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Before you begin read these instructions carefully.

Candidates must not attempt more than FOUR questions. If you submit answers
to more than four questions, your lowest scoring attempt(s) will be rejected.

The number of marks for each question is the same. Additional credit will be given
for a substantially complete answer.

Write legibly and on only one side of the paper.

Begin each answer on a separate sheet.

At the end of the examination:

Tie your answers in separate bundles, marked C, D, E, . . . , M according to the
letter affixed to each question. (For example, 23D, 25D should be in one bundle
and 2J, 6J in another bundle.)

Attach a completed cover sheet to each bundle.

Complete a master cover sheet listing all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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1H Combinatorics

Write an essay on Ramsey theory. You should include the finite and infinite versions
of Ramsey’s theorem, together with a discussion of upper and lower bounds in the finite
case.

[You may restrict your attention to colourings by just 2 colours.]

2J Representation Theory

Write an essay on the representation theory of SU2.

3J Galois Theory

Suppose K,L are fields and σ1, . . . , σm are distinct embeddings of K into L. Prove
that there do not exist elements λ1, . . . , λm of L (not all zero) such that λ1σ1(x) + . . .+
λmσm(x) = 0 for all x ∈ K. Deduce that if K/k is a finite extension of fields, and
σ1, . . . , σm are distinct k-automorphisms of K, then m 6 [K : k].

Suppose now that K is a Galois extension of k with Galois group cyclic of order n,
where n is not divisible by the characteristic. If k contains a primitive nth root of unity,
prove that K is a radical extension of k. Explain briefly the relevance of this result to the
problem of solubility of cubics by radicals.

4K Differentiable Manifolds

State and prove Stokes’ Theorem for compact oriented manifolds-with-boundary.

[You may assume results relating local forms on the manifold with those on its boundary
provided you state them clearly.]

Deduce that every differentiable map of the unit ball in Rn to itself has a fixed
point.

5J Algebraic Topology

State the Mayer-Vietoris theorem for a finite simplicial complex X which is the
union of closed subcomplexes A and B. Define all the maps in the long exact sequence.
Prove that the sequence is exact at the term HiX, for every i > 0.
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6J Number Fields

Write an essay on one of the following topics.

(i) Dirichlet’s unit theorem and the Pell equation.

(ii) Ideals and the fundamental theorem of arithmetic.

(iii) Dedekind’s theorem and the factorisation of primes. (You should treat
explicitly either the case of quadratic fields or that of the cyclotomic field.)

7K Hilbert Spaces

Throughout this question, H is an infinite-dimensional, separable Hilbert space. You may
use, without proof, any theorems about compact operators that you require.

Define a Fredholm operator T , on a Hilbert space H, and define the index of T .

(i) Prove that if T is Fredholm then imT is closed.

(ii) Let F ∈ B(H) and let F have finite rank. Prove that F ∗ also has finite rank.

(iii) Let T = I+F , where I is the identity operator on H and F has finite rank; let
E = imF +imF ∗. By considering T |E and T |E⊥ (or otherwise) prove that T is Fredholm
with indT = 0.

(iv) Let T ∈ B(H) be Fredholm with indT = 0. Prove that T = A + F , where A
is invertible and F has finite rank.

[You may wish to note that T effects an isomorphism from (kerT )⊥ onto imT ; also kerT
and (imT )⊥ have the same finite dimension.]

(v) Deduce from (iii) and (iv) that T ∈ B(H) is Fredholm with indT = 0 if and
only if T = A+K with A invertible and K compact.

(vi) Explain briefly, by considering suitable shift operators on `2 (i.e. not using any
theorems about Fredholm operators) that, for each k ∈ Z, there is a Fredholm operator S
on H with indS = k.

Paper 4 [TURN OVER



4

8K Riemann Surfaces

A holomorphic map p : S → T between Riemann surfaces is called a covering map
if every t ∈ T has a neighbourhood V for which p−1(V ) breaks up as a disjoint union of
open subsets Uα on which p : Uα → V is biholomorphic.

(a) Suppose that f : R→ T is any holomorphic map of connected Riemann surfaces,
R is simply connected and p : S → T is a covering map. By considering the lifts of paths
from T to S, or otherwise, prove that f lifts to a holomorphic map f̃ : R → S, i.e. that
there exists an f̃ with f = p ◦ f̃ .

(b) Write down a biholomorphic map from the unit disk ∆={z ∈ C : |z| < 1} onto
a half-plane. Show that the unit disk ∆ uniformizes the punctured unit disk ∆× = ∆−{0}
by constructing an explicit covering map p : ∆ → ∆×.

(c) Using the uniformization theorem, or otherwise, prove that any holomorphic
map from C to a compact Riemann surface of genus greater than one is constant.

