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1G Principles of Dynamics

(i) A number N of non-interacting particles move in one dimension in a potential
V (x, t). Write down the Hamiltonian and Hamilton’s equations for one particle.

At time t, the number density of particles in phase space is f(x, p, t). Write down
the time derivative of f along a particle’s trajectory. By equating the rate of change of
the number of particles in a fixed domain V in phase space to the flux into V across its
boundary, deduce that f is a constant along any particle’s trajectory.

(ii) Suppose that V (x) = 1
2mω2x2, and particles are injected in such a manner that

the phase space density is a constant f1 at any point of phase space corresponding to a
particle energy being smaller than E1 and zero elsewhere. How many particles are present?

Suppose now that the potential is very slowly altered to the square well form

V (x) =
{ 0, −L < x < L
∞ elsewhere .

Show that the greatest particle energy is now

E2 =
π2

8
E2

1

mL2ω2
.

2K Functional Analysis

(i) State and prove the parallelogram law for Hilbert spaces.

Suppose that K is a closed linear subspace of a Hilbert space H and that x ∈ H.
Show that x is orthogonal to K if and only if 0 is the nearest point to x in K.

(ii) Suppose that H is a Hilbert space and that φ is a continuous linear functional on
H with ‖φ‖ = 1. Show that there is a sequence (hn) of unit vectors in H with φ(hn) real
and φ(hn) > 1− 1/n.

Show that hn converges to a unit vector h, and that φ(h) = 1.

Show that h is orthogonal to N , the null space of φ, and also that H = N⊕span(h).

Show that φ(k) = 〈k, h〉, for all k ∈ H.

3H Groups, Rings and Fields

(i) Show that the ring Z[i] is Euclidean.

(ii) What are the units in Z[i]? What are the primes in Z[i]? Justify your answers.

Factorize 11 + 7i into primes in Z[i].
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4F Dynamics of Differential Equations

(i) Define the terms stable manifold and unstable manifold of a hyperbolic fixed point
x0 of a dynamical system. State carefully the stable manifold theorem.

Give an approximation, correct to fourth order in |x|, for the stable and unstable
manifolds of the origin for the system(

ẋ
ẏ

)
=

(
x + x2 − y2

−y + x2

)
.

(ii) State, without proof, the centre manifold theorem. Show that the fixed point at
the origin of the system

ẋ = y − x + ax3 ,

ẏ = rx− y − zy ,

ż = −z + xy ,

where a is a constant, is non-hyperbolic at r = 1.

Using new coordinates v = x + y , w = x− y, find the centre manifold in the form

w = αv3 + . . . , z = βv2 + γv4 + . . .

for constants α, β, γ to be determined. Hence find the evolution equation on the centre
manifold in the form

v̇ =
1
8
(a− 1)v3 +

(
(3a + 1)(a + 1)

128
+

(a− 1)
32

)
v5 + . . . .

Ignoring higher order terms, give conditions on a that guarantee that the origin is
asymptotically stable.

5H Combinatorics

State and prove the local LY M inequality. Explain carefully when equality holds.

Define the colex order and state the Kruskal-Katona theorem. Deduce that, if n
and r are fixed positive integers with 1 6 r 6 n− 1, then for every 1 6 m 6

(
n
r

)
we have

min{|∂A| : A ⊂ [n](r), |A| = m} = min{|∂A| : A ⊂ [n + 1](r), |A| = m}.

By a suitable choice of n, r and m, show that this result does not remain true if we replace
the lower shadow ∂A with the upper shadow ∂+A.

Paper 2 [TURN OVER



4

6J Representation Theory

State and prove Schur’s Lemma. Deduce that the centre of a finite group G with a
faithful irreducible complex representation ρ is cyclic and that Z(ρ(G)) consists of scalar
transformations.

Let G be the subgroup of order 18 of the symmetric group S6 given by

G = 〈(123), (456), (23)(56)〉.

Show that G has a normal subgroup of order 9 and four normal subgroups of order 3.
By considering quotients, show that G has two representations of dimension 1 and four
inequivalent irreducible representations of degree 2. Deduce that G has no faithful
irreducible complex representations.

Show finally that if G is a finite group with trivial centre and H is a subgroup of
G with non-trivial centre, then any faithful representation of G is reducible on restriction
to H.

7K Differentiable Manifolds

State, giving your reasons, whether the following are true or false.

(a) Diffeomorphic connected manifolds must have the same dimension.

