 1.
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A2/10 Algorithms and Networks

(i) Let G be a directed network with nodes N , arcs A and capacities specified on
each of the arcs. Define the terms feasible flow, divergence, cut, upper and lower cut
capacities. Given two disjoint sets of nodes N+ and N−, what does it mean to say that a
cut Q separates N+ from N−? Prove that the flux of a feasible flow x from N+ to N− is
bounded above by the upper capacity of Q, for any cut Q separating N+ from N−.

(ii) Define the maximum-flow and minimum-cut problems. State the max-flow min-cut
theorem and outline the main steps of the maximum-flow algorithm. Use the algorithm
to find the maximum flow between the nodes 1 and 5 in a network whose node set is
{1, 2, . . . , 5}, where the lower capacity of each arc is 0 and the upper capacity cij of the
directed arc joining node i to node j is given by the (i, j)-entry in the matrix

0 7 9 8 0
0 0 6 8 4
0 9 0 2 10
0 3 7 0 6
0 0 0 0 0

 .

[The painted-network theorem can be used without proof but should be stated clearly. You
may assume in your description of the maximum-flow algorithm that you are given an
initial feasible flow.]
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A3/10 Algorithms and Networks

(i) Consider the unconstrained geometric programme GP

minimise g(t) =
n∑

i=1

ci Πm
j=1 t

aij

j

subject to tj > 0 j = 1, . . . ,m.

State the dual problem to GP. Give a careful statement of the AM-GM inequality, and
use it to prove the primal-dual inequality for GP.

(ii) Define min-path and max-tension problems. State and outline the proof of the
max-tension min-path theorem.

A company has branches in five cities A,B,C,D and E. The fares for direct flights
between these cities are as follows:

A B C D E
A – 50 40 25 10
B 50 – 20 90 25
C 40 20 – 10 25
D 25 90 10 – 55
E 10 25 25 55 –

Formulate this as a min-path problem. Illustrate the max-tension min-path algorithm by
finding the cost of travelling by the cheapest routes between D and each of the other cities.

A4/11 Algorithms and Networks

Write an essay on Strong Lagrangian problems. You should give an account of dual-
ity and how it relates to the Strong Lagrangian property. In particular, establish carefully
the relationship between the Strong Lagrangian property and supporting hyperplanes.

Also, give an example of a class of problems that are Strong Lagrangian. [You
should explain carefully why your example has the Strong Lagrangian property.]
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A1/13 Computational Statistics and Statistical Modelling

(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi , logµi = α+ βTxi , 1 6 i 6 n

where α, β are unknown parameters, and x1, . . . , xn are given covariates, each of dimension
p. Obtain the maximum-likelihood equations for α, β, and explain briefly how you would
check the validity of this model.

(ii) The data below show y1, . . . , y33, which are the monthly accident counts on a
major US highway for each of the 12 months of 1970, then for each of the 12 months of
1971, and finally for the first 9 months of 1972. The data-set is followed by the (slightly
edited) R output. You may assume that the factors ‘Year’ and ‘month’ have been set up
in the appropriate fashion. Give a careful interpretation of this R output, and explain (a)
how you would derive the corresponding standardised residuals, and (b) how you would
predict the number of accidents in October 1972.

52 37 49 29 31 32 28 34 32 39 50 63
35 22 27 27 34 23 42 30 36 56 48 40
33 26 31 25 23 20 25 20 36

> first.glm glm(y∼ Year + month, poisson) ; summary(first.glm)

Call:

glm(formula = y ∼ Year + month, family = poisson)

Coefficients:
Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.81969 0.09896 38.600 < 2e− 16 ***
Year1971 -0.12516 0.06694 -1.870 0.061521 .
Year1972 -0.28794 0.08267 -3.483 0.000496 ***
month2 -0.34484 0.14176 -2.433 0.014994 *
month3 -0.11466 0.13296 -0.862 0.388459
month4 -0.39304 0.14380 -2.733 0.006271 **
month5 -0.31015 0.14034 -2.210 0.027108 *
month6 -0.47000 0.14719 -3.193 0.001408 **
month7 -0.23361 0.13732 -1.701 0.088889 .
month8 -0.35667 0.14226 -2.507 0.012168 *
month9 -0.14310 0.13397 -1.068 0.285444
month10 0.10167 0.13903 0.731 0.464628
month11 0.13276 0.13788 0.963 0.335639
month12 0.18252 0.13607 1.341 0.179812

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 101.143 on 32 degrees of freedom
Residual deviance: 27.273 on 19 degrees of freedom

Number of Fisher Scoring iterations: 3
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A2/12 Computational Statistics and Statistical Modelling

(i) Suppose that the random variable Y has density function of the form

f(y|θ, φ) = exp
[
yθ − b(θ)

φ
+ c(y, φ)

]
where φ > 0. Show that Y has expectation b′(θ) and variance φb′′(θ).

(ii) Suppose now that Y1, . . . , Yn are independent negative exponential variables, with
Yi having density function f(yi|µi) = 1

µi
e−yi/µi for yi > 0. Suppose further that

g(µi) = βTxi for 1 6 i 6 n, where g(·) is a known ‘link’ function, and x1, . . . , xn are
given covariate vectors, each of dimension p. Discuss carefully the problem of finding β̂,
the maximum-likelihood estimator of β, firstly for the case g(µi) = 1/µi, and secondly for
the case g(µ) = logµi; in both cases you should state the large-sample distribution of β̂.

[Any standard theorems used need not be proved.]

A4/14 Computational Statistics and Statistical Modelling

Assume that the n-dimensional observation vector Y may be written as Y = Xβ+ε,
where X is a given n×p matrix of rank p, β is an unknown vector, with βT = (β1, . . . , βp),
and

ε ∼ Nn(0, σ2I) (∗)

where σ2 is unknown. Find β̂, the least-squares estimator of β, and describe (without
proof) how you would test

H0 : βν = 0

for a given ν.

Indicate briefly two plots that you could use as a check of the assumption (∗).
Continued opposite
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Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal
and Rohlf (1981) was collected on 41 US cities in 1969-71, corresponding to the following
variables:

Y = sulphur dioxide content of air in micrograms per cubic metre

X1 = average annual temperature in degrees Fahrenheit

X2 = number of manufacturing enterprises employing 20 or more workers

X3 = population size (1970 census) in thousands

X4 = average annual wind speed in miles per hour

X5 = average annual precipitation in inches

X6 = average annual of days with precipitation per year.

Interpret the R output that follows below, quoting any standard theorems that you
need to use.

> next.lm lm(log(Y) ∼ X1 + X2 + X3 + X4 + X5 + X6)

> summary(next.lm)

Call: lm(formula = log(Y) ∼ X1 + X2 + X3 + X4 + X5 + X6)

Residuals:
Min 1Q Median 3Q Max

-0.79548 -0.25538 -0.01968 0.28328 0.98029

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***
X1 -0.0599017 0.0190138 -3.150 0.00339 **
X2 0.0012639 0.0004820 2.622 0.01298 *
X3 -0.0007077 0.0004632 -1.528 0.13580
X4 -0.1697171 0.0555563 -3.055 0.00436 **
X5 0.0173723 0.0111036 1.565 0.12695
X6 0.0004347 0.0049591 0.088 0.93066

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Residual standard error: 0.448 on 34 degrees of freedom

Multiple R-Squared: 0.6541

F-statistic: 10.72 on 6 and 34 degrees of freedom, p-value: 1.126e-06
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A1/14 Quantum Physics

(i) A system of N identical non-interacting bosons has energy levels Ei with degen-
eracy gi, 1 ≤ i < ∞, for each particle. Show that in thermal equilibrium the number of
particles Ni with energy Ei is given by

Ni =
gi

eβ(Ei−µ) − 1
,

where β and µ are parameters whose physical significance should be briefly explained.

(ii) A photon moves in a cubical box of side L. Assuming periodic boundary conditions,
show that, for large L, the number of photon states lying in the frequency range ω → ω+dω
is ρ(ω)dω where

ρ(ω) = L3

(
ω2

π2c3

)
.

If the box is filled with thermal radiation at temperature T , show that the number of
photons per unit volume in the frequency range ω → ω + dω is n(ω)dω where

n(ω) =
(
ω2

π2c3

)
1

e~ω/kT − 1
.

Calculate the energy densityW of the thermal radiation. Show that the pressure P exerted
on the surface of the box satisfies

P =
1
3
W .

[You may use the result
∫∞
0

x3dx
ex−1 = π4

15 .]
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A2/14 Quantum Physics

(i) A simple model of a one-dimensional crystal consists of an infinite array of sites
equally spaced with separation a . An electron occupies the nth site with a probability
amplitude cn . The time-dependent Schrödinger equation governing these amplitudes is

i~
dcn
dt

= E0cn −A(cn−1 + cn+1) ,

where E0 is the energy of an electron at an isolated site and the amplitude for transition
between neighbouring sites is A > 0 . By examining a solution of the form

cn = eikan−iEt/~ ,

show that E, the energy of the electron in the crystal, lies in a band

E0 − 2A ≤ E ≤ E0 + 2A .

Identify the Brillouin zone for this model and explain its significance.

(ii) In the above model the electron is now subject to an electric field E in the direction
of increasing n . Given that the charge on the electron is −e write down the new form
of the time-dependent Schrödinger equation for the probability amplitudes. Show that it
has a solution of the form

cn = exp
{
− i

~

∫ t

0

ε(t′)dt′ + i(k − eEt
~

)na
}

,

where

ε(t) = E0 − 2A cos
(

(k − eEt
~

)a
)

.

Explain briefly how to interpret this result and use it to show that the dynamical behaviour
of an electron near the bottom of the energy band is the same as that for a free particle
in the presence of an electric field with an effective mass m∗ = ~2/(2Aa2) .
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A4/16 Quantum Physics

Explain how the energy band structure for electrons determines the conductivity
properties of crystalline materials.

A semiconductor has a conduction band with a lower edge Ec and a valence band
with an upper edge Ev . Assuming that the density of states for electrons in the conduction
band is

ρc(E) = Bc(E − Ec)
1
2 , E > Ec ,

and in the valence band is

ρv(E) = Bv(Ev − E)
1
2 , E < Ev ,

where Bc and Bv are constants characteristic of the semiconductor, explain why at low
temperatures the chemical potential for electrons lies close to the mid-point of the gap
between the two bands.

Describe what is meant by the doping of a semiconductor and explain the distinction
between n-type and p-type semiconductors, and discuss the low temperature limit of the
chemical potential in both cases. Show that, whatever the degree and type of doping,

nenp = BcBv[Γ(3/2)]2(kT )3e−(Ec−Ev)/kT ,

where ne is the density of electrons in the conduction band and np is the density of holes
in the valence band.
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A1/16 Statistical Physics and Cosmology

(i) Consider a one-dimensional model universe with “stars” distributed at random on
the x-axis, and choose the origin to coincide with one of the stars; call this star the “home-
star.” Home-star astronomers have discovered that all other stars are receding from them
with a velocity v(x), that depends on the position x of the star. Assuming non-relativistic
addition of velocities, show how the assumption of homogeneity implies that v(x) = H0x
for some constant H0.

In attempting to understand the history of their one-dimensional universe, home-
star astronomers seek to determine the velocity v(t) at time t of a star at position x(t).
Assuming homogeneity, show how x(t) is determined in terms of a scale factor a(t) and
hence deduce that v(t) = H(t)x(t) for some function H(t). What is the relation between
H(t) and H0?

(ii) Consider a three-dimensional homogeneous and isotropic universe with mass
density ρ(t), pressure p(t) and scale factor a(t). Given that E(t) is the energy in volume
V (t), show how the relation dE = −p dV yields the “fluid” equation

ρ̇ = −3
(
ρ+

p

c2

)
H,

where H = ȧ/a.

Show how conservation of energy applied to a test particle at the boundary of a
spherical fluid element yields the Friedmann equation

ȧ2 − 8πG
3

ρa2 = −kc2

for constant k. Hence obtain an equation for the acceleration ä in terms of ρ, p and a.

A model universe has mass density and pressure

ρ =
ρ0

a3
+ ρ1, p = −ρ1c

2,

where ρ0 is constant. What does the fluid equation imply about ρ1? Show that the
acceleration ä vanishes if

a =
(
ρ0

2ρ1

) 1
3

.

Hence show that this universe is static and determine the sign of the constant k.

Part II 2002



15

A3/14 Statistical Physics and Cosmology

(i) Write down the first law of thermodynamics for the change dU in the internal
energy U(N,V, S) of a gas of N particles in a volume V with entropy S.

Given that
PV = (γ − 1)U,

where P is the pressure, use the first law to show that PV γ is constant at constant N and
S.

Write down the Boyle-Charles law for a non-relativistic ideal gas and hence deduce
that the temperature T is proportional to V 1−γ at constant N and S.

State the principle of equipartition of energy and use it to deduce that

U =
3
2
NkT.

Hence deduce the value of γ. Show that this value of γ is such that the ratio Ei/kT
is unchanged by a change of volume at constant N and S, where Ei is the energy of the
i-th one particle eigenstate of a non-relativistic ideal gas.

(ii) A classical gas of non-relativistic particles of mass m at absolute temperature T
and number density n has a chemical potential

µ = mc2 − kT ln

(
gs

n

(
mkT

2π~2

) 3
2
)
,

where gs is the particle’s spin degeneracy factor. What condition on n is needed for the
validity of this formula and why?

Thermal and chemical equilibrium between two species of non-relativistic particles
a and b is maintained by the reaction

a+ α↔ b+ β,

where α and β are massless particles with zero chemical potential. Given that particles
a and b have masses ma and mb respectively, but equal spin degeneracy factors, find the
number density ratio na/nb as a function of ma, mb and T . Given that ma > mb but
ma −mb � mb show that

na

nb
≈ f

(
(ma −mb)c2

kT

)
for some function f which you should determine.

Explain how a reaction of the above type is relevant to a determination of the
neutron to proton ratio in the early universe and why this ratio does not fall rapidly to
zero as the universe cools. Explain briefly the process of primordial nucleosynthesis by
which neutrons are converted into stable helium nuclei. Let

YHe =
ρHe

ρ

be the fraction of the universe that ends up in helium. Compute YHe as a function of the
ratio r = na/nb at the time of nucleosynthesis.
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A4/18 Statistical Physics and Cosmology

What is an ideal gas? Explain how the microstates of an ideal gas of indistinguish-
able particles can be labelled by a set of integers. What range of values do these integers
take for (a) a boson gas and (b) a Fermi gas?

Let Ei be the energy of the i-th one-particle energy eigenstate of an ideal gas in
thermal equilibrium at temperature T and let pi(ni) be the probability that there are ni

particles of the gas in this state. Given that

pi(ni) = e−βEini/Zi (β =
1
kT

),

determine the normalization factor Zi for (a) a boson gas and (b) a Fermi gas. Hence
obtain an expression for n̄i, the average number of particles in the i-th one-particle energy
eigenstate for both cases (a) and (b).

In the case of a Fermi gas, write down (without proof) the generalization of your
formula for n̄i to a gas at non-zero chemical potential µ. Show how it leads to the concept
of a Fermi energy εF for a gas at zero temperature. How is εF related to the Fermi
momentum pF for (a) a non-relativistic gas and (b) an ultra-relativistic gas?

In an approximation in which the discrete set of energies Ei is replaced with a
continuous set with momentum p, the density of one-particle states with momentum in
the range p to p+ dp is g(p)dp. Explain briefly why

g(p) ∝ p2V, (∗)

where V is the volume of the gas. Using this formula, obtain an expression for the total
energy E of an ultra-relativistic gas at zero chemical potential as an integral over p. Hence
show that

E

V
∝ Tα,

where α is a number that you should compute. Why does this result apply to a photon
gas?