9K Algebraic Curves

Write an essay on the Riemann–Roch theorem and some of its applications.
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10J Logic, Computation and Set Theory

Explain what is meant by a well-ordering of a set.

Without assuming Zorn’s Lemma, show that the power-set of any well-ordered set
can be given a total (linear) ordering.

By a selection function for a set A, we mean a function f : PA → PA such that
f(B) ⊂ B for all B ⊂ A, f(B) 6= ∅ for all B 6= ∅, and f(B) 6= B if B has more than one
element. Suppose given a selection function f . Given a mapping g : α → [̧0, 1] for some
ordinal α, we define a subset B(f, g) ⊂ A recursively as follows:

B(f, g) = A if α = 0,
B(f, g) = f(B(f, g|β)) if α = β+ and g(β) = 1,
B(f, g) = B(f, g|β)\f(B(f, g|β)) if α = β+and g(β) = 0,

B(f, g) =
⋂
{B(f, g|β) |β < α} if α is a limit ordinal.

Show that, for any x ∈ A and any ordinal α, there exists a function g with domain α such
that x ∈ B(f, g).
[It may help to observe that g is uniquely determined by x and α, though you need not
show this explicitly.]

Show also that there exists α such that, for every g with domain α, B(f, g) is either
empty or a singleton.

Deduce that the assertion ‘Every set has a selection function’ implies that every set
can be totally ordered.
[Hartogs’ Lemma may be assumed, provided you state it precisely.]

11L Probability and Measure

State Birkhoff’s Almost Everywhere Ergodic Theorem for measure-preserving
transformations. Define what it means for a sequence of random variables to be stationary.
Explain briefly how the stationarity of a sequence of random variables implies that a
particular transformation is measure-preserving.

A bag contains one white ball and one black ball. At each stage of a process one
ball is picked from the bag (uniformly at random) and then returned to the bag together
with another ball of the same colour. Let Xn be a random variable which takes the value
0 if the nth ball added to the bag is white and 1 if it is black.

(a) Show that the sequence X1, X2, X3, . . . is stationary and hence that the proportion
of black balls in the bag converges almost surely to some random variable R.

(b) Find the distribution of R.

[The fact that almost-sure convergence implies convergence in distribution may be used
without proof.]
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12L Applied Probability

Define a Poisson random measure. State and prove the Product Theorem for the
jump times Jn of a Poisson process with constant rate λ and independent random variables
Yn with law µ. Write down the corresponding result for a Poisson process Π in a space
E = Rd with rate λ(x) (x ∈ E) when we associate with each X ∈ Π an independent
random variable mX with density ρ(X, dm).

Prove Campbell’s Theorem, i.e. show that if M is a Poisson random measure on
the space E with intensity measure ν and a : E → R is a bounded measurable function
then

E[eθΣ] = exp
(∫

E

(eθa(y) − 1)ν(dy)
)
,

where
Σ =

∫
E

a(y)M(dy) =
∑
X∈Π

a(X).

Stars are scattered over three-dimensional space R3 in a Poisson process Π with density
ν(X) (X ∈ R3). Masses of the stars are independent random variables; the mass mX of a
star at X has the density ρ(X, dm). The gravitational potential at the origin is given by

F =
∑
X∈Π

GmX

|X|
,

where G is a constant. Find the moment generating function E[eθF ].

A galaxy occupies a sphere of radius R centred at the origin. The density of stars
is ν(x) = 1/|x| for points x inside the sphere; the mass of each star has the exponential
distribution with mean M . Calculate the expected potential due to the galaxy at the
origin. Let C be a positive constant. Find the distribution of the distance from the origin
to the nearest star whose contribution to the potential F is at least C.

13M Information Theory

Define the Huffman binary encoding procedure and prove its optimality among
decipherable codes.

Paper 4
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14L Optimization and Control

A discrete-time decision process is defined on a finite set of states I as follows. Upon
entry to state it at time t the decision-maker observes a variable ξt. He then chooses the
next state freely within I, at a cost of c(it, ξt, it+1). Here {ξ0, ξ1, . . .} is a sequence of
integer-valued, identically distributed random variables. Suppose there exist {φi : i ∈ I}
and λ such that for all i ∈ I

φi + λ =
∑
k∈Z

P (ξt = k) min
i′∈I

[c(i, k, i′) + φi′ ] .

Let π denote a policy. Show that

λ = inf
π

lim sup
t→∞

Eπ

[
1
t

t−1∑
s=0

c(is, ξs, is+1)

]
.