(b) Every non-zero vector bundle has a nowhere-zero section.

(c) Every projective space admits a volume form.

(d) If a manifold M has Euler characteristic zero, then M is orientable.

8J Algebraic Topology

Show that the fundamental group G of the Klein bottle is infinite. Show that G
contains an abelian subgroup of finite index. Show that G is not abelian.
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9J Number Fields

Let K = Q(
√

35). By Dedekind’s theorem, or otherwise, show that the ideal
equations

2 = [2, ω]2, 5 = [5, ω]2, [ω] = [2, ω][5, ω]

hold in K, where ω = 5 +
√

35. Deduce that K has class number 2.

Verify that 1 + ω is the fundamental unit in K. Hence show that the complete
solution in integers x, y of the equation x2 − 35y2 = −10 is given by

x +
√

35y = ±ω(1 + ω)n (n = 0,±1,±2, . . .).

Calculate the particular solution x, y for n = 1.
[It can be assumed that the Minkowski constant for K is 1

2 .]

10K Algebraic Curves

For N ≥ 1, let VN be the (irreducible) projective plane curve
VN : XN + Y N + ZN = 0 over an algebraically closed field of characteristic zero.

Show that VN is smooth (non-singular). For m,n ≥ 1, let αm,n : Vmn → Vm be the
morphism αm,n(X : Y : Z) = (Xn : Y n : Zn). Determine the degree of αm,n, its points of
ramification and the corresponding ramification indices.

Applying the Riemann–Hurwitz formula to α1,n, determine the genus of Vn.

11J Logic, Computation and Set Theory

Explain what is meant by a structure for a first-order language and by a model for
a first-order theory. If T is a first-order theory whose axioms are all universal sentences
(that is, sentences of the form (∀x1 . . . xn)p where p is quantifier-free), show that every
substructure of a T -model is a T -model.

Now let T be an arbitrary first-order theory in a language L, and let M be an
L-structure satisfying all the universal sentences which are derivable from the axioms of
T . If p is a quantifier-free formula (with free variables x1, . . . , xn say) whose interpretation
[p]M is a nonempty subset of Mn, show that T ∪ {(∃x1 · · ·xn)p} is consistent.

Let L′ be the language obtained from L by adjoining a new constant â for each
element a of M , and let

T ′ = T ∪ {p[â1, . . . , ân/x1, . . . , xn] | p is quantifier-free and (a1, . . . , an) ∈ [p]M}.

Show that T ′ has a model. [You may use the Completeness and Compactness
Theorems.] Explain briefly why any such model contains a substructure isomorphic to M .
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12L Probability and Measure

Let (Xn) be a sequence of non-negative random variables on a common probability
space with EXn 6 1, such that Xn → 0 almost surely. Determine which of the following
statements are necessarily true, justifying your answers carefully:

(a) P(Xn > 1) → 0 as n →∞;

(b) EXn → 0 as n →∞;

(c) E(sin(Xn)) → 0 as n →∞;

(d) E(
√

Xn) → 0 as n →∞.

[Standard limit theorems for integrals, and results about uniform integrability, may be used
without proof provided that they are clearly stated.]
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13L Applied Probability

Two enthusiastic probability students, Ros and Guil, sit an examination which
starts at time 0 and ends at time T ; they both decide to use the time to attempt a proof
of a difficult theorem which carries a lot of extra marks.

Ros’ strategy is to write the proof continuously at a constant speed λ lines per unit
time. In a time interval of length δt he has a probability µδt + o(δt) of realising he has
made a mistake. If that happens he instantly panics, erases everything he has written and
starts all over again.

Guil, on the other hand, keeps cool and thinks carefully about what he is doing.
In a time interval of length δt, he has a probability λδt + o(δt) of writing the next line of
proof and for each line he has written a probability µδt+o(δt) of finding a mistake in that
line, independently of all other lines he has written. When a mistake is found, he erases
that line and carries on as usual, hoping for the best.

Both Ros and Guil realise that, even if they manage to finish the proof, they will
not recognise that they have done so and will carry on writing as much as they can.

(a) Calculate pl(t), the probability that, for Ros, the length of his completed proof
at time t > l/λ is at least l.

(b) Let qn(t) be the probability that Guil has n lines of proof at time t > 0. Show
that

∂Q

∂t
= (s− 1)(λQ− µ

∂Q

∂s
),

where Q(s, t) =
∑∞

n=0 snqn(t).