Using the formula (∗) for a non-relativistic Fermi gas at zero temperature, obtain an
expression for the particle number density n in terms of the Fermi momentum and provide
a physical interpretation of this formula in terms of the typical de Broglie wavelength.
Obtain an analogous formula for the (internal) energy density and hence show that the
pressure P behaves as

P ∝ nγ

where γ is a number that you should compute. [You need not prove any relation between
the pressure and the energy density you use.] What is the origin of this pressure given that
T = 0 by assumption? Explain briefly and qualitatively how it is relevant to the stability
of white dwarf stars.
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A1/17 Symmetries and Groups in Physics

(i) Let H be a normal subgroup of the group G. Let G/H denote the group of cosets
g̃ = gH for g ∈ G. If D : G → GL(Cn) is a representation of G with D(h1) = D(h2) for
all h1, h2 ∈ H show that D̃(g̃) = D(g) is well-defined and that it is a representation of
G/H. Show further that D̃(g̃) is irreducible if and only if D(g) is irreducible.

(ii) For a matrix U ∈ SU(2) define the linear map ΦU : R3 → R3 by ΦU (x).σ =
Ux.σU† with σ = (σ1, σ2, σ3)T as the vector of the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Show that ‖ΦU (x)‖ = ‖x‖. Because of the linearity of ΦU there exists a matrix R(U)
such that ΦU (x) = R(U)x. Given that any SU(2) matrix can be written as

U = cosα I − i sinα n.σ ,

where α ∈ [0, π] and n is a unit vector, deduce that R(U) ∈ SO(3) for all U ∈ SU(2).
Compute R(U)n and R(U)x in the case that x.n = 0 and deduce that R(U) is the matrix
of a rotation about n with angle 2α.

[Hint: m.σ n.σ = m.n I + i(m× n).σ .]

Show that R(U) defines a surjective homomorphism Θ : SU(2) → SO(3) and find
the kernel of Θ.
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A3/15 Symmetries and Groups in Physics

(i) LetD6 denote the symmetry group of rotations and reflections of a regular hexagon.
The elements of D6 are given by {e, c, c2, c3, c4, c5, b, bc, bc2, bc3, bc4, bc5} with c6 = b2 = e
and cb = bc5. The conjugacy classes of D6 are {e}, {c, c5}, {c2, c4}, {c3}, {b, bc2, bc4} and
{bc, bc3, bc5}.

Show that the character table of D6 is

D6 e {c, c5} {c2, c4} {c3} {b, bc2, bc4} {bc, bc3, bc5}

χ1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1
χ3 1 −1 1 −1 1 −1
χ4 1 −1 1 −1 −1 1
χ5 2 1 −1 −2 0 0
χ6 2 −1 −1 2 0 0

(ii) Show that the character of an SO(3) rotation with angle θ in the 2l+1 dimensional
irreducible representation of SO(3) is given by

χl(θ) = 1 + 2 cos θ + 2 cos(2θ) + . . .+ 2 cos((l − 1)θ) + 2 cos(lθ) .

For a hexagonal crystal of atoms find how the degeneracy of the D-wave orbital
states (l = 2) in the atomic central potential is split by the crystal potential with D6

symmetry and give the new degeneracies.

By using the fact that D3 is isomorphic to D6/{e, c3}, or otherwise, find the
degeneracies of eigenstates if the hexagonal symmetry is broken to the subgroup D3 by a
deformation. The introduction of a magnetic field further reduces the symmetry to C3.
What will the degeneracies of the energy eigenstates be now?

Part II 2002



19

A1/18 Transport Processes

(i) Material of thermal diffusivity D occupies the semi-infinite region x > 0 and is
initially at uniform temperature T0. For time t > 0 the temperature at x = 0 is held at a
constant value T1 > T0. Given that the temperature T (x, t) in x > 0 satisfies the diffusion
equation Tt = DTxx, write down the equation and the boundary and initial conditions
satisfied by the dimensionless temperature θ = (T − T0) / (T1 − T0).

Use dimensional analysis to show that the lengthscale of the region in which T is
significantly different from T0 is proportional to (Dt)1/2. Hence show that this problem
has a similarity solution

θ = erfc (ξ/2) ≡ 2√
π

∫ ∞

ξ/2

e−u2
du ,

where ξ = x/(Dt)1/2.

What is the rate of heat input, −DTx, across the plane x = 0?

(ii) Consider the same problem as in Part (i) except that the boundary condition at
x = 0 is replaced by one of constant rate of heat input Q. Show that θ(ξ, t) satisfies the
partial differential equation

θξξ +
ξ

2
θξ = tθt

and write down the boundary conditions on θ(ξ, t). Deduce that the problem has a
similarity solution of the form

θ =
Q(t/D)1/2

T1 − T0
f(ξ).

Derive the ordinary differential equation and boundary conditions satisfied by f(ξ).
Differentiate this equation once to obtain

f ′′′ +
ξ

2
f ′′ = 0

and solve for f ′(ξ). Hence show that

f(ξ) =
2√
π
e−ξ2/4 − ξ erfc (ξ/2) .

Sketch the temperature distribution T (x, t) for various times t, and calculate T (0, t)
explicitly.
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A3/16 Transport Processes

(i) A layer of fluid of depth h(x, t), density ρ and viscosity µ sits on top of a rigid
horizontal plane at y = 0. Gravity g acts vertically and surface tension is negligible.

Assuming that the horizontal velocity component u and pressure p satisfy the
lubrication equations

0 = −px + µuyy

0 = −py − ρg,

together with appropriate boundary conditions at y = 0 and y = h (which should be
stated), show that h satisfies the partial differential equation

ht =
g

3ν
(
h3hx

)
x
, (∗)

where ν = µ/ρ.

(ii) A two-dimensional blob of the above fluid has fixed area A and time-varying width
2X(t), such that

A =
∫ X(t)

−X(t)

h(x, t) dx.

The blob spreads under gravity.

Use scaling arguments to show that, after an initial transient, X(t) is proportional
to t1/5 and h(0, t) is proportional to t−1/5. Hence show that equation (∗) of Part (i) has
a similarity solution of the form

h(x, t) =
(
A2ν

gt

)1/5

H(ξ), where ξ =
x

(A3gt/ν)1/5
,

and find the differential equation satisfied by H(ξ).

Deduce that

H =


[

9
10

(
ξ20 − ξ2

)]1/3 in −ξ0 < ξ < ξ0

0 in |ξ| > ξ0 ,

where

X(t) = ξ0

(
A3gt

ν

)1/5

.

Express ξ0 in terms of the integral

I =
∫ 1

−1

(
1− u2

)1/3
du.
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A4/19 Transport Processes

(a) A biological vessel is modelled two-dimensionally as a fluid-filled channel bounded
by parallel plane walls y = ±a, embedded in an infinite region of fluid-saturated tissue. In
the tissue a solute has concentration Cout(y, t), diffuses with diffusivity D and is consumed
by biological activity at a rate kCout per unit volume, where D and k are constants. By
considering the solute balance in a slice of tissue of infinitesimal thickness, show that

Cout
t = DCout

yy − kCout.

A steady concentration profile Cout(y) results from a flux β
(
Cin − Cout

a

)
, per

unit area of wall, of solute from the channel into the tissue, where Cin is a constant
concentration of solute that is maintained in the channel and Cout

a = Cout(a). Write down
the boundary conditions satisfied by Cout(y). Solve for Cout(y) and show that

Cout
a =

γ

γ + 1
Cin, (∗)

where γ = β/
√
kD.

(b) Now let the solute be supplied by steady flow down the channel from one end,
x = 0, with the channel taken to be semi-infinite in the x-direction. The cross-sectionally
averaged velocity in the channel u(x) varies due to a flux of fluid from the tissue to the
channel (by osmosis) equal to λ

(
Cin − Cout

a

)
per unit area. Neglect both the variation of

Cin(x) across the channel and diffusion in the x-direction.

By considering conservation of fluid, show that

aux = λ
(
Cin − Cout

a

)
and write down the corresponding equation derived from conservation of solute. Deduce
that

u(λCin + β) = u0(λCin
0 + β) ,

where u0 = u(0) and Cin
0 = Cin(0).

Assuming that equation (∗) still holds, even though Cout is now a function of x as
well as y, show that u(x) satisfies the ordinary differential equation

(γ + 1)auux + βu = u0

(
λCin

0 + β
)
.

Find scales x̂ and û such that the dimensionless variables U = u/û and X = x/x̂
satisfy

UUX + U = 1.

Derive the solution (1− U)eU = Ae−X and find the constant A.

To what values do u and Cin tend as x→∞?
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A1/19 Theoretical Geophysics

(i) In a reference frame rotating about a vertical axis with constant angular velocity
f/2 the horizontal components of the momentum equation for a shallow layer of inviscid,
incompressible fluid of constant density ρ are

Du

Dt
− fv = −1

ρ

∂P

∂x
,

Dv

Dt
+ fu = −1

ρ

∂P

∂y
,

where u, v and P are independent of the vertical coordinate z.

Define the Rossby number Ro for a flow with typical velocity U and lengthscale L.
What is the approximate form of the above equations when Ro� 1?

Show that the solution to the approximate equations is given by a streamfunction
ψ proportional to P .

Conservation of potential vorticity for such a flow is represented by

D

Dt

ζ + f

h
= 0,

where ζ is the vertical component of relative vorticity and h(x, y) is the thickness of the
layer. Explain briefly why the potential vorticity of a column of fluid should be conserved.

(ii) Suppose that the thickness of the rotating, shallow-layer flow in Part (i) is
h(y) = H0 exp(−αy) where H0 and α are constants. By linearising the equation of
conservation of potential vorticity about u = v = ζ = 0, show that the stream function
for small disturbances to the state of rest obeys

∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)
ψ + β

∂ψ

∂x
= 0 ,

where β is a constant that should be found.

Obtain the dispersion relationship for plane-wave solutions of the form ψ ∝
exp[i(kx+ ly − ωt)]. Hence calculate the group velocity.

Show that if β > 0 then the phase of these waves always propagates to the left
(negative x direction) but that the energy may propagate to either left or right.
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A2/16 Theoretical Geophysics

(i) State the equations that relate strain to displacement and stress to strain in a
linear, isotropic elastic solid.

In the absence of body forces, the Euler equation for infinitesimal deformations of
a solid of density ρ is

ρ
∂2ui

∂t2
=
∂σij

∂xj
.

Derive an equation for u(x, t) in a linear, isotropic, homogeneous elastic solid. Hence show
that both the dilatation θ = ∇ ·u and the rotation ω = ∇∧u satisfy wave equations and
find the corresponding wave speeds α and β.

(ii) The ray parameter p = r sin i/v is constant along seismic rays in a spherically
symmetric Earth, where v(r) is the relevant wave speed (α or β) and i(r) is the angle
between the ray and the local radial direction.

Express tan i and sec i in terms of p and the variable η(r) = r/v. Hence show that
the angular distance and travel time between a surface source and receiver, both at radius
R, are given by

∆(p) = 2
∫ R

rm

p

r

dr

(η2 − p2)1/2
, T (p) = 2

∫ R

rm

η2

r

dr

(η2 − p2)1/2
,

where rm is the minimum radius attained by the ray. What is η(rm)?

A simple Earth model has a solid mantle in R/2 < r < R and a liquid core in
r < R/2. If α(r) = A/r in the mantle, where A is a constant, find ∆(p) and T (p) for
P-arrivals (direct paths lying entirely in the mantle), and show that

T =
R2 sin∆

A
.

[You may assume that
∫

du

u
√
u− 1

= 2 cos−1

(
1√
u

)
.]

Sketch the T −∆ curves for P and PcP arrivals on the same diagram and explain
briefly why they terminate at ∆ = cos−1 1

4 .
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A4/20 Theoretical Geophysics

The equation of motion for small displacements u in a homogeneous, isotropic,
elastic material is

ρ
∂2u
∂t2

= (λ+ 2µ)∇(∇ · u)− µ∇ ∧ (∇ ∧ u) ,

where λ and µ are the Lamé constants. Derive the conditions satisfied by the polarisation
P and (real) vector slowness s of plane-wave solutions u = Pf(s · x − t), where f is an
arbitrary scalar function. Describe the division of these waves into P -waves, SH-waves
and SV -waves.

A plane harmonic SV -wave of the form

u = (s3, 0,−s1) exp[iω(s1x1 + s3x3 − t)]

travelling through homogeneous elastic material of P -wave speed α and S-wave speed β
is incident from x3 < 0 on the boundary x3 = 0 of rigid material in x3 > 0 in which the
displacement is identically zero.

Write down the form of the reflected wavefield in x3 < 0. Calculate the amplitudes
of the reflected waves in terms of the components of the slowness vectors.

Derive expressions for the components of the incident and reflected slowness vectors,
in terms of the wavespeeds and the angle of incidence θ0. Hence show that there is no
reflected SV -wave if

sin2 θ0 =
β2

α2 + β2
.

Sketch the rays produced if the region x3 > 0 is fluid instead of rigid.
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A2/17 Mathematical Methods

(i) Show that the equation

εx4 − x2 + 5x− 6 = 0 , |ε| � 1 ,

has roots in the neighbourhood of x = 2 and x = 3. Find the first two terms of an
expansion in ε for each of these roots.

Find a suitable series expansion for the other two roots and calculate the first two
terms in each case.

(ii) Describe, giving reasons for the steps taken, how the leading-order approximation
for λ� 1 to an integral of the form

I(λ) ≡
∫ B

A

f(t)eiλg(t)dt ,

where λ and g are real, may be found by the method of stationary phase. Consider the
cases where (a) g′(t) has one simple zero at t = t0 with A < t0 < B; (b) g′(t) has more
than one simple zero in A < t < B; and (c) g′(t) has only a simple zero at t = B. What
is the order of magnitude of I(λ) if g′(t) is non-zero for A ≤ t ≤ B?

Use the method of stationary phase to find the leading-order approximation to

J(λ) ≡
∫ 1

0

sin[λ(2t4 − t)] dt

for λ� 1.

[You may use the fact that
∫ ∞

−∞
eiu2

du =
√
πeiπ/4.]
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A3/17 Mathematical Methods

(i) State the Fredholm alternative for Fredholm integral equations of the second kind.

Show that the integral equation

φ(x)− λ

∫ 1

0

(x+ t)φ(t)dt = f(x) , 0 6 x 6 1 ,

where f is a continuous function, has a unique solution for φ if λ 6= −6±4
√

3. Derive this
solution.

(ii) Describe the WKB method for finding approximate solutions f(x) of the equation

d2f(x)
dx2

+ q(εx)f(x) = 0 ,

where q is an arbitrary non-zero, differentiable function and ε is a small parameter. Obtain
these solutions in terms of an exponential with slowly varying exponent and slowly varying
amplitude.

Hence, by means of a suitable change of independent variable, find approximate
solutions w(t) of the equation

d2w

dt2
+ λ2tw = 0 ,

in t > 0, where λ is a large parameter.

A4/21 Mathematical Methods

State Watson’s lemma giving an asymptotic expansion as λ→∞ for an integral of
the form

I1 =
∫ A

0

f(t)e−λtdt , A > 0 .

Show how this result may be used to find an asymptotic expansion as λ → ∞ for an
integral of the form

I2 =
∫ B

−A

f(t)e−λt2dt , A > 0, B > 0 .

Hence derive Laplace’s method for obtaining an asymptotic expansion as λ → ∞
for an integral of the form

I3 =
∫ b

a

f(t)eλφ(t)dt ,

where φ(t) is differentiable, for the cases: (i) φ′(t) < 0 in a ≤ t ≤ b; and (ii) φ′(t) has a
simple zero at t = c with a < c < b and φ′′(c) < 0.

Find the first two terms in the asymptotic expansion as x→∞ of

I4 =
∫ ∞

−∞
log(1 + t2)e−xt2dt .

[You may leave your answer expressed in terms of Γ-functions.]
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A2/18 Nonlinear Waves

(i) Find a travelling wave solution of unchanging shape for the modified Burgers
equation (with α > 0)

∂u

∂t
+ u2 ∂u

∂x
= α

∂2u

∂x2

with u = 0 far ahead of the wave and u = 1 far behind. What is the velocity of the wave?
Sketch the shape of the wave.

(ii) Explain why the method of characteristics, when applied to an equation of the
type

∂u

∂t
+ c(u)

∂u

∂x
= 0 ,

with initial data u(x, 0) = f(x), sometimes gives a multi-valued solution. State the shock-
fitting algorithm that gives a single-valued solution, and explain how it is justified.