At the start of each month a boat manufacturer receives orders for 1, 2 or 3 boats.
These numbers are equally likely and independent from month to month. He can produce
j boats in a month at a cost of 6+3j units. All orders are filled at the end of the month in
which they are ordered. It is possible to make extra boats, ending the month with a stock
of i unsold boats, but i cannot be more than 2, and a holding cost of ci is incurred during
any month that starts with i unsold boats in stock. Write down an optimality equation
that can be used to find the long-run expected average-cost.

Let π be the policy of only ever producing sufficient boats to fill the present month’s
orders. Show that it is optimal if and only if c > 2.

Suppose c < 2. Starting from π, what policy is obtained after applying one step of
the policy-improvement algorithm?
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15M Principles of Statistics

(a) Let X1, . . . , Xn be independent, identically distributed random variables from
a one-parameter distribution with density function

f(x; θ) = h(x)g(θ) exp{θt(x)} , x ∈ R.

Explain in detail how you would test

H0 : θ = θ0 against H1 : θ 6= θ0 .

What is the general form of a conjugate prior density for θ in a Bayesian analysis of this
distribution?

(b) Let Y1, Y2 be independent Poisson random variables, with means (1− ψ)λ and
ψλ respectively, with λ known.

Explain why the Conditionality Principle leads to inference about ψ being drawn
from the conditional distribution of Y2, given Y1+Y2. What is this conditional distribution?

(c) Suppose Y1, Y2 have distributions as in (b), but that λ is now unknown.

Explain in detail how you would test H0 : ψ = ψ0 against H1 : ψ 6= ψ0, and describe
the optimality properties of your test.

[Any general results you use should be stated clearly, but need not be proved.]

16L Stochastic Financial Models

Write an essay on the Black–Scholes formula for the price of a European call option
on a stock. Your account should include a derivation of the formula and a careful analysis
of its dependence on the parameters of the model.
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17F Dynamical Systems

Let S be a metric space, F a map of S to itself and P a point of S. Define an
attractor for F and an omega point of the orbit of P under F .

Let f be the map of R to itself given by

f(x) = x+
1
2

+ c sin2 2πx,

where c > 0 is so small that f ′(x) > 0 for all x, and let F be the map of R/Z to itself
induced by f . What points if any are
(a) attractors for F 2,
(b) omega points of the orbit of some point P under F ?
Is the cycle {0, 1

2} an attractor?

In the notation of the first two sentences, let C be a cycle of order M and assume
that F is continuous. Prove that C is an attractor for F if and only if each point of C is
an attractor for FM .

18G Partial Differential Equations

Discuss the notion of fundamental solution for a linear partial differential equation
with constant coefficients.

19G Methods of Mathematical Physics

Let

I(λ, a) =
∫ i∞

−i∞

eλ(t3−3t)

t2 − a2
dt ,

where λ is real, a is real and non-zero, and the path of integration runs up the imaginary
axis. Show that, if a2 > 1,

I(λ, a) ∼ ie−2λ

1− a2

√
π

3λ

as λ→ +∞ and sketch the relevant steepest descent path.

What is the corresponding result if a2 < 1?

20F Numerical Analysis

Write an essay on the method of conjugate gradients. You should describe the
algorithm, present an analysis of its properties and discuss its advantages.

[Any theorems quoted should be stated precisely but need not be proved.]
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21E Electrodynamics

Derive Larmor’s formula for the rate at which radiation is produced by a particle
of charge q moving along a trajectory x(t).

A non-relativistic particle of mass m, charge q and energy E is incident along a
radial line in a central potential V (r). The potential is vanishingly small for r very large,
but increases without bound as r → 0. Show that the total amount of energy E radiated
by the particle is

E =
µ0q

2

3πm2

√
m

2

∫ ∞

r0

1√
E − V (r)

(dV
dr

)2

dr ,

where V (r0) = E.

Suppose that V is the Coulomb potential V (r) = A/r. Evaluate E .

22E Foundations of Quantum Mechanics

Discuss the consequences of indistinguishability for a quantum mechanical state
consisting of two identical, non-interacting particles when the particles have (a) spin zero,
(b) spin 1/2.

The stationary Schrödinger equation for one particle in the potential

− 2e2

4πε0r

has normalized, spherically symmetric, real wave functions ψn(r) and energy eigenvalues
En with E0 < E1 < E2 < · · · . What are the consequences of the Pauli exclusion principle
for the ground state of the helium atom? Assuming that wavefunctions which are not
spherically symmetric can be ignored, what are the states of the first excited energy level
of the helium atom?
[You may assume here that the electrons are non-interacting. ]

Show that, taking into account the interaction between the two electrons, the
estimate for the energy of the ground state of the helium atom is

2E0 +
e2

4πε0

∫
d3r1 d

3r2

|r1 − r2|
ψ2

0(r1)ψ2
0(r2).
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23D Statistical Physics

A perfect gas in equilibrium in a volume V has quantum stationary states |i〉 with
energies Ei. In a Boltzmann distribution, the probability that the system is in state |i〉 is
ρi = Z−1e−Ei/kT . The entropy is defined to be S = −k

∑
i

ρi log ρi.

For two nearby states establish the equation

dE = TdS − PdV ,

where E and P should be defined.

For reversible changes show that

dS =
δQ

T
,

where δQ is the amount of heat transferred in the exchange.

Define CV , the heat capacity at constant volume.

A system with constant heat capacity CV initially at temperature T is heated
at constant volume to a temperature Θ. Show that the change in entropy is ∆S =
CV log(Θ/T ).

Explain what is meant by isothermal and adiabatic transitions.

Briefly, describe the Carnot cycle and define its efficiency. Explain briefly why no
heat engine can be more efficient than one whose operation is based on a Carnot cycle.

Three identical bodies with constant heat capacity at fixed volume CV , are initially
at temperatures T1, T2, T3, respectively. Heat engines operate between the bodies with no
input of work or heat from the outside and the respective temperatures are changed to
Θ1,Θ2,Θ3, the volume of the bodies remaining constant. Show that, if the heat engines
operate on a Carnot cycle, then

Θ1Θ2Θ3 = A , Θ1 + Θ2 + Θ3 = B ,

where A = T1T2T3 and B = T1 + T2 + T3.

Hence show that the maximum temperature to which any one of the bodies can be
raised is Θ where

Θ + 2
(
A

Θ

)1/2

= B .

Show that a solution is Θ = T if initially T1 = T2 = T3 = T . Do you expect there
to be any other solutions?

Find Θ if initially T1 = 300K, T2 = 300K, T3 = 100K.

[Hint: Choose to maximize one temperature and impose the constraints above using
Lagrange multipliers. ]
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24D Applications of Quantum Mechanics

Explain the variational method for computing the ground state energy for a
quantum Hamiltonian.

For the one-dimensional Hamiltonian

H = 1
2p

2 + λx4 ,

obtain an approximate form for the ground state energy by considering as a trial state the
state |w〉 defined by a|w〉 = 0, where 〈w|w〉 = 1 and a = (w/2~)

1
2 (x+ ip/w).

[It is useful to note that 〈w|(a+ a†)4|w〉 = 〈w|(a2a†2 + aa†aa†)|w〉.]

Explain why the states a†|w〉 may be used as trial states for calculating the first
excited energy level.

25D General Relativity

With respect to the Schwarzschild coordinates (r, θ, φ, t), the Schwarzschild geom-
etry is given by

ds2 =
(

1− rs
r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)−
(

1− rs
r

)
dt2,

where rs = 2M is the Schwarzschild radius and M is the Schwarzschild mass. Show that,
by a suitable choice of (θ, φ), the general geodesic can regarded as moving in the equatorial
plane θ = π/2. Obtain the equations governing timelike and null geodesics in terms of
u(φ), where u = 1/r.

Discuss light bending and perihelion precession in the solar system.

26C Fluid Dynamics II

Write an essay on boundary-layer theory and its application to the generation of
lift in aerodynamics.

You should include discussion of the derivation of the boundary-layer equation,
the similarity transformation leading to the Falkner–Skan equation, the influence of an
adverse pressure gradient, and the mechanism(s) by which circulation is generated in flow
past bodies with a sharp trailing edge.
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27C Waves in Fluid and Solid Media

Write down the equation governing linearized displacements u(x, t) in a uniform
elastic medium of density ρ and Lamé constants λ and µ. Derive solutions for monochro-
matic plane P and S waves, and find the corresponding wave speeds cP and cS .

Such an elastic solid occupies the half-space z > 0, and the boundary z = 0
is clamped rigidly so that u(x, y, 0, t) = 0. A plane SV -wave with frequency ω and
wavenumber (k, 0,−m) is incident on the boundary. At some angles of incidence, there
results both a reflected SV -wave with frequency ω′ and wavenumber (k′, 0,m′) and a
reflected P -wave with frequency ω′′ and wavenumber (k′′, 0,m′′). Relate the frequencies
and wavenumbers of the reflected waves to those of the incident wave. At what angles of
incidence will there be a reflected P -wave?

Find the amplitudes of the reflected waves as multiples of the amplitude of the
incident wave. Confirm that these amplitudes give the sum of the time-averaged vertical
fluxes of energy of the reflected waves equal to the time-averaged vertical flux of energy
of the incident wave.

[Results concerning the energy flux, energy density and kinetic energy density in a plane
elastic wave may be quoted without proof.]
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