Consider the equation above, with c(u) = u2. Suppose that

u(x, 0) =
{ 0 x ≥ 0

1 x < 0 .

Sketch the characteristics in the (x, t) plane. Show that a shock forms immediately, and
calculate the velocity at which it moves.
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A3/18 Nonlinear Waves

(i) Show that the equation

∂φ

∂t
− ∂2φ

∂x2
+ 1− φ2 = 0

has two solutions which are independent of both x and t. Show that one of these is
linearly stable. Show that the other solution is linearly unstable, and find the range of
wavenumbers that exhibit the instability.

Sketch the nonlinear evolution of the unstable solution after it receives a small,
smooth, localized perturbation in the direction towards the stable solution.

(ii) Show that the equations

∂u

∂x
+
∂v

∂x
= e−u+v ,

−∂u
∂y

+
∂v

∂y
= e−u−v

are a Bäcklund pair for the equations

∂2u

∂x∂y
= e−2u ,

∂2v

∂x∂y
= 0 .

By choosing v to be a suitable constant, and using the Bäcklund pair, find a solution
of the equation

∂2u

∂x∂y
= e−2u

which is non-singular in the region y < 4x of the (x, y) plane and has the value u = 0 at
x = 1

2 , y = 0.
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A1/1 B1/1 Markov Chains

(i) We are given a finite set of airports. Assume that between any two airports, i and
j, there are aij = aji flights in each direction on every day. A confused traveller takes one
flight per day, choosing at random from all available flights. Starting from i, how many
days on average will pass until the traveller returns again to i? Be careful to allow for the
case where there may be no flights at all between two given airports.

(ii) Consider the infinite tree T with root R, where, for all m > 0, all vertices at
distance 2m from R have degree 3, and where all other vertices (except R) have degree 2.
Show that the random walk on T is recurrent.

A2/1 Markov Chains

(i) In each of the following cases, the state-space I and non-zero transition rates qij
(i 6= j) of a continuous-time Markov chain are given. Determine in which cases the chain
is explosive.

(a) I = {1, 2, 3, . . .}, qi,i+1 = i2, i ∈ I,
(b) I = Z, qi,i−1 = qi,i+1 = 2i, i ∈ I.

(ii) Children arrive at a see-saw according to a Poisson process of rate 1. Initially
there are no children. The first child to arrive waits at the see-saw. When the second
child arrives, they play on the see-saw. When the third child arrives, they all decide to
go and play on the merry-go-round. The cycle then repeats. Show that the number of
children at the see-saw evolves as a Markov Chain and determine its generator matrix.
Find the probability that there are no children at the see-saw at time t.

Hence obtain the identity

∞∑
n=0

e−t t3n

(3n)!
=

1
3

+
2
3
e−

3
2 t cos

√
3

2
t .
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A3/1 B3/1 Markov Chains

(i) Consider the continuous-time Markov chain (Xt)t>0 on {1, 2, 3, 4, 5, 6, 7} with
generator matrix

Q =



−6 2 0 0 0 4 0
2 −3 0 0 0 1 0
0 1 −5 1 2 0 1
0 0 0 0 0 0 0
0 2 2 0 −6 0 2
1 2 0 0 0 −3 0
0 0 1 0 1 0 −2


.

Compute the probability, starting from state 3, that Xt hits state 2 eventually.

Deduce that
lim

t→∞
P(Xt = 2|X0 = 3) =

4
15
.

[Justification of standard arguments is not expected.]

(ii) A colony of cells contains immature and mature cells. Each immature cell, after
an exponential time of parameter 2, becomes a mature cell. Each mature cell, after an
exponential time of parameter 3, divides into two immature cells. Suppose we begin with
one immature cell and let n(t) denote the expected number of immature cells at time t.
Show that

n(t) = (4et + 3e−6t)/7.

A4/1 Markov Chains

Write an essay on the long-time behaviour of discrete-time Markov chains on a
finite state space. Your essay should include discussion of the convergence of probabilities
as well as almost-sure behaviour. You should also explain what happens when the chain
is not irreducible.
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A1/2 B1/2 Principles of Dynamics

(i) Derive Hamilton’s equations from Lagrange’s equations. Show that the Hamilto-
nian H is constant if the Lagrangian L does not depend explicitly on time.

(ii) A particle of mass m is constrained to move under gravity, which acts in the
negative z-direction, on the spheroidal surface ε−2(x2 + y2) + z2 = l2, with 0 < ε 6 1. If
θ, φ parametrize the surface so that

x = εl sin θ cosφ, y = εl sin θ sinφ, z = l cos θ,

find the Hamiltonian H(θ, φ, pθ, pφ).

Show that the energy

E =
p2

θ

2ml2(ε2 cos2 θ + sin2 θ)
+

α

sin2 θ
+mgl cos θ

is a constant of the motion, where α is a non-negative constant.

Rewrite this equation as
1
2
θ̇2 + Veff(θ) = 0

and sketch Veff(θ) for ε = 1 and α > 0, identifying the maximal and minimal values of θ(t)
for fixed α and E. If ε is now taken not to be unity, how do these values depend on ε?

A2/2 B2/1 Principles of Dynamics

(i) A number N of non-interacting particles move in one dimension in a potential
V (x, t). Write down the Hamiltonian and Hamilton’s equations for one particle.

At time t, the number density of particles in phase space is f(x, p, t). Write down
the time derivative of f along a particle’s trajectory. By equating the rate of change of
the number of particles in a fixed domain V in phase space to the flux into V across its
boundary, deduce that f is a constant along any particle’s trajectory.

(ii) Suppose that V (x) = 1
2mω

2x2, and particles are injected in such a manner that
the phase space density is a constant f1 at any point of phase space corresponding to a
particle energy being smaller than E1 and zero elsewhere. How many particles are present?

Suppose now that the potential is very slowly altered to the square well form

V (x) =
{ 0, −L < x < L
∞ elsewhere .

Show that the greatest particle energy is now

E2 =
π2

8
E2

1

mL2ω2
.
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A3/2 Principles of Dynamics

(i) Show that Hamilton’s equations follow from the variational principle

δ

∫ t2

t1

[pq̇ −H(q, p, t)] dt = 0

under the restrictions δq(t1) = δq(t2) = δp(t1) = δp(t2) = 0. Comment on the difference
from the variational principle for Lagrange’s equations.

(ii) Suppose we transform from p and q to p′ = p′(q, p, t) and q′ = q′(q, p, t), with

p′q̇′ −H ′ = pq̇ −H +
d
dt
F (q, p, q′, p′, t),

where H ′ is the new Hamiltonian. Show that p′ and q′ obey Hamilton’s equations with
Hamiltonian H ′.

Show that the time independent generating function F = F1(q, q′) = q′/q takes the
Hamiltonian

H =
1

2q2
+

1
2
p2q4

to harmonic oscillator form. Show that q′ and p′ obey the Poisson bracket relation

{q′, p′} = 1.

A4/2 Principles of Dynamics

Explain how the orientation of a rigid body can be specified by means of the three
Eulerian angles, θ, φ and ψ.

An axisymmetric top of mass M has principal moments of inertia A, A and C, and
is spinning with angular speed n about its axis of symmetry. Its centre of mass lies a
distance h from the fixed point of support. Initially the axis of symmetry points vertically
upwards. It then suffers a small disturbance. For what values of the spin is the initial
configuration stable?

If the spin is such that the initial configuration is unstable, what is the lowest
angle reached by the symmetry axis in the nutation of the top? Find the maximum and
minimum values of the precessional angular velocity φ̇.
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A1/3 Functional Analysis

(i) Let Pr(eiθ) be the real part of
1 + reiθ

1− reiθ
. Establish the following properties of Pr

for 0 6 r < 1:

(a) 0 < Pr(eiθ) = Pr(e−iθ) 6
1 + r

1− r
;

(b) Pr(eiθ) 6 Pr(eiδ) for 0 < δ 6 |θ| 6 π;

(c) Pr(eiθ) → 0, uniformly on 0 < δ 6 |θ| 6 π, as r increases to 1.

(ii) Suppose that f ∈ L1(T), where T is the unit circle {eiθ : −π 6 θ 6 π}. By
definition, ‖f‖1 = 1

2π

∫ π

−π
|f(eiθ)| dθ. Let

Pr(f)(eiθ) =
1
2π

∫ π

−π

Pr(ei(θ−t))f(eit) dt.

Show that Pr(f) is a continuous function on T, and that ‖Pr(f)‖1 6 ‖f‖1.

[You may assume without proof that 1
2π

∫ π

−π
Pr(eiθ) dθ = 1.]

Show that Pr(f) → f , uniformly on T as r increases to 1, if and only if f is a
continuous function on T.

Show that ‖Pr(f)− f‖1 → 0 as r increases to 1.

A2/3 B2/2 Functional Analysis

(i) State and prove the parallelogram law for Hilbert spaces.

Suppose that K is a closed linear subspace of a Hilbert space H and that x ∈ H.
Show that x is orthogonal to K if and only if 0 is the nearest point to x in K.

(ii) Suppose that H is a Hilbert space and that φ is a continuous linear functional on
H with ‖φ‖ = 1. Show that there is a sequence (hn) of unit vectors in H with φ(hn) real
and φ(hn) > 1− 1/n.

Show that hn converges to a unit vector h, and that φ(h) = 1.

Show that h is orthogonal to N , the null space of φ, and also that H = N⊕span(h).

Show that φ(k) = 〈k, h〉, for all k ∈ H.
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A3/3 B3/2 Functional Analysis

(i) Suppose that (fn) is a decreasing sequence of continuous real-valued functions on
a compact metric space (X, d) which converges pointwise to 0. By considering sets of the
form Bn = {x : fn(x) < ε}, for ε > 0, or otherwise, show that fn converges uniformly to
0.

Can the condition that (fn) is decreasing be dropped? Can the condition that
(X, d) is compact be dropped? Justify your answers.

(ii) Suppose that k is a positive integer. Define polynomials pn recursively by

p0 = 0, pn+1(t) = pn(t) + (t− pk
n(t))/k.

Show that 0 6 pn(t) 6 pn+1(t) 6 t1/k, for t ∈ [0, 1], and show that pn(t) converges to t1/k

uniformly on [0, 1].

[You may wish to use the identity ak − bk = (a− b)(ak−1 + ak−2b+ . . .+ bk−1).]

Suppose that A is a closed subalgebra of the algebra C(X) of continuous real-valued
functions on a compact metric space (X, d), equipped with the uniform norm, and suppose
that A has the property that for each x ∈ X there exists a ∈ A with a(x) 6= 0. Show that
there exists h ∈ A such that 0 < h(x) 6 1 for all x ∈ X.

Show that h1/k ∈ A for each positive integer k, and show that A contains the
constant functions.

A4/3 Functional Analysis

Define the distribution function Φf of a non-negative measurable function f on the
interval I = [0, 1]. Show that Φf is a decreasing non-negative function on [0,∞] which is
continuous on the right.

Define the Lebesgue integral
∫

I
f dm. Show that

∫
I
f dm = 0 if and only if f = 0

almost everywhere.

Suppose that f is a non-negative Riemann integrable function on [0, 1]. Show that
there are an increasing sequence (gn) and a decreasing sequence (hn) of non-negative step
functions with gn 6 f 6 hn such that

∫ 1

0
(hn(x)− gn(x)) dx→ 0.

Show that the functions g = limn gn and h = limn hn are equal almost everywhere,
that f is measurable and that the Lebesgue integral

∫
I
f dm is equal to the Riemann

integral
∫ 1

0
f(x) dx.

Suppose that j is a Riemann integrable function on [0, 1] and that j(x) > 0 for all
x. Show that

∫ 1

0
j(x) dx > 0.
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A1/4 Groups, Rings and Fields

(i) What is a Sylow subgroup? State Sylow’s Theorems.

Show that any group of order 33 is cyclic.

(ii) Prove the existence part of Sylow’s Theorems.

[You may use without proof any arithmetic results about binomial coefficients which you
need.]

Show that a group of order p2q, where p and q are distinct primes, is not simple.
Is it always abelian? Give a proof or a counterexample.

B1/3 Groups, Rings and Fields

State Sylow’s Theorems. Prove the existence part of Sylow’s Theorems.

Show that any group of order 33 is cyclic.

Show that a group of order p2q, where p and q are distinct primes, is not simple.
Is it always abelian? Give a proof or a counterexample.

A2/4 B2/3 Groups, Rings and Fields

(i) Show that the ring Z[i] is Euclidean.

(ii) What are the units in Z[i]? What are the primes in Z[i]? Justify your answers.

Factorize 11 + 7i into primes in Z[i].

A3/4 Groups, Rings and Fields

(i) What does it mean for a ring to be Noetherian? State Hilbert’s Basis Theorem.
Give an example of a Noetherian ring which is not a principal ideal domain.

(ii) Prove Hilbert’s Basis Theorem.

Is it true that if the ring R[X] is Noetherian, then so is R?
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A4/4 Groups, Rings and Fields

Let F be a finite field. Show that there is a unique prime p for which F contains
the field Fp of p elements. Prove that F contains pn elements, for some n ∈ N. Show that
xpn

= x for all x ∈ F , and hence find a polynomial f ∈ Fp[X] such that F is the splitting
field of f . Show that, up to isomorphism, F is the unique field Fpn of size pn.

[Standard results about splitting fields may be assumed.]

Prove that the mapping sending x to xp is an automorphism of Fpn . Deduce that
the Galois group Gal (Fpn/Fp) is cyclic of order n. For which m is Fpm a subfield of Fpn?
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A1/5 B1/4 Electromagnetism

(i) Show that, in a region where there is no magnetic field and the charge density
vanishes, the electric field can be expressed either as minus the gradient of a scalar potential
φ or as the curl of a vector potential A. Verify that the electric field derived from

A =
1

4πε0
p ∧ r
r3

is that of an electrostatic dipole with dipole moment p.

[You may assume the following identities:

∇(a · b) = a ∧ (∇∧ b) + b ∧ (∇∧ a) + (a · ∇)b + (b · ∇)a,

∇∧ (a ∧ b) = (b · ∇)a− (a · ∇)b + a∇ · b− b∇ · a.]

(ii) An infinite conducting cylinder of radius a is held at zero potential in the presence
of a line charge parallel to the axis of the cylinder at distance s0 > a, with charge density
q per unit length. Show that the electric field outside the cylinder is equivalent to that
produced by replacing the cylinder with suitably chosen image charges.

A2/5 Electromagnetism

(i) Show that the Lorentz force corresponds to a curvature force and the gradient of
a magnetic pressure, and that it can be written as the divergence of a second rank tensor,
the Maxwell stress tensor.

Consider the potential field B given by B = −∇Φ, where

Φ(x, y) =
(
B0

k

)
cos kx e−ky,

referred to cartesian coordinates (x, y, z). Obtain the Maxwell stress tensor and verify
that its divergence vanishes.

(ii) The magnetic field in a stellar atmosphere is maintained by steady currents and
the Lorentz force vanishes. Show that there is a scalar field α such that ∇∧B = αB and
B ·∇α = 0. Show further that if α is constant, then ∇2B+α2B = 0. Obtain a solution in
the form B = (B1(z), B2(z), 0); describe the structure of this field and sketch its variation
in the z-direction.
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A3/5 B3/3 Electromagnetism

(i) A plane electromagnetic wave in a vacuum has an electric field

E = (E1, E2, 0) cos(kz − ωt),

referred to cartesian axes (x, y, z). Show that this wave is plane polarized and find
the orientation of the plane of polarization. Obtain the corresponding plane polarized
magnetic field and calculate the rate at which energy is transported by the wave.

(ii) Suppose instead that

E = (E1 cos(kz − ωt), E2 cos(kz − ωt+ φ), 0),

with φ a constant, 0 < φ < π. Show that, if the axes are now rotated through an angle ψ
so as to obtain an elliptically polarized wave with an electric field

E′ = (F1 cos(kz − ωt+ χ), F2 sin(kz − ωt+ χ), 0),

then
tan 2ψ =

2E1E2 cosφ
E2

1 − E2
2

.

Show also that if E1 = E2 = E there is an elliptically polarized wave with

E′ =
√

2E
(
cos(kz − ωt+ 1

2φ) cos 1
2φ, sin(kz − ωt+ 1

2φ) sin 1
2φ, 0

)
.

A4/5 Electromagnetism

State the four integral relationships between the electric field E and the magnetic
field B and explain their physical significance. Derive Maxwell’s equations from these
relationships and show that E and B can be described by a scalar potential φ and a vector
potential A which satisfy the inhomogeneous wave equations

∇2φ− ε0µ0
∂2φ

∂t2
= − ρ

ε0
,

∇2A− ε0µ0
∂2A
∂t2

= −µ0j.

If the current j satisfies Ohm’s law and the charge density ρ = 0, show that plane
waves of the form

A = A(z, t)eiωtx̂,

where x̂ is a unit vector in the x-direction of cartesian axes (x, y, z), are damped. Find an
approximate expression for A(z, t) when ω � σ/ε0, where σ is the electrical conductivity.
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A1/6 Dynamics of Differential Equations

(i) A system in R2 obeys the equations:

ẋ = x− x5 − 2xy4 − 2y3(a− x2) ,

ẏ = y − x4y − 2y5 + x3(a− x2) ,

where a is a positive constant.

By considering the quantity V = αx4 + βy4, where α and β are appropriately
chosen, show that if a > 1 then there is a unique fixed point and a unique limit cycle.
How many fixed points are there when a < 1?

(ii) Consider the second order system

ẍ− (a− bx2)ẋ+ x− x3 = 0 ,

where a, b are constants.

(a) Find the fixed points and determine their stability.

(b) Show that if the fixed point at the origin is unstable and 3a > b then there are
no limit cycles.

[You may find it helpful to use the Liénard coordinate z = ẋ− ax+ 1
3bx

3.]
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A2/6 B2/4 Dynamics of Differential Equations

(i) Define the terms stable manifold and unstable manifold of a hyperbolic fixed point
x0 of a dynamical system. State carefully the stable manifold theorem.

Give an approximation, correct to fourth order in |x|, for the stable and unstable
manifolds of the origin for the system(

ẋ
ẏ

)
=
(
x+ x2 − y2

−y + x2

)
.

(ii) State, without proof, the centre manifold theorem. Show that the fixed point at
the origin of the system

ẋ = y − x+ ax3 ,

ẏ = rx− y − zy ,

ż = −z + xy ,

where a is a constant, is non-hyperbolic at r = 1.

Using new coordinates v = x+ y , w = x− y, find the centre manifold in the form

w = αv3 + . . . , z = βv2 + γv4 + . . .

for constants α, β, γ to be determined. Hence find the evolution equation on the centre
manifold in the form

v̇ =
1
8
(a− 1)v3 +

(
(3a+ 1)(a+ 1)

128
+

(a− 1)
32

)
v5 + . . . .

Ignoring higher order terms, give conditions on a that guarantee that the origin is
asymptotically stable.
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A3/6 B3/4 Dynamics of Differential Equations

(i) Define the Floquet multiplier and Liapunov exponent for a periodic orbit x̂(t) of
a dynamical system ẋ = f(x) in R2. Show that one multiplier is always unity, and that
the other is given by

exp

(∫ T

0

∇· f(x̂(t))dt

)
, (∗)

where T is the period of the orbit.

The Van der Pol oscillator ẍ + εẋ(x2 − 1) + x = 0 , 0 < ε � 1 has a limit cycle
x̂(t) ≈ 2 sin t. Show using (∗) that this orbit is stable.

(ii) Show, by considering the normal form for a Hopf bifurcation from a fixed point
x0(µ) of a dynamical system ẋ = f(x, µ), that in some neighbourhood of the bifurcation
the periodic orbit is stable when it exists in the range of µ for which x0 is unstable, and
unstable in the opposite case.

Now consider the system

ẋ = x(1− y) + µx

ẏ = y(x− 1)− µx

}
x > 0 .

Show that the fixed point (1+µ , 1+µ) has a Hopf bifurcation when µ = 0, and is unstable
(stable) when µ > 0 (µ < 0).

Suppose that a periodic orbit exists in µ > 0. Show without solving for the orbit
that the result of part (i) shows that such an orbit is unstable. Define a similar result for
µ < 0.

What do you conclude about the existence of periodic orbits when µ 6= 0? Check
your answer by applying Dulac’s criterion to the system, using the weighting ρ = e−(x+y).

Part II 2002



42

A4/6 Dynamics of Differential Equations

Define the terms homoclinic orbit, heteroclinic orbit and heteroclinic loop. In the
case of a dynamical system that possesses a homoclinic orbit, explain, without detailed
calculation, how to calculate its stability.

A second order dynamical system depends on two parameters µ1 and µ2. When
µ1 = µ2 = 0 there is a heteroclinic loop between the points P1, P2 as in the diagram.

When µ1, µ2 are small there are trajectories that pass close to the fixed points P1, P2:

By adapting the method used above for trajectories near homoclinic orbits, show that the
distances yn, yn+1 to the stable manifold at P1 on successive returns are related to zn,
zn+1, the corresponding distances near P2, by coupled equations of the form

zn = (yn)γ1 + µ1,

yn+1 = (zn)γ2 + µ2,

}

where any arbitrary constants have been removed by rescaling, and γ1, γ2 depend on
conditions near P1, P2. Show from these equations that there is a stable heteroclinic orbit
(µ1 = µ2 = 0) if γ1γ2 > 1. Show also that in the marginal situation γ1 = 2, γ2 = 1

2 there
can be a stable fixed point for small positive y, z if µ2 < 0, µ2

2 < µ1. Explain carefully
the form of the orbit of the original dynamical system represented by the solution of the
above map when µ2

2 = µ1.
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A1/7 B1/12 Logic, Computation and Set Theory

(i) State the Knaster-Tarski fixed point theorem. Use it to prove the Cantor-Bernstein
Theorem; that is, if there exist injections A → B and B → A for two sets A and B then
there exists a bijection A→ B.

(ii) Let A be an arbitrary set and suppose given a subset R of PA × A. We define a
subset B ⊆ A to be R-closed just if whenever (S, a) ∈ R and S ⊆ B then a ∈ B. Show
that the set of all R-closed subsets of A is a complete poset in the inclusion ordering.

Now assume that A is itself equipped with a partial ordering 6.
(a) Suppose R satisfies the condition that if b > a ∈ A then ({b}, a) ∈ R.

Show that if B is R-closed then c 6 b ∈ B implies c ∈ B.
(b) Suppose that R satisfies the following condition. Whenever (S, a) ∈ R and

b 6 a then there exists T ⊆ A such that (T, b) ∈ R, and for every t ∈ T we have (i)
({b}, t) ∈ R, and (ii) t 6 s for some s ∈ S. Let B and C be R-closed subsets of A. Show
that the set

[B → C] = {a ∈ A | ∀b 6 a (b ∈ B ⇒ b ∈ C)}

is R-closed.

B2/11 Logic, Computation and Set Theory

Explain what is meant by a structure for a first-order language and by a model for
a first-order theory. If T is a first-order theory whose axioms are all universal sentences
(that is, sentences of the form (∀x1 . . . xn)p where p is quantifier-free), show that every
substructure of a T -model is a T -model.

Now let T be an arbitrary first-order theory in a language L, and let M be an
L-structure satisfying all the universal sentences which are derivable from the axioms of
T . If p is a quantifier-free formula (with free variables x1, . . . , xn say) whose interpretation
[p]M is a nonempty subset of Mn, show that T ∪ {(∃x1 · · ·xn)p} is consistent.

Let L′ be the language obtained from L by adjoining a new constant â for each
element a of M , and let

T ′ = T ∪ {p[â1, . . . , ân/x1, . . . , xn] | p is quantifier-free and (a1, . . . , an) ∈ [p]M}.

Show that T ′ has a model. [You may use the Completeness and Compactness
Theorems.] Explain briefly why any such model contains a substructure isomorphic to M .
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A3/8 B3/11 Logic, Computation and Set Theory

(i) Explain briefly what is meant by the terms register machine and computable
function.

Let u be the universal computable function u(m,n) = fm(n) and s a total
computable function with fs(m,n)(k) = fm(n, k). Here fm(n) and fm(n, k) are the unary
and binary functions computed by the m-th register machine program Pm. Suppose
h : N → N is a total computable function. By considering the function

g(m,n) = u(h(s(m,m)), n)

show that there is a number a such that fa = fh(a).

(ii) Let P be the set of all partial functions N × N → N. Consider the mapping
Φ : P → P defined by

Φ(g)(m,n) =


n+ 1 if m = 0,
g(m− 1, 1) if m > 0, n = 0 and g(m− 1, 1) defined,
g(m− 1, g(m,n− 1)) if mn > 0 and g(m− 1, g(m,n− 1)) defined,
undefined otherwise.

(a) Show that any fixed point of Φ is a total function N× N → N. Deduce that Φ
has a unique fixed point.
[The Bourbaki-Witt Theorem may be assumed if stated precisely.]

(b) It follows from standard closure properties of the computable functions that
there is a computable function ψ such that

ψ(p,m, n) = Φ(fp)(m,n).

Assuming this, show that there is a total computable function h such that

Φ(fp) = fh(p) for all p.

Deduce that the fixed point of Φ is computable.
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A4/8 Logic, Computation and Set Theory

Let P be a set of primitive propositions. Let L(P ) denote the set of all compound
propositions over P , and let S be a subset of L(P ). Consider the relation �S on L(P )
defined by

s �S t if and only if S ∪ {s} ` t.

Prove that �S is reflexive and transitive. Deduce that if we define ≈S by (s ≈S t if
and only if s �S t and t �S s), then ≈S is an equivalence relation and the quotient
BS = L(P )/ ≈S is partially ordered by the relation 6S induced by 4S (that is, [s] 6S [t]
if and only if s 4S t, where square brackets denote equivalence classes).

Assuming the result that BS is a Boolean algebra with lattice operations induced
by the logical operations on L(P ) (that is, [s] ∧ [t] = [s ∧ t], etc.), show that there is a
bijection between the following two sets:
(a) The set of lattice homomorphisms BS → {0, 1}.
(b) The set of models of the propositional theory S.

Deduce that the completeness theorem for propositional logic is equivalent to the
assertion that, for any Boolean algebra B with more than one element, there exists a
homomorphism B → {0, 1}.

[You may assume the result that the completeness theorem implies the compactness
theorem.]
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B4/10 Logic, Computation and Set Theory

Explain what is meant by a well-ordering of a set.

Without assuming Zorn’s Lemma, show that the power-set of any well-ordered set
can be given a total (linear) ordering.

By a selection function for a set A, we mean a function f : PA → PA such that
f(B) ⊂ B for all B ⊂ A, f(B) 6= ∅ for all B 6= ∅, and f(B) 6= B if B has more than one
element. Suppose given a selection function f . Given a mapping g : α → [̧0, 1] for some
ordinal α, we define a subset B(f, g) ⊂ A recursively as follows:

B(f, g) = A if α = 0,
B(f, g) = f(B(f, g|β)) if α = β+ and g(β) = 1,
B(f, g) = B(f, g|β)\f(B(f, g|β)) if α = β+and g(β) = 0,

B(f, g) =
⋂
{B(f, g|β) |β < α} if α is a limit ordinal.

Show that, for any x ∈ A and any ordinal α, there exists a function g with domain α such
that x ∈ B(f, g).
[It may help to observe that g is uniquely determined by x and α, though you need not
show this explicitly.]

Show also that there exists α such that, for every g with domain α, B(f, g) is either
empty or a singleton.

Deduce that the assertion ‘Every set has a selection function’ implies that every set
can be totally ordered.
[Hartogs’ Lemma may be assumed, provided you state it precisely.]
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A1/12 B1/15 Principles of Statistics

(i) Explain in detail the minimax and Bayes principles of decision theory.

Show that if d(X) is a Bayes decision rule for a prior density π(θ) and has constant
risk function, then d(X) is minimax.

(ii) Let X1, . . . , Xp be independent random variables, with Xi ∼ N(µi, 1), i = 1, . . . , p.

Consider estimating µ = (µ1, . . . , µp)T by d = (d1, . . . , dp)T , with loss function

L(µ, d) =
p∑

i=1

(µi − di)2 .

What is the risk function of X = (X1, . . . , Xp)T ?

Consider the class of estimators of µ of the form

da(X) =
(
1− a

XTX

)
X ,

indexed by a > 0. Find the risk function of da(X) in terms of E
(
1/XTX

)
, which you

should not attempt to evaluate, and deduce that X is inadmissible. What is the optimal
value of a?

[You may assume Stein’s Lemma, that for suitably behaved real-valued functions h,

E {(Xi − µi)h(X)} = E

{
∂h(X)
∂Xi

}
. ]
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A2/11 B2/16 Principles of Statistics

(i) Let X be a random variable with density function f(x; θ). Consider testing the
simple null hypothesis H0 : θ = θ0 against the simple alternative hypothesis H1 : θ = θ1.

What is the form of the optimal size α classical hypothesis test?

Compare the form of the test with the Bayesian test based on the Bayes factor,
and with the Bayes decision rule under the 0-1 loss function, under which a loss of 1 is
incurred for an incorrect decision and a loss of 0 is incurred for a correct decision.

(ii) What does it mean to say that a family of densities {f(x; θ), θ ∈ Θ} with real
scalar parameter θ is of monotone likelihood ratio?

Suppose X has a distribution from a family which is of monotone likelihood ratio
with respect to a statistic t(X) and that it is required to test H0 : θ 6 θ0 against
H1 : θ > θ0.

State, without proof, a theorem which establishes the existence of a uniformly most
powerful test and describe in detail the form of the test.

Let X1, . . . , Xn be independent, identically distributed U(0, θ), θ > 0. Find a
uniformly most powerful size α test of H0 : θ 6 θ0 against H1 : θ > θ0, and find its power
function. Show that we may construct a different, randomised, size α test with the same
power function for θ > θ0.
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A3/12 B3/15 Principles of Statistics

(i) Describe in detail how to perform the Wald, score and likelihood ratio tests of a
simple null hypothesis H0 : θ = θ0 given a random sample X1, . . . , Xn from a regular one-
parameter density f(x; θ). In each case you should specify the asymptotic null distribution
of the test statistic.

(ii) Let X1, . . . , Xn be an independent, identically distributed sample from a distribu-
tion F , and let θ̂(X1, . . . , Xn) be an estimator of a parameter θ of F .

Explain what is meant by: (a) the empirical distribution function of the sample;
(b) the bootstrap estimator of the bias of θ̂, based on the empirical distribution function.
Explain how a bootstrap estimator of the distribution function of θ̂ − θ may be used to
construct an approximate 1− α confidence interval for θ.

Suppose the parameter of interest is θ = µ2, where µ is the mean of F , and the
estimator is θ̂ = X̄2, where X̄ = n−1

∑n
i=1Xi is the sample mean.

Derive an explicit expression for the bootstrap estimator of the bias of θ̂ and show
that it is biased as an estimator of the true bias of θ̂.

Let θ̂i be the value of the estimator θ̂(X1, . . . , Xi−1, Xi+1, . . . , Xn) computed from
the sample of size n− 1 obtained by deleting Xi and let θ̂. = n−1

∑n
i=1 θ̂i. The jackknife

estimator of the bias of θ̂ is
bJ = (n− 1) (θ̂. − θ̂) .

Derive the jackknife estimator bJ for the case θ̂ = X̄2, and show that, as an estimator of
the true bias of θ̂, it is unbiased.

A4/13 B4/15 Principles of Statistics

(a) Let X1, . . . , Xn be independent, identically distributed random variables from
a one-parameter distribution with density function

f(x; θ) = h(x)g(θ) exp{θt(x)} , x ∈ R.

Explain in detail how you would test

H0 : θ = θ0 against H1 : θ 6= θ0 .

What is the general form of a conjugate prior density for θ in a Bayesian analysis of this
distribution?

(b) Let Y1, Y2 be independent Poisson random variables, with means (1− ψ)λ and
ψλ respectively, with λ known.

Explain why the Conditionality Principle leads to inference about ψ being drawn
from the conditional distribution of Y2, given Y1+Y2. What is this conditional distribution?

(c) Suppose Y1, Y2 have distributions as in (b), but that λ is now unknown.

Explain in detail how you would test H0 : ψ = ψ0 against H1 : ψ 6= ψ0, and describe
the optimality properties of your test.

[Any general results you use should be stated clearly, but need not be proved.]
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A1/11 B1/16 Stochastic Financial Models

(i) The prices, Si, of a stock in a binomial model at times i = 0, 1, 2 are represented
by the following binomial tree.

100

150

80

225

120

64

The fixed interest rate per period is 1/5 and the probability that the stock price increases
in a period is 1/3. Find the price at time 0 of a European call option with strike price 78
and expiry time 2.

Explain briefly the ideas underlying your calculations.

(ii) Consider an investor in a one-period model who may invest in s assets, all of
which are risky, with a random return vector R having mean ER = r and positive-
definite covariance matrix V ; assume that not all the assets have the same expected return.
Show that any minimum-variance portfolio is equivalent to the investor dividing his wealth
between two portfolios, the global minimum-variance portfolio and the diversified portfolio,
both of which should be specified clearly in terms of r and V .

Now suppose that R = (R1, R2, . . . , Rs)
>

where R1, R2, . . . , Rs are independent
random variables with Ri having the exponential distribution with probability density
function λie

−λix, x > 0, where λi > 0, 1 6 i 6 s. Determine the global minimum-variance
portfolio and the diversified portfolio explicitly.

Consider further the situation when the investor has the utility function u(x) =
1 − e−x, where x denotes his wealth. Suppose that he acts to maximize the expected
utility of his final wealth, and that his initial wealth is w > 0. Show that he now divides
his wealth between the diversified portfolio and the uniform portfolio, in which wealth
is apportioned equally between the assets, and determine the amounts that he invests in
each.
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A3/11 B3/16 Stochastic Financial Models

(i) Explain briefly what it means to say that a stochastic process {Wt, t > 0} is a
standard Brownian motion.

Let {Wt, t > 0} be a standard Brownian motion and let a, b be real numbers.
What condition must a and b satisfy to ensure that the process eaWt+bt is a martingale?
Justify your answer carefully.

(ii) At the beginning of each of the years r = 0, 1, . . . , n − 1 an investor has income
Xr, of which he invests a proportion ρr, 0 6 ρr 6 1, and consumes the rest during the
year. His income at the beginning of the next year is

Xr+1 = Xr + ρrXrWr,

where W0, . . . ,Wn−1 are independent positive random variables with finite means and
X0 > 0 is a constant. He decides on ρr after he has observed both Xr and Wr at the
beginning of year r, but at that time he does not have any knowledge of the value of Ws,
for any s > r . The investor retires in year n and consumes his entire income during that
year. He wishes to determine the investment policy that maximizes his expected total
consumption

E

[
n−1∑
r=0

(1− ρr)Xr +Xn

]
.

Prove that the optimal policy may be expressed in terms of the numbers b0, b1, . . . ,
bn where bn = 1, br = br+1 + E max (br+1Wr, 1), for r < n, and determine the optimal
expected total consumption.

A4/12 B4/16 Stochastic Financial Models

Write an essay on the Black–Scholes formula for the price of a European call option
on a stock. Your account should include a derivation of the formula and a careful analysis
of its dependence on the parameters of the model.
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A2/13 B2/21 Foundations of Quantum Mechanics

(i) A Hamiltonian H0 has energy eigenvalues Er and corresponding non-degenerate
eigenstates |r〉. Show that under a small change in the Hamiltonian δH,

δ|r〉 =
∑
s 6=r

〈s|δH|r〉
Er − Es

|s〉,

and derive the related formula for the change in the energy eigenvalue Er to first and
second order in δH.

(ii) The Hamiltonian for a particle moving in one dimension is H = H0 + λH ′, where
H0 = p2/2m+ V (x), H ′ = p/m and λ is small. Show that

i

~
[H0, x] = H ′

and hence that
δEr = −λ2 i

~
〈r|H ′x|r〉 = λ2 i

~
〈r|xH ′|r〉

to second order in λ.

Deduce that δEr is independent of the particular state |r〉 and explain why this
change in energy is exact to all orders in λ.

A3/13 B3/21 Foundations of Quantum Mechanics

(i) Two particles with angular momenta j1, j2 and basis states |j1 m1〉, |j2 m2〉 are
combined to give total angular momentum j and basis states |j m〉. State the possible
values of j,m and show how a state with j = m = j1 + j2 can be constructed. Briefly
describe, for a general allowed value of j, what the Clebsch-Gordan coefficients are.

(ii) If the angular momenta j1 and j2 are both 1 show that the combined state |2 0〉 is

|2 0〉 =

√
1
6

(
|1 1〉|1 −1〉+ |1 −1〉|1 1〉

)
+

√
2
3
|1 0〉|1 0〉.

Determine the corresponding expressions for the combined states |1 0〉 and |0 0〉, assuming
that they are respectively antisymmetric and symmetric under interchange of the two
particles.

If the combined system is in state |0 0〉 what is the probability that measurements
of the z-component of angular momentum for either constituent particle will give the value
of 1?

[Hint: J±|j m〉 =
√

(j ∓m)(j ±m+ 1) |j m± 1〉 .]
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A4/15 B4/22 Foundations of Quantum Mechanics

Discuss the consequences of indistinguishability for a quantum mechanical state
consisting of two identical, non-interacting particles when the particles have (a) spin zero,
(b) spin 1/2.

The stationary Schrödinger equation for one particle in the potential

− 2e2

4πε0r

has normalized, spherically symmetric, real wave functions ψn(r) and energy eigenvalues
En with E0 < E1 < E2 < · · · . What are the consequences of the Pauli exclusion principle
for the ground state of the helium atom? Assuming that wavefunctions which are not
spherically symmetric can be ignored, what are the states of the first excited energy level
of the helium atom?
[You may assume here that the electrons are non-interacting. ]

Show that, taking into account the interaction between the two electrons, the
estimate for the energy of the ground state of the helium atom is

2E0 +
e2

4πε0

∫
d3r1 d

3r2

|r1 − r2|
ψ2

0(r1)ψ2
0(r2).
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A1/15 B1/24 General Relativity

(i) Given a covariant vector field Va, define the curvature tensor Ra
bcd by

Va;bc − Va;cb = VeR
e
abc. (∗)

Express Re
abc in terms of the Christoffel symbols and their derivatives. Show that

Re
abc = −Re

acb.

Further, by setting Va = ∂φ/∂xa, deduce that

Re
abc +Re

cab +Re
bca = 0.

(ii) Write down an expression similar to (∗) given in Part (i) for the quantity

gab;cd − gab;dc

and hence show that
Reabc = −Raebc.

Define the Ricci tensor, show that it is symmetric and write down the contracted
Bianchi identities.

In certain spacetimes of dimension n ≥ 2, Rabcd takes the form

Rabcd = K(xe)[gacgbd − gadgbc].

Obtain the Ricci tensor and Ricci scalar. Deduce that K is a constant in such spacetimes
if the dimension n is greater than 2.
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A2/15 B2/23 General Relativity

(i) Consider the line element describing the interior of a star,

ds2 = e2α(r)dr2 + r2(dθ2 + sin2 θ dφ2)− e2γ(r)dt2 ,

defined for 0 ≤ r ≤ r0 by
e−2α(r) = 1−Ar2

and
eγ(r) =

3
2
e−α0 − 1

2
e−α(r).

Here A = 2M/r30, M is the mass of the star, and α0 is defined to be α(r0).

The star is made of a perfect fluid with energy-momentum tensor

Tab = (p+ ρ)uaub + pgab.

Here ua is the 4-velocity of the fluid which is at rest, the density ρ is constant throughout
the star (0 ≤ r ≤ r0) and the pressure p = p(r) depends only on the radial coordinate.
Write down the Einstein field equations and show that (in geometrical units with
G = c = 1) they may equivalently be written as

Rab = 8π(p+ ρ)uaub + 4π(p− ρ)gab.

(ii) Using the formulae below, or otherwise, show that for 0 ≤ r ≤ r0 one has

ρ =
3A
8π
, p(r) =

3A
8π

(
e−α(r) − e−α0

3e−α0 − e−α(r)

)
.

[The non-zero components of the Ricci tensor are:

R11 = −γ′′ + α′γ′ − γ′2 +
2α′

r
, R22 = e−2α[(α′ − γ′)r − 1] + 1,

R33 = sin2 θR22, R44 = e2γ−2α[γ′′ − α′γ′ + γ′2 +
2γ′

r
].

Note that

α′ = Are2α, γ′ =
1
2
Areα−γ , γ′′ =

1
2
Aeα−γ +

1
2
A2r2e3α−γ − 1

4
A2r2e2α−2γ . ]

A4/17 B4/25 General Relativity

With respect to the Schwarzschild coordinates (r, θ, φ, t), the Schwarzschild geom-
etry is given by

ds2 =
(

1− rs
r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)−
(

1− rs
r

)
dt2,

where rs = 2M is the Schwarzschild radius and M is the Schwarzschild mass. Show that,
by a suitable choice of (θ, φ), the general geodesic can regarded as moving in the equatorial
plane θ = π/2. Obtain the equations governing timelike and null geodesics in terms of
u(φ), where u = 1/r.

Discuss light bending and perihelion precession in the solar system.
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A1/20 B1/20 Numerical Analysis

(i) Let A be an n×n symmetric real matrix with distinct eigenvalues λ1, λ2, . . . , λn and
corresponding eigenvectors v1,v2, ....,vn, where ‖vl‖ = 1. Given x(0) ∈ Rn, ‖x(0)‖ = 1,
the sequence x(k) is generated in the following manner. We set

µ = x(k) TAx(k),

y = (A− µI)−1x(k),

x(k+1) =
y
‖y‖

.

Show that if

x(k) = c−1

(
v1 + α

n∑
l=2

dlvl

)
,

where α is a real scalar and c is chosen so that ‖x(k)‖ = 1, then

µ = c−2

λ1 + α2
n∑

j=2

λjd
2
j

 .

Give an explicit expression for c.

(ii) Use the above result to prove that, if |α| is small,

x(k+1) = c̃−1

(
v1 + α3

n∑
l=2

d̃lvl

)
+O(α4)

and obtain the numbers c̃ and d̃2, . . . , d̃n.
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A2/19 B2/19 Numerical Analysis

(i)

Given the finite-difference method

s∑
k=−r

αku
n+1
m+k =

s∑
k=−r

βku
n
m+k, m, n ∈ Z, n > 0,

define

H(z) =

s∑
k=−r

βkz
k

s∑
k=−r

αkzk

.

Prove that this method is stable if and only if

|H(eiθ)| 6 1, −π 6 θ 6 π.

[You may quote without proof known properties of the Fourier transform.]

(ii) Find the range of the parameter µ such that the method

(1− 2µ)un+1
m−1 + 4µun+1

m + (1− 2µ)un+1
m+1 = un

m−1 + un
m+1

is stable. Supposing that this method is used to solve the diffusion equation for u(x, t),
determine the order of magnitude of the local error as a power of ∆x.

A3/19 B3/20 Numerical Analysis

(i) Determine the order of the multistep method

yn+2 − (1 + α)yn+1 + αyn = h[ 1
12 (5 + α)fn+2 + 2

3 (1− α)fn+1 − 1
12 (1 + 5α)fn]

for the solution of ordinary differential equations for different choices of α in the range
−1 6 α 6 1.

(ii) Prove that no such choice of α results in a method whose linear stability domain
includes the interval (−∞, 0).

A4/22 B4/20 Numerical Analysis

Write an essay on the method of conjugate gradients. You should describe the
algorithm, present an analysis of its properties and discuss its advantages.

[Any theorems quoted should be stated precisely but need not be proved.]
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B1/5 Combinatorics

Prove that every graph G on n > 3 vertices with minimal degree δ(G) > n
2 is

Hamiltonian. For each n > 3, give an example to show that this result does not remain
true if we weaken the condition to δ(G) > n

2 − 1 (n even) or δ(G) > n−1
2 (n odd).

Now let G be a connected graph (with at least 2 vertices) without a cutvertex.
Does G Hamiltonian imply G Eulerian? Does G Eulerian imply G Hamiltonian? Justify
your answers.

B2/5 Combinatorics

State and prove the local LYM inequality. Explain carefully when equality holds.

Define the colex order and state the Kruskal-Katona theorem. Deduce that, if n
and r are fixed positive integers with 1 6 r 6 n− 1, then for every 1 6 m 6

(
n
r

)
we have

min{|∂A| : A ⊂ [n](r), |A| = m} = min{|∂A| : A ⊂ [n+ 1](r), |A| = m}.

By a suitable choice of n, r and m, show that this result does not remain true if we replace
the lower shadow ∂A with the upper shadow ∂+A.

B4/1 Combinatorics

Write an essay on Ramsey theory. You should include the finite and infinite versions
of Ramsey’s theorem, together with a discussion of upper and lower bounds in the finite
case.

[You may restrict your attention to colourings by just 2 colours.]
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B1/6 Representation Theory

Construct the character table of the symmetric group S5, explaining the steps in
your construction.

Use the character table to show that the alternating group A5 is the only non-trivial
normal subgroup of S5.

B2/6 Representation Theory

State and prove Schur’s Lemma. Deduce that the centre of a finite group G with a
faithful irreducible complex representation ρ is cyclic and that Z(ρ(G)) consists of scalar
transformations.

Let G be the subgroup of order 18 of the symmetric group S6 given by

G = 〈(123), (456), (23)(56)〉.

Show that G has a normal subgroup of order 9 and four normal subgroups of order 3.
By considering quotients, show that G has two representations of dimension 1 and four
inequivalent irreducible representations of degree 2. Deduce that G has no faithful
irreducible complex representations.

Show finally that if G is a finite group with trivial centre and H is a subgroup of
G with non-trivial centre, then any faithful representation of G is reducible on restriction
to H.

B3/5 Representation Theory

Let G be a finite group acting on a finite set X. Define the permutation
representation (ρ,C[X]) of G and compute its character πX . Prove that 〈πX , 1G〉G equals
the number of orbits of G on X. If G acts also on the finite set Y , with character πY ,
show that 〈πX , πY 〉G equals the number of orbits of G on X × Y .

Now let G be the symmetric group Sn acting naturally on the set X = {1, . . . , n},
and let Xr be the set of all r-element subsets of X. Let πr be the permutation character
of G on Xr. Prove that

〈πk, π`〉G = `+ 1 for 0 6 ` 6 k 6 n/2.

Deduce that the class functions
χr = πr − πr−1

are irreducible characters of Sn, for 1 6 r 6 n/2.

B4/2 Representation Theory

Write an essay on the representation theory of SU2.
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B1/7 Galois Theory

Let F ⊂ K be a finite extension of fields and let G be the group of F -automorphisms
of K. State a result relating the order of G to the degree [K : F ].

Now let K = k(X1, . . . , X4) be the field of rational functions in four variables
over a field k and let F = k(s1, . . . , s4) where s1, . . . , s4 are the elementary symmetric
polynomials in k[X1, . . . , X4]. Show that the degree [K : F ] 6 4! and deduce that F is the
fixed field of the natural action of the symmetric group S4 on K.

Show that X1X3 + X2X4 has a cubic minimum polynomial over F . Let G =
〈σ, τ〉 ⊂ S4 be the dihedral group generated by the permutations σ = (1234) and τ = (13).
Show that the fixed field of G is F (X1X3 +X2X4). Find the fixed field of the subgroup
H = 〈σ2, τ〉.

B3/6 Galois Theory

Show that the polynomial f(X) = X5 +27X+16 has no rational roots. Show that
the splitting field of f over the finite field F3 is an extension of degree 4. Hence deduce
that f is irreducible over the rationals. Prove that f has precisely two (non-multiple)
roots over the finite field F7. Find the Galois group of f over the rationals.

[You may assume any general results you need including the fact that A5 is the only index
2 subgroup of S5.]

B4/3 Galois Theory

Suppose K,L are fields and σ1, . . . , σm are distinct embeddings of K into L. Prove
that there do not exist elements λ1, . . . , λm of L (not all zero) such that λ1σ1(x) + . . .+
λmσm(x) = 0 for all x ∈ K. Deduce that if K/k is a finite extension of fields, and
σ1, . . . , σm are distinct k-automorphisms of K, then m 6 [K : k].

Suppose now that K is a Galois extension of k with Galois group cyclic of order n,
where n is not divisible by the characteristic. If k contains a primitive nth root of unity,
prove that K is a radical extension of k. Explain briefly the relevance of this result to the
problem of solubility of cubics by radicals.
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B1/8 Differentiable Manifolds

What is meant by a “bump function” on Rn ? If U is an open subset of a manifold
M , prove that there is a bump function on M with support contained in U .

Prove the following.

(i) Given an open covering U of a compact manifold M , there is a partition of unity
on M subordinate to U .

(ii) Every compact manifold may be embedded in some Euclidean space.

B2/7 Differentiable Manifolds

State, giving your reasons, whether the following are true or false.

(a) Diffeomorphic connected manifolds must have the same dimension.

(b) Every non-zero vector bundle has a nowhere-zero section.

(c) Every projective space admits a volume form.

(d) If a manifold M has Euler characteristic zero, then M is orientable.

B4/4 Differentiable Manifolds

State and prove Stokes’ Theorem for compact oriented manifolds-with-boundary.

[You may assume results relating local forms on the manifold with those on its boundary
provided you state them clearly.]

Deduce that every differentiable map of the unit ball in Rn to itself has a fixed
point.

Part II 2002



62

B2/8 Algebraic Topology

Show that the fundamental group G of the Klein bottle is infinite. Show that G
contains an abelian subgroup of finite index. Show that G is not abelian.

B3/7 Algebraic Topology

For a finite simplicial complex X, let bi(X) denote the rank of the finitely generated
abelian group HiX. Define the Euler characteristic χ(X) by the formula

χ(X) =
∑

i

(−1)ibi(X).

Let ai denote the number of i-simplices in X, for each i > 0. Show that

χ(X) =
∑

i

(−1)iai.

B4/5 Algebraic Topology

State the Mayer-Vietoris theorem for a finite simplicial complex X which is the
union of closed subcomplexes A and B. Define all the maps in the long exact sequence.
Prove that the sequence is exact at the term HiX, for every i > 0.

Part II 2002



63

B1/9 Number Fields

Explain what is meant by an integral basis ω1, . . . , ωn of a number field K. Give
an expression for the discriminant of K in terms of the traces of the ωiωj .

Let K = Q(i,
√

2). By computing the traces TK/k(θ), where k runs through the
three quadratic subfields of K, show that the algebraic integers θ in K have the form
1
2 (α+β

√
2), where α = a+ ib and β = c+ id are Gaussian integers. By further computing

the norm NK/k(θ), where k = Q(
√

2), show that a and b are even and that c ≡ d (mod 2).
Hence prove that an integral basis for K is 1, i,

√
2, 1

2 (1 + i)
√

2.

Calculate the discriminant of K.

B2/9 Number Fields

Let K = Q(
√

35). By Dedekind’s theorem, or otherwise, show that the ideal
equations

2 = [2, ω]2, 5 = [5, ω]2, [ω] = [2, ω][5, ω]

hold in K, where ω = 5 +
√

35. Deduce that K has class number 2.

Verify that 1 + ω is the fundamental unit in K. Hence show that the complete
solution in integers x, y of the equation x2 − 35y2 = −10 is given by

x+
√

35y = ±ω(1 + ω)n (n = 0,±1,±2, . . .).

Calculate the particular solution x, y for n = 1.
[It can be assumed that the Minkowski constant for K is 1

2 .]

B4/6 Number Fields

Write an essay on one of the following topics.

(i) Dirichlet’s unit theorem and the Pell equation.

(ii) Ideals and the fundamental theorem of arithmetic.

(iii) Dedekind’s theorem and the factorisation of primes. (You should treat
explicitly either the case of quadratic fields or that of the cyclotomic field.)
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B1/10 Hilbert Spaces

Let H be a Hilbert space and let T ∈ B(H). Define what it means for T to be
bounded below . Prove that, if LT = I for some L ∈ B(H), then T is bounded below.

Prove that an operator T ∈ B(H) is invertible if and only if both T and T ∗ are
bounded below.

Let H be the sequence space `2. Define the operators S, R on H by setting

S(ξ) = (0, ξ1, ξ2, ξ3, . . . ) , R(ξ) = (ξ2, ξ3, ξ4, . . . ) ,

for all ξ = (ξ1, ξ2, ξ3, . . . ) ∈ `2. Check that RS = I but SR 6= I. Let D = {λ ∈ C : |λ| <
1}. For each λ ∈ D, explain why I − λR is invertible, and define

R(λ) = (I − λR)−1R .

Show that, for all λ ∈ D, we have R(λ)(S − λI) = I, but (S − λI)R(λ) 6= I. Deduce that,
for all λ ∈ D, the operator S − λI is bounded below, but is not invertible. Deduce also
that SpS = {λ ∈ C : |λ| 6 1}.

Let λ ∈ C with |λ| = 1, and for n = 1, 2, . . . , define the element xn of `2 by

xn = n−1/2(λ−1, λ−2, . . . , λ−n, 0, 0, . . . ) .

Prove that ‖xn‖ = 1 but that (S−λI)xn → 0 as n→∞. Deduce that, for |λ| = 1, S−λI
is not bounded below.

B3/8 Hilbert Spaces

Let H be an infinite-dimensional, separable Hilbert space. Let T be a compact
linear operator on H, and let λ be a non-zero, approximate eigenvalue of T . Prove that
λ is an eigenvalue, and that the corresponding eigenspace Eλ(T ) = {x ∈ H : Tx = λx} is
finite-dimensional.

Let S be a compact, self-adjoint operator on H. Prove that there is an orthonormal
basis (en)n>0 of H, and a sequence (λn)n>0 in C, such that (i) Sen = λnen (n > 0) and
(ii) λn → 0 as n→∞.

Now let S be compact, self-adjoint and injective. Let R be a bounded self-adjoint
operator on H such that RS = SR. Prove that H has an orthonormal basis (en)n>1,
where, for every n, en is an eigenvector, both of S and of R.

[You may assume, without proof, results about self-adjoint operators on finite-dimensional
spaces.]
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B4/7 Hilbert Spaces

Throughout this question, H is an infinite-dimensional, separable Hilbert space. You may
use, without proof, any theorems about compact operators that you require.

Define a Fredholm operator T , on a Hilbert space H, and define the index of T .

(i) Prove that if T is Fredholm then imT is closed.

(ii) Let F ∈ B(H) and let F have finite rank. Prove that F ∗ also has finite rank.

(iii) Let T = I+F , where I is the identity operator on H and F has finite rank; let
E = imF +imF ∗. By considering T |E and T |E⊥ (or otherwise) prove that T is Fredholm
with indT = 0.

(iv) Let T ∈ B(H) be Fredholm with indT = 0. Prove that T = A + F , where A
is invertible and F has finite rank.

[You may wish to note that T effects an isomorphism from (kerT )⊥ onto imT ; also kerT
and (imT )⊥ have the same finite dimension.]

(v) Deduce from (iii) and (iv) that T ∈ B(H) is Fredholm with indT = 0 if and
only if T = A+K with A invertible and K compact.

(vi) Explain briefly, by considering suitable shift operators on `2 (i.e. not using any
theorems about Fredholm operators) that, for each k ∈ Z, there is a Fredholm operator S
on H with indS = k.
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B1/11 Riemann Surfaces

(a) Define the notions of (abstract) Riemann surface, holomorphic map, and
biholomorphic map between Riemann surfaces.

(b) Prove the following theorem on the local form of a holomorphic map.

For a holomorphic map f : R→ S between Riemann surfaces, which is not constant
near a point r ∈ R, there exist neighbourhoods U of r in R and V of f(r) in S, together
with biholomorphic identifications φ : U → ∆, ψ : V → ∆, such that (ψ ◦ f)(x) = φ(x)n,
for all x ∈ U .

(c) Prove further that a non-constant holomorphic map between compact, con-
nected Riemann surfaces is surjective.

(d) Deduce from (c) the fundamental theorem of algebra.

B3/9 Riemann Surfaces

Let α1, α2 be two non-zero complex numbers with α1/α2 6∈ R. Let L be the lattice
Zα1 ⊕ Zα2 ⊂ C. A meromorphic function f on C is elliptic if f(z + λ) = f(z), for all
z ∈ C and λ ∈ L. The Weierstrass functions ℘(z), ζ(z), σ(z) are defined by the following
properties:

• ℘(z) is elliptic, has double poles at the points of L and no other poles, and ℘(z) =
1/z2 +O(z2) near 0;

• ζ ′(z) = −℘(z), and ζ(z) = 1/z +O(z3) near 0;

• σ(z) is odd, and σ′(z)/σ(z) = ζ(z), and σ(z)/z → 1 as z → 0.

Prove the following.
(a) ℘, and hence ζ and σ, are uniquely determined by these properties. You are not
expected to prove the existence of ℘, ζ, σ, and you may use Liouville’s theorem without
proof.
(b) ζ(z+αi) = ζ(z)+2ηi, and σ(z+αi) = kie

2ηizσ(z), for some constants ηi, ki (i = 1, 2).
(c) σ is holomorphic, has simple zeroes at the points of L, and has no other zeroes.
(d) Given a1, . . . , an and b1, . . . , bn in C with a1 + . . .+ an = b1 + . . .+ bn, the function

σ(z − a1) · · ·σ(z − an)
σ(z − b1) · · ·σ(z − bn)

is elliptic.

(e) ℘(u)− ℘(v) = −σ(u+ v)σ(u− v)
σ2(u)σ2(v)

.

(f) Deduce from (e), or otherwise, that
1
2
℘′(u)− ℘′(v)
℘(u)− ℘(v)

= ζ(u+ v)− ζ(u)− ζ(v).
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B4/8 Riemann Surfaces

A holomorphic map p : S → T between Riemann surfaces is called a covering map
if every t ∈ T has a neighbourhood V for which p−1(V ) breaks up as a disjoint union of
open subsets Uα on which p : Uα → V is biholomorphic.

(a) Suppose that f : R→ T is any holomorphic map of connected Riemann surfaces,
R is simply connected and p : S → T is a covering map. By considering the lifts of paths
from T to S, or otherwise, prove that f lifts to a holomorphic map f̃ : R → S, i.e. that
there exists an f̃ with f = p ◦ f̃ .

(b) Write down a biholomorphic map from the unit disk ∆={z ∈ C : |z| < 1} onto
a half-plane. Show that the unit disk ∆ uniformizes the punctured unit disk ∆× = ∆−{0}
by constructing an explicit covering map p : ∆ → ∆×.

(c) Using the uniformization theorem, or otherwise, prove that any holomorphic
map from C to a compact Riemann surface of genus greater than one is constant.
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B2/10 Algebraic Curves

For N ≥ 1, let VN be the (irreducible) projective plane curve
VN : XN + Y N + ZN = 0 over an algebraically closed field of characteristic zero.

Show that VN is smooth (non-singular). For m,n ≥ 1, let αm,n : Vmn → Vm be the
morphism αm,n(X : Y : Z) = (Xn : Y n : Zn). Determine the degree of αm,n, its points of
ramification and the corresponding ramification indices.

Applying the Riemann–Hurwitz formula to α1,n, determine the genus of Vn.

B3/10 Algebraic Curves

Let f = f(x, y) be an irreducible polynomial of degree n ≥ 2 (over an algebraically
closed field of characteristic zero) and V0 = {f = 0} ⊂ A2 the corresponding affine plane
curve. Assume that V0 is smooth (non-singular) and that the projectivization V ⊂ P2 of
V0 intersects the line at infinity P2 −A2 in n distinct points. Show that V is smooth and

determine the divisor of the rational differential ω =
dx

f ′y
on V . Deduce a formula for the

genus of V .

B4/9 Algebraic Curves

Write an essay on the Riemann–Roch theorem and some of its applications.
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B1/13 Probability and Measure

State and prove Dynkin’s π-system lemma.

Let (Ω,F ,P) be a probability space and let (An) be a sequence of independent
events such that lim

n→∞
P (An) = p. Let G = σ (A1, A2, . . .). Prove that

lim
n→∞

P (G ∩An) = pP (G)

for all G ∈ G.

B2/12 Probability and Measure

Let (Xn) be a sequence of non-negative random variables on a common probability
space with EXn 6 1, such that Xn → 0 almost surely. Determine which of the following
statements are necessarily true, justifying your answers carefully:

(a) P(Xn > 1) → 0 as n→∞;

(b) EXn → 0 as n→∞;

(c) E(sin(Xn)) → 0 as n→∞;

(d) E(
√
Xn) → 0 as n→∞.

[Standard limit theorems for integrals, and results about uniform integrability, may be used
without proof provided that they are clearly stated.]

B3/12 Probability and Measure

Derive the characteristic function of a real-valued random variable which is normally
distributed with mean µ and variance σ2. What does it mean to say that an Rn-valued
random variable has a multivariate Gaussian distribution? Prove that the distribution of
such a random variable is determined by its (Rn-valued) mean and its covariance matrix.

Let X and Y be random variables defined on the same probability space such that
(X,Y ) has a Gaussian distribution. Show that X and Y are independent if and only
if cov(X,Y ) = 0. Show that, even if they are not independent, one may always write
X = aY + Z for some constant a and some random variable Z independent of Y .

[The inversion theorem for characteristic functions and standard results about indepen-
dence may be assumed.]
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B4/11 Probability and Measure

State Birkhoff’s Almost Everywhere Ergodic Theorem for measure-preserving
transformations. Define what it means for a sequence of random variables to be stationary.
Explain briefly how the stationarity of a sequence of random variables implies that a
particular transformation is measure-preserving.

A bag contains one white ball and one black ball. At each stage of a process one
ball is picked from the bag (uniformly at random) and then returned to the bag together
with another ball of the same colour. Let Xn be a random variable which takes the value
0 if the nth ball added to the bag is white and 1 if it is black.

(a) Show that the sequence X1, X2, X3, . . . is stationary and hence that the proportion
of black balls in the bag converges almost surely to some random variable R.

(b) Find the distribution of R.

[The fact that almost-sure convergence implies convergence in distribution may be used
without proof.]
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B2/13 Applied Probability

Two enthusiastic probability students, Ros and Guil, sit an examination which
starts at time 0 and ends at time T ; they both decide to use the time to attempt a proof
of a difficult theorem which carries a lot of extra marks.

Ros’ strategy is to write the proof continuously at a constant speed λ lines per unit
time. In a time interval of length δt he has a probability µδt + o(δt) of realising he has
made a mistake. If that happens he instantly panics, erases everything he has written and
starts all over again.

Guil, on the other hand, keeps cool and thinks carefully about what he is doing.
In a time interval of length δt, he has a probability λδt+ o(δt) of writing the next line of
proof and for each line he has written a probability µδt+o(δt) of finding a mistake in that
line, independently of all other lines he has written. When a mistake is found, he erases
that line and carries on as usual, hoping for the best.

Both Ros and Guil realise that, even if they manage to finish the proof, they will
not recognise that they have done so and will carry on writing as much as they can.

(a) Calculate pl(t), the probability that, for Ros, the length of his completed proof
at time t > l/λ is at least l.

(b) Let qn(t) be the probability that Guil has n lines of proof at time t > 0. Show
that

∂Q

∂t
= (s− 1)(λQ− µ

∂Q

∂s
),

where Q(s, t) =
∑∞

n=0 s
nqn(t).

(c) Suppose now that every time Ros starts all over again, the time until the next
mistake has distribution F , independently of the past history. Write down a renewal-type
integral equation satisfied by l(t), the expected length of Ros’ proof at time t. What is
the expected length of proof produced by him at the end of the examination if F is the
exponential distribution with mean 1/µ?

(d) What is the expected length of proof produced by Guil at the end of the
examination if each line that he writes survives for a length of time with distribution F ,
independently of all other lines?
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B3/13 Applied Probability

(a) Define a renewal process and a discrete renewal process.

(b) State and prove the Discrete Renewal Theorem.

(c) The sequence u = {un : n > 0} satisfies

u0 = 1, un =
n∑

i=1

fiun−i, for n > 1

for some collection of non-negative numbers (fi : i ∈ N) summing to 1. Let U(s) =∑∞
n=1 uns

n, F (s) =
∑∞

n=1 fns
n. Show that

F (s) =
U(s)

1 + U(s)
.

Give a probabilistic interpretation of the numbers un, fn and mn =
∑n

i=1 ui.

(d) Let the sequence un be given by

u2n =
(

2n
n

)(
1
2

)2n

, u2n+1 = 0, n > 1.

How is this related to the simple symmetric random walk on the integers Z starting from
the origin, and its subsequent returns to the origin? Determine F (s) in this case, either
by calculating U(s) or by showing that F satisfies the quadratic equation

F 2 − 2F + s2 = 0, for 0 6 s < 1.
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B4/12 Applied Probability

Define a Poisson random measure. State and prove the Product Theorem for the
jump times Jn of a Poisson process with constant rate λ and independent random variables
Yn with law µ. Write down the corresponding result for a Poisson process Π in a space
E = Rd with rate λ(x) (x ∈ E) when we associate with each X ∈ Π an independent
random variable mX with density ρ(X, dm).

Prove Campbell’s Theorem, i.e. show that if M is a Poisson random measure on
the space E with intensity measure ν and a : E → R is a bounded measurable function
then

E[eθΣ] = exp
(∫

E

(eθa(y) − 1)ν(dy)
)
,

where
Σ =

∫
E

a(y)M(dy) =
∑
X∈Π

a(X).

Stars are scattered over three-dimensional space R3 in a Poisson process Π with density
ν(X) (X ∈ R3). Masses of the stars are independent random variables; the mass mX of a
star at X has the density ρ(X, dm). The gravitational potential at the origin is given by

F =
∑
X∈Π

GmX

|X|
,

where G is a constant. Find the moment generating function E[eθF ].

A galaxy occupies a sphere of radius R centred at the origin. The density of stars
is ν(x) = 1/|x| for points x inside the sphere; the mass of each star has the exponential
distribution with mean M . Calculate the expected potential due to the galaxy at the
origin. Let C be a positive constant. Find the distribution of the distance from the origin
to the nearest star whose contribution to the potential F is at least C.
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B1/14 Information Theory

(a) Define the entropy h(X) and the mutual entropy i(X,Y ) of random variables
X and Y . Prove the inequality

0 6 i(X,Y ) 6 min{h(X), h(Y )}.

[You may assume the Gibbs inequality.]

(b) Let X be a random variable and let Y = (Y1, . . . , Yn) be a random vector.

(i) Prove or disprove by producing a counterexample the inequality

i(X,Y) 6
n∑

j=1

i(X,Yj),

first under the assumption that Y1, . . ., Yn are independent random variables, and then
under the assumption that Y1, . . ., Yn are conditionally independent given X.

(ii) Prove or disprove by producing a counterexample the inequality

i(X,Y) >
n∑

j=1

i(X,Yj),

first under the assumption that Y1, . . ., Yn are independent random variables, and then
under the assumption that Y1, . . ., Yn are conditionally independent given X.

B2/14 Information Theory

Define the binary Hamming code of length n = 2` − 1 and its dual. Prove that the
Hamming code is perfect. Prove that in the dual code:

(i) The weight of any non-zero codeword equals 2`−1;

(ii) The distance between any pair of words equals 2`−1.

[You may quote results from the course provided that they are carefully stated.]

B4/13 Information Theory

Define the Huffman binary encoding procedure and prove its optimality among
decipherable codes.
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B2/15 Optimization and Control

State Pontryagin’s maximum principle (PMP) for the problem of minimizing∫ T

0

c(x(t), u(t)) dt+K(x(T )) ,

where x(t) ∈ Rn, u(t) ∈ Rm, dx/dt = a(x(t), u(t)); here, x(0) and T are given, and x(T )
is unconstrained.

Consider the two-dimensional problem in which dx1/dt = x2, dx2/dt = u,
c(x, u) = 1

2u
2 and K(x(T )) = 1

2qx1(T )2, q > 0. Show that, by use of a variable
z(t) = x1(t)+x2(t)(T − t), one can rewrite this problem as an equivalent one-dimensional
problem.

Use PMP to solve this one-dimensional problem, showing that the optimal control
can be expressed as u(t) = −qz(T )(T − t), where z(T ) = z(0)/(1 + 1

3qT
3).

Express u(t) in a feedback form of u(t) = k(t)z(t) for some k(t).

Suppose that the initial state x(0) is perturbed by a small amount to x(0)+(ε1, ε2).
Give an expression (in terms of ε1, ε2, x(0), q and T ) for the increase in minimal cost.

B3/14 Optimization and Control

Consider a scalar system with xt+1 = (xt + ut)ξt, where ξ0, ξ1, . . . is a sequence of
independent random variables, uniform on the interval [−a, a], with a 6 1. We wish to
choose u0, . . . , uh−1 to minimize the expected value of

h−1∑
t=0

(c+ x2
t + u2

t ) + 3x2
h ,

where ut is chosen knowing xt but not ξt. Prove that the minimal expected cost can be
written Vh(x0) = hc+ x2

0Πh and derive a recurrence for calculating Π1, . . . ,Πh.

How does your answer change if ut is constrained to lie in the set U(xt) = {u :
|u+ xt| < |xt|}?

Consider a stopping problem for which there are two options in state xt, t > 0:

(1) stop: paying a terminal cost 3x2
t ; no further costs are incurred;

(2) continue: choosing ut ∈ U(xt), paying c + u2
t + x2

t , and moving to state
xt+1 = (xt + ut)ξt.

Consider the problem of minimizing total expected cost subject to the constraint
that no more than h continuation steps are allowed. Suppose a = 1. Show that an optimal
policy stops if and only if either h continuation steps have already been taken or x2 6 2c/3.

[Hint: Use induction on h to show that a one-step-look-ahead rule is optimal. You should
not need to find the optimal ut for the continuation steps.]
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B4/14 Optimization and Control

A discrete-time decision process is defined on a finite set of states I as follows. Upon
entry to state it at time t the decision-maker observes a variable ξt. He then chooses the
next state freely within I, at a cost of c(it, ξt, it+1). Here {ξ0, ξ1, . . .} is a sequence of
integer-valued, identically distributed random variables. Suppose there exist {φi : i ∈ I}
and λ such that for all i ∈ I

φi + λ =
∑
k∈Z

P (ξt = k) min
i′∈I

[c(i, k, i′) + φi′ ] .

Let π denote a policy. Show that

λ = inf
π

lim sup
t→∞

Eπ

[
1
t

t−1∑
s=0

c(is, ξs, is+1)

]
.

At the start of each month a boat manufacturer receives orders for 1, 2 or 3 boats.
These numbers are equally likely and independent from month to month. He can produce
j boats in a month at a cost of 6+3j units. All orders are filled at the end of the month in
which they are ordered. It is possible to make extra boats, ending the month with a stock
of i unsold boats, but i cannot be more than 2, and a holding cost of ci is incurred during
any month that starts with i unsold boats in stock. Write down an optimality equation
that can be used to find the long-run expected average-cost.

Let π be the policy of only ever producing sufficient boats to fill the present month’s
orders. Show that it is optimal if and only if c > 2.

Suppose c < 2. Starting from π, what policy is obtained after applying one step of
the policy-improvement algorithm?
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B1/17 Dynamical Systems

Let fc be the map of the closed interval [0,1] to itself given by

fc(x) = cx(1− x), where 0 6 c 6 4.

Sketch the graphs of fc and (without proof) of f2
c , find their fixed points, and determine

which of the fixed points of fc are attractors. Does your argument work for c = 3 ?

B3/17 Dynamical Systems

Let A be a finite alphabet of letters and Σ either the semi-infinite space or the
doubly infinite space of sequences whose elements are drawn from A. Define the natural
topology on Σ. If W is a set of words, denote by ΣW the subspace of Σ consisting of those
sequences none of whose subsequences is in W . Prove that ΣW is a closed subspace of Σ;
and state and prove a necessary and sufficient condition for a closed subspace of Σ to have
the form ΣW for some W .

If A = {0, 1} and
W = {000, 111, 010, 101}

what is the space ΣW ?

B4/17 Dynamical Systems

Let S be a metric space, F a map of S to itself and P a point of S. Define an
attractor for F and an omega point of the orbit of P under F .

Let f be the map of R to itself given by

f(x) = x+
1
2

+ c sin2 2πx,

where c > 0 is so small that f ′(x) > 0 for all x, and let F be the map of R/Z to itself
induced by f . What points if any are
(a) attractors for F 2,
(b) omega points of the orbit of some point P under F ?
Is the cycle {0, 1

2} an attractor?

In the notation of the first two sentences, let C be a cycle of order M and assume
that F is continuous. Prove that C is an attractor for F if and only if each point of C is
an attractor for FM .
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B1/18 Partial Differential Equations

(a) Solve the equation, for a function u(x, y),

∂u

∂x
+
∂u

∂y
= 0 (∗)

together with the boundary condition on the x-axis:

u(x, 0) = x.

Find for which real numbers a it is possible to solve (∗) with the following boundary
condition specified on the line y = ax:

u(x, ax) = x.

Explain your answer in terms of the notion of characteristic hypersurface, which should
be defined.

(b) Solve the equation
∂u

∂x
+ (1 + u)

∂u

∂y
= 0

with the boundary condition on the x-axis

u(x, 0) = x,

in the domain D = {(x, y) : 0 < y < (x+1)2/4, −1 < x <∞}. Sketch the characteristics.
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B2/17 Partial Differential Equations

(a) Define the convolution f ∗ g of two functions. Write down a formula for a
solution u : [0,∞)× Rn → R to the initial value problem

∂u

∂t
−∆u = 0

together with the boundary condition

u(0, x) = f(x)

for f a bounded continuous function on Rn. Comment briefly on the uniqueness of the
solution.

(b) State and prove the Duhamel principle giving the solution (for t > 0) to the
equation

∂u

∂t
−∆u = g

together with the boundary condition

u(0, x) = f(x)

in terms of your answer to (a).

(c) Show that if v : [0,∞)× Rn → R is the solution to

∂v

∂t
−∆v = G

together with the boundary condition

v(0, x) = f(x)

with G(t, x) ≤ g(t, x) for all (t, x) then v(t, x) ≤ u(t, x) for all (t, x) ∈ (0,∞)× Rn.

Finally show that if in addition there exists a point (t0, x0) at which there is strict
inequality in the assumption i.e.

G(t0, x0) < g(t0, x0),

then in fact
v(t, x) < u(t, x)

whenever t > t0.
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B3/18 Partial Differential Equations

Define the Schwartz space S(Rn) and the space of tempered distributions S ′(Rn).
State the Fourier inversion theorem for the Fourier transform of a Schwartz function.

Consider the initial value problem:

∂2u

∂t2
−∆u+ u = 0 , x ∈ Rn , 0 < t <∞ ,

u(0, x) = f(x) ,
∂u

∂t
(0, x) = 0

for f in the Schwartz space S(Rn).

Show that the solution can be written as

u(t, x) = (2π)−n/2

∫
Rn

eix·ξû(t, ξ)dξ ,

where
û(t, ξ) = cos

(
t
√

1 + |ξ|2
)
f̂(ξ)

and
f̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξf(x)dx.

State the Plancherel-Parseval theorem and hence deduce that∫
Rn

|u(t, x)|2dx ≤
∫

Rn

|f(x)|2dx.

B4/18 Partial Differential Equations

Discuss the notion of fundamental solution for a linear partial differential equation
with constant coefficients.
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B1/19 Methods of Mathematical Physics

State the Riemann-Lebesgue lemma as applied to the integral∫ b

a

g(u)eixudu ,

where g′(u) is continuous and a, b ∈ R.

Use this lemma to show that, as x→ +∞,∫ b

a

(u− a)λ−1f(u)eixudu ∼ f(a) eixa eiπλ/2 Γ(λ)x−λ ,

where f(u) is holomorphic, f(a) 6= 0 and 0 < λ < 1. You should explain each step of your
argument, but detailed analysis is not required.

Hence find the leading order asymptotic behaviour as x→ +∞ of∫ 1

0

eixt2

(1− t2)
1
2
dt .

B2/18 Methods of Mathematical Physics

Show that

P
∫ ∞

−∞

tz−1

t− a
dt = πiaz−1 ,

where a is real and positive, 0 < Re (z) < 1 and P denotes the Cauchy principal value;
the principal branches of tz etc. are implied. Deduce that∫ ∞

0

tz−1

t+ a
dt = πaz−1cosecπz (∗)

and that

P
∫ ∞

0

tz−1

t− a
dt = −πaz−1 cotπz .

Use (∗) to show that, if Im (b) > 0 , then∫ ∞

0

tz−1

t− b
dt = −πbz−1(cotπz − i) .

What is the value of this integral if Im (b) < 0 ?
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B3/19 Methods of Mathematical Physics

Show that the equation

zw′′ + w′ + (λ− z)w = 0

has solutions of the form

w(z) =
∫

γ

(t− 1)(λ−1)/2(t+ 1)−(λ+1)/2eztdt.

Give examples of possible choices of γ to provide two independent solutions, assuming
Re(z) > 0. Distinguish between the cases Reλ > −1 and Reλ < 1 . Comment on the case
−1 < Re λ < 1 and on the case that λ is an odd integer.

Show that, if Reλ < 1 , there is a solution w1(z) that is bounded as z → +∞, and
that, in this limit,

w1(z) ∼ Ae−zz(λ−1)/2

(
1− (1− λ)2

8z

)
,

where A is a constant.

B4/19 Methods of Mathematical Physics

Let

I(λ, a) =
∫ i∞

−i∞

eλ(t3−3t)

t2 − a2
dt ,

where λ is real, a is real and non-zero, and the path of integration runs up the imaginary
axis. Show that, if a2 > 1,

I(λ, a) ∼ ie−2λ

1− a2

√
π

3λ

as λ→ +∞ and sketch the relevant steepest descent path.

What is the corresponding result if a2 < 1?
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B1/21 Electrodynamics

Explain how one can write Maxwell’s equations in relativistic form by introducing
an antisymmetric field strength tensor Fab.

In an inertial frame S, the electric and magnetic fields are E and B. Suppose that
there is a second inertial frame S′ moving with velocity v along the x-axis relative to S.
Derive the rules for finding the electric and magnetic fields E′ and B′ in the frame S′.
Show that |E|2 − |B|2 and E ·B are invariant under Lorentz transformations.

Suppose that E = E0(0 , 1 , 0) and B = E0(0 , cos θ , sin θ), where 0 ≤ θ < π/2. At
what velocity must an observer be moving in the frame S for the electric and magnetic
fields to appear to be parallel?

Comment on the case θ = π/2.

B2/20 Electrodynamics

A particle of rest mass m and charge q moves in an electromagnetic field given by
a potential Aa along a trajectory xa(τ), where τ is the proper time along the particle’s
worldline. The action for such a particle is

I =
∫ (

m
√
−ηabẋaẋb − qAaẋ

a
)
dτ .

Show that the Euler-Lagrange equations resulting from this action reproduce the
relativistic equation of motion for the particle.

Suppose that the particle is moving in the electrostatic field of a fixed point charge
Q with radial electric field Er given by

Er =
Q

4πε0r2
.

Show that one can choose a gauge such that Ai = 0 and only A0 6= 0. Find A0.

Assume that the particle executes planar motion, which in spherical polar coordi-
nates (r , θ , φ) can be taken to be in the plane θ = π/2. Derive the equations of motion
for t and φ.

By using the fact that ηabẋ
aẋb = −1, find the equation of motion for r, and hence

show that the shape of the orbit is described by

dr

dφ
= ±r

2

`

√(
E +

γ

r

)2

− 1− `2

r2
,

where E (> 1) and ` are constants of integration and γ is to be determined.

By putting u = 1/r or otherwise, show that if γ2 < `2 then the orbits are bounded
and generally not closed, and show that the angle between successive minimal values of r
is 2π(1− γ2/`2)−1/2.
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B4/21 Electrodynamics

Derive Larmor’s formula for the rate at which radiation is produced by a particle
of charge q moving along a trajectory x(t).

A non-relativistic particle of mass m, charge q and energy E is incident along a
radial line in a central potential V (r). The potential is vanishingly small for r very large,
but increases without bound as r → 0. Show that the total amount of energy E radiated
by the particle is

E =
µ0q

2

3πm2

√
m

2

∫ ∞

r0

1√
E − V (r)

(dV
dr

)2

dr ,

where V (r0) = E.

Suppose that V is the Coulomb potential V (r) = A/r. Evaluate E .

Part II 2002



85

B1/22 Statistical Physics

A simple model for a rubber molecule consists of a one-dimensional chain of n links
each of fixed length b and each of which is oriented in either the positive or negative
direction. A unique state i of the molecule is designated by giving the orientation ±1 of
each link. If there are n+ links oriented in the positive direction and n− links oriented in
the negative direction then n = n+ +n− and the length of the molecule is l = (n+−n−)b.
The length of the molecule associated with state i is li.

What is the range of l?

What is the number of states with n, n+, n− fixed?

Consider an ensemble of A copies of the molecule in which ai members are in state
i and write down the expression for the mean length L.

By introducing a Lagrange multiplier τ for L show that the most probable
configuration for the {ai} with given length L is found by maximizing

log
(

A!∏
i ai!

)
+ τ

∑
i

aili − α
∑

i

ai.

Hence show that the most probable configuration is given by

pi =
eτli

Z
,

where pi is the probability for finding an ensemble member in the state i and Z is the
partition function which should be defined.

Show that Z can be expressed as

Z =
∑

l

g(l) eτl ,

where the meaning of g(l) should be explained.

Hence show that Z is given by

Z =
n∑

n+=0

n!
n+!n−!

(eτb)n+(e−τb)n− , n+ + n− = n,

and therefore that the free energy G for the system is

G = −nkT log(2 cosh τb) .

Show that τ is determined by

L = − 1
kT

(
∂G

∂τ

)
n

,

and hence that the equation of state is

tanh τb =
L

nb
.

What are the independent variables on which G depends?

Explain why the tension in the rubber molecule is kTτ .
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B3/22 Statistical Physics

A system consisting of non-interacting bosons has single-particle levels uniquely
labelled by r with energies εr, εr ≥ 0. Show that the free energy in the grand canonical
ensemble is

F = kT
∑

r

log(1− e−β(εr−µ)) .

What is the maximum value for µ?

A system of N bosons in a large volume V has one energy level of energy zero and
a large number M � 1 of energy levels of the same energy ε, where M takes the form
M = AV with A a positive constant. What are the dimensions of A?

Show that the free energy is

F = kT
(
log(1− eβµ) +AV log(1− e−β(ε−µ))

)
.

The numbers of particles with energies 0, ε are respectively N0, Nε. Write down
expressions for N0, Nε in terms of µ.

At temperature T what is the maximum number of bosons Nmax
ε in the normal

phase (the state with energy ε)? Explain what happens when N > Nmax
ε .

Given N and T calculate the transition temperature TB at which Bose condensation
occurs.

For T > TB show that µ = ε(TB − T )/TB . What is the value of µ for T < TB?

Calculate the mean energy E for (a) T > TB (b) T < TB , and show that the heat
capacity of the system at constant volume is

CV =


1
kT 2

AV ε2

(eβε − 1)2
T < TB

0 T > TB .
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B4/23 Statistical Physics

A perfect gas in equilibrium in a volume V has quantum stationary states |i〉 with
energies Ei. In a Boltzmann distribution, the probability that the system is in state |i〉 is
ρi = Z−1e−Ei/kT . The entropy is defined to be S = −k

∑
i

ρi log ρi.

For two nearby states establish the equation

dE = TdS − PdV ,

where E and P should be defined.

For reversible changes show that

dS =
δQ

T
,

where δQ is the amount of heat transferred in the exchange.

Define CV , the heat capacity at constant volume.

A system with constant heat capacity CV initially at temperature T is heated
at constant volume to a temperature Θ. Show that the change in entropy is ∆S =
CV log(Θ/T ).

Explain what is meant by isothermal and adiabatic transitions.

Briefly, describe the Carnot cycle and define its efficiency. Explain briefly why no
heat engine can be more efficient than one whose operation is based on a Carnot cycle.

Three identical bodies with constant heat capacity at fixed volume CV , are initially
at temperatures T1, T2, T3, respectively. Heat engines operate between the bodies with no
input of work or heat from the outside and the respective temperatures are changed to
Θ1,Θ2,Θ3, the volume of the bodies remaining constant. Show that, if the heat engines
operate on a Carnot cycle, then

Θ1Θ2Θ3 = A , Θ1 + Θ2 + Θ3 = B ,

where A = T1T2T3 and B = T1 + T2 + T3.

Hence show that the maximum temperature to which any one of the bodies can be
raised is Θ where

Θ + 2
(
A

Θ

)1/2

= B .

Show that a solution is Θ = T if initially T1 = T2 = T3 = T . Do you expect there
to be any other solutions?

Find Θ if initially T1 = 300K, T2 = 300K, T3 = 100K.

[Hint: Choose to maximize one temperature and impose the constraints above using
Lagrange multipliers. ]
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B1/23 Applications of Quantum Mechanics

A quantum system, with Hamiltonian H0, has continuous energy eigenstates |E〉
for all E ≥ 0, and also a discrete eigenstate |0〉, with H0|0〉 = E0|0〉, 〈0|0〉 = 1, E0 > 0. A
time-independent perturbation H1, such that 〈E|H1|0〉 6= 0, is added to H0. If the system
is initially in the state |0〉 obtain the formula for the decay rate

w =
2π
~
ρ(E0)

∣∣〈E0|H1|0〉
∣∣2 ,

where ρ is the density of states.

[You may assume that 1
t

( sin 1
2 ωt

1
2 ω

)2 behaves like 2π δ(ω) for large t.]

Assume that, for a particle moving in one dimension,

H0 = E0|0〉〈0|+
∫ ∞

−∞
p2|p〉〈p| dp , H1 = f

∫ ∞

−∞

(
|p〉〈0|+ |0〉〈p|

)
dp ,

where 〈p′|p〉 = δ(p′ − p), and f is constant. Obtain w in this case.

B2/22 Applications of Quantum Mechanics

Define the reciprocal lattice for a lattice L with lattice vectors `.

A beam of electrons, with wave vector k, is incident on a Bravais lattice L with
a large number of atoms, N . If the scattering amplitude for scattering on an individual
atom in the direction k̂′ is f(k̂′), show that the scattering amplitude for the whole lattice
is ∑

`∈L

eiq·`f(k̂′) , q = k− |k| k̂′ .

Derive the formula for the differential cross section

dσ
dΩ

= N |f(k̂′)|2∆(q) ,

obtaining an explicit form for ∆(q). Show that ∆(q) is strongly peaked when q = g, a
reciprocal lattice vector. Show that this leads to the Bragg formula 2d sin θ

2 = λ, where θ
is the scattering angle, λ the electron wavelength and d the separation between planes of
atoms in the lattice.
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B3/23 Applications of Quantum Mechanics

A periodic potential is expressed as V (x) =
∑

g ag e
ig·x, where {g} are reciprocal

lattice vectors and ag∗ = a−g, a0 = 0. In the nearly free electron model explain why it is
appropriate, near the boundaries of energy bands, to consider a Bloch wave state

|ψk〉 =
∑

r

αr |kr〉 , kr = k + gr ,

where |k〉 is a free electron state for wave vector k, 〈k′|k〉 = δk′k, and the sum is restricted
to reciprocal lattice vectors gr such that |kr| ≈ |k|. Obtain a determinantal formula for
the possible energies E(k) corresponding to Bloch wave states of this form.

[You may take g1 = 0 and assume eib·x|k〉 = |k + b〉 for any b.]

Suppose the sum is restricted to just k and k + g. Show that there is a gap 2|ag|
between energy bands. Setting k = − 1

2g + q, show that there are two Bloch wave states
with energies near the boundaries of the energy bands

E±(k) ≈ ~2|g|2

8m
± |ag|+

~2|q|2

2m
± ~4

8m2|ag|
(q·g)2 .

What is meant by effective mass? Determine the value of the effective mass at the top
and the bottom of the adjacent energy bands if q is parallel to g.

B4/24 Applications of Quantum Mechanics

Explain the variational method for computing the ground state energy for a
quantum Hamiltonian.

For the one-dimensional Hamiltonian

H = 1
2p

2 + λx4 ,

obtain an approximate form for the ground state energy by considering as a trial state the
state |w〉 defined by a|w〉 = 0, where 〈w|w〉 = 1 and a = (w/2~)

1
2 (x+ ip/w).

[It is useful to note that 〈w|(a+ a†)4|w〉 = 〈w|(a2a†2 + aa†aa†)|w〉.]

Explain why the states a†|w〉 may be used as trial states for calculating the first
excited energy level.
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B1/25 Fluid Dynamics II

State the minimum dissipation theorem for Stokes flow in a bounded domain.

Fluid of density ρ and viscosity µ fills an infinite cylindrical annulus a ≤ r ≤ b
between a fixed cylinder r = a and a cylinder r = b which rotates about its axis with
constant angular velocity Ω. In cylindrical polar coordinates (r, θ, z), the fluid velocity
is u = (0, v(r), 0). The Reynolds number ρΩb2/µ is not necessarily small. Show that
v(r) = Ar +B/r, where A and B are constants to be determined.

[You may assume that ∇2u = (0,∇2v − v/r2, 0) and (u · ∇)u = (−v2/r, 0, 0).]

Show that the outer cylinder exerts a couple G0 per unit length on the fluid, where

G0 =
4πµΩa2b2

b2 − a2
.

[You may assume that, in standard notation, erθ =
r

2
d

dr

(v
r

)
.]

Suppose now that b ≥
√

2a and that the cylinder r = a is replaced by a fixed cylinder
whose cross-section is a square of side 2a centred on r = 0, all other conditions being
unchanged. The flow may still be assumed steady. Explaining your argument carefully,
show that the couple G now required to maintain the motion of the outer cylinder is
greater than G0.

B2/24 Fluid Dynamics II

A thin layer of liquid of kinematic viscosity ν flows under the influence of gravity
down a plane inclined at an angle α to the horizontal (0 ≤ α ≤ π/2). With origin O on
the plane, and axes Ox down the line of steepest slope and Oy normal to the plane, the
free surface is given by y = h(x, t), where |∂h/∂x| � 1. The pressure distribution in the
liquid may be assumed to be hydrostatic. Using the approximations of lubrication theory,
show that

∂h

∂t
=

g

3ν
∂

∂x

{
h3(cosα

∂h

∂x
− sinα)

}
.

Now suppose that
h = h0 + η(x, t) ,

where
η(x, 0) = η0e

−x2/a2

and h0, η0 and a are constants with η0 � a, h0. Show that, to leading order,

η(x, t) =
aη0

(a2 + 4Dt)1/2
exp

{
− (x− Ut)2

a2 + 4Dt

}
,

where U and D are constants to be determined.

Explain in physical terms the meaning of this solution.
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B3/24 Fluid Dynamics II

(i) Suppose that, with spherical polar coordinates, the Stokes streamfunction

Ψλ(r, θ) = rλ sin2 θ cos θ

represents a Stokes flow and thus satisfies the equation D2(D2Ψλ) = 0, where

D2 =
∂2

∂r2
+

sin θ
r2

∂

∂θ

1
sin θ

∂

∂θ
.

Show that the possible values of λ are 5, 3, 0 and −2. For which of these values is the
corresponding flow irrotational? Sketch the streamlines of the flow for the case λ = 3.

(ii) A spherical drop of liquid of viscosity µ1, radius a and centre at r = 0, is suspended
in another liquid of viscosity µ2 which flows with streamfunction

Ψ ∼ Ψ∞(r, θ) = αr3 sin2 θ cos θ

far from the drop. The two liquids are of equal densities, surface tension is sufficiently
strong to keep the drop spherical, and inertia is negligible. Show that

Ψ =
{

(Ar5 +Br3) sin2 θ cos θ (r < a),
(αr3 + C +D/r2) sin2 θ cos θ (r > a)

and obtain four equations determining the constants A, B, C and D. (You need not solve
these equations.)

[You may assume, with standard notation, that

ur =
1

r2 sin θ
∂Ψ
∂θ

, uθ = − 1
r sin θ

∂Ψ
∂r

, erθ =
1
2

{
r
∂

∂r

(uθ

r

)
+

1
r

∂ur

∂θ

}
.]

B4/26 Fluid Dynamics II

Write an essay on boundary-layer theory and its application to the generation of
lift in aerodynamics.

You should include discussion of the derivation of the boundary-layer equation,
the similarity transformation leading to the Falkner–Skan equation, the influence of an
adverse pressure gradient, and the mechanism(s) by which circulation is generated in flow
past bodies with a sharp trailing edge.
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B1/26 Waves in Fluid and Solid Media

Starting from the equations governing sound waves linearized about a state with
density ρ0 and sound speed c0, derive the acoustic energy equation, giving expressions for
the local energy density E and energy flux I.

A sphere executes small-amplitude vibrations, with its radius varying according to

r(t) = a+ Re
(
εeiωt

)
,

with 0 < ε� a. Find an expression for the velocity potential of the sound, φ̃(r, t). Show
that the time-averaged rate of working by the surface of the sphere is

2πa2ρ0ω
2ε2c0

ω2a2

c20 + ω2a2
.

Calculate the value at r = a of the dimensionless ratio c0E/|I|, where the overbars
denote time-averaged values, and comment briefly on the limits c0 � ωa and c0 � ωa.

B2/25 Waves in Fluid and Solid Media

Starting from the equations for one-dimensional unsteady flow of a perfect gas of
uniform entropy, show that the Riemann invariants,

R± = u± 2
γ − 1

(c− c0) ,

are constant on characteristics C± given by
dx

dt
= u ± c, where u(x, t) is the velocity of

the gas, c(x, t) is the local speed of sound and γ is the specific heat ratio.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely
long tube. The gas and the piston are initially at rest. At time t = 0 the piston starts
moving to the left at a constant speed V . Find u(x, t) and c(x, t) in the three regions

(i) c0t ≤ x,

(ii) at ≤ x < c0t,

(iii) − V t ≤ x < at,

where a = c0− 1
2 (γ+1)V . What is the largest value of V for which c is positive throughout

region (iii)? What happens if V exceeds this value?
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B3/25 Waves in Fluid and Solid Media

Consider the equation
∂φ

∂t
+
∂φ

∂x
− ∂3φ

∂x3
= 0.

Find the dispersion relation for waves of frequency ω and wavenumber k. Do the
wave crests move faster or slower than a packet of waves?

Write down the solution with initial value

φ(x, 0) =
∫ ∞

−∞
A(k)eikx dk ,

where A(k) is real and A(−k) = A(k).

Use the method of stationary phase to obtain an approximation to φ(x, t) for large
t, with x/t having the constant value V . Explain, using the notion of group velocity, the
constraint that must be placed on V .

B4/27 Waves in Fluid and Solid Media

Write down the equation governing linearized displacements u(x, t) in a uniform
elastic medium of density ρ and Lamé constants λ and µ. Derive solutions for monochro-
matic plane P and S waves, and find the corresponding wave speeds cP and cS .

Such an elastic solid occupies the half-space z > 0, and the boundary z = 0
is clamped rigidly so that u(x, y, 0, t) = 0. A plane SV -wave with frequency ω and
wavenumber (k, 0,−m) is incident on the boundary. At some angles of incidence, there
results both a reflected SV -wave with frequency ω′ and wavenumber (k′, 0,m′) and a
reflected P -wave with frequency ω′′ and wavenumber (k′′, 0,m′′). Relate the frequencies
and wavenumbers of the reflected waves to those of the incident wave. At what angles of
incidence will there be a reflected P -wave?

Find the amplitudes of the reflected waves as multiples of the amplitude of the
incident wave. Confirm that these amplitudes give the sum of the time-averaged vertical
fluxes of energy of the reflected waves equal to the time-averaged vertical flux of energy
of the incident wave.

[Results concerning the energy flux, energy density and kinetic energy density in a plane
elastic wave may be quoted without proof.]
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