(c) Suppose now that every time Ros starts all over again, the time until the next
mistake has distribution F , independently of the past history. Write down a renewal-type
integral equation satisfied by l(t), the expected length of Ros’ proof at time t. What is
the expected length of proof produced by him at the end of the examination if F is the
exponential distribution with mean 1/µ?

(d) What is the expected length of proof produced by Guil at the end of the
examination if each line that he writes survives for a length of time with distribution F ,
independently of all other lines?

14M Information Theory

Define the binary Hamming code of length n = 2` − 1 and its dual. Prove that the
Hamming code is perfect. Prove that in the dual code:

(i) The weight of any non-zero codeword equals 2`−1;

(ii) The distance between any pair of words equals 2`−1.

[You may quote results from the course provided that they are carefully stated.]
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15L Optimization and Control

State Pontryagin’s maximum principle (PMP) for the problem of minimizing∫ T

0

c(x(t), u(t)) dt + K(x(T )) ,

where x(t) ∈ Rn, u(t) ∈ Rm, dx/dt = a(x(t), u(t)); here, x(0) and T are given, and x(T )
is unconstrained.

Consider the two-dimensional problem in which dx1/dt = x2, dx2/dt = u,
c(x, u) = 1

2u2 and K(x(T )) = 1
2qx1(T )2, q > 0. Show that, by use of a variable

z(t) = x1(t)+x2(t)(T − t), one can rewrite this problem as an equivalent one-dimensional
problem.

Use PMP to solve this one-dimensional problem, showing that the optimal control
can be expressed as u(t) = −qz(T )(T − t), where z(T ) = z(0)/(1 + 1

3qT 3).

Express u(t) in a feedback form of u(t) = k(t)z(t) for some k(t).

Suppose that the initial state x(0) is perturbed by a small amount to x(0)+(ε1, ε2).
Give an expression (in terms of ε1, ε2, x(0), q and T ) for the increase in minimal cost.

16M Principles of Statistics

(i) Let X be a random variable with density function f(x; θ). Consider testing the
simple null hypothesis H0 : θ = θ0 against the simple alternative hypothesis H1 : θ = θ1.

What is the form of the optimal size α classical hypothesis test?

Compare the form of the test with the Bayesian test based on the Bayes factor,
and with the Bayes decision rule under the 0-1 loss function, under which a loss of 1 is
incurred for an incorrect decision and a loss of 0 is incurred for a correct decision.

(ii) What does it mean to say that a family of densities {f(x; θ), θ ∈ Θ} with real
scalar parameter θ is of monotone likelihood ratio?

Suppose X has a distribution from a family which is of monotone likelihood ratio
with respect to a statistic t(X) and that it is required to test H0 : θ 6 θ0 against
H1 : θ > θ0.

State, without proof, a theorem which establishes the existence of a uniformly most
powerful test and describe in detail the form of the test.

Let X1, . . . , Xn be independent, identically distributed U(0, θ), θ > 0. Find a
uniformly most powerful size α test of H0 : θ 6 θ0 against H1 : θ > θ0, and find its power
function. Show that we may construct a different, randomised, size α test with the same
power function for θ > θ0.
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17G Partial Differential Equations

(a) Define the convolution f ∗ g of two functions. Write down a formula for a
solution u : [0,∞)× Rn → R to the initial value problem

∂u

∂t
−∆u = 0

together with the boundary condition

u(0, x) = f(x)

for f a bounded continuous function on Rn. Comment briefly on the uniqueness of the
solution.

(b) State and prove the Duhamel principle giving the solution (for t > 0) to the
equation

∂u

∂t
−∆u = g

together with the boundary condition

u(0, x) = f(x)

in terms of your answer to (a).

(c) Show that if v : [0,∞)× Rn → R is the solution to

∂v

∂t
−∆v = G

together with the boundary condition

v(0, x) = f(x)

with G(t, x) ≤ g(t, x) for all (t, x) then v(t, x) ≤ u(t, x) for all (t, x) ∈ (0,∞)× Rn.

Finally show that if in addition there exists a point (t0, x0) at which there is strict
inequality in the assumption i.e.

G(t0, x0) < g(t0, x0),

then in fact
v(t, x) < u(t, x)

whenever t > t0.
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18G Methods of Mathematical Physics

Show that

P
∫ ∞

−∞

tz−1

t− a
dt = πiaz−1 ,

where a is real and positive, 0 < Re (z) < 1 and P denotes the Cauchy principal value;
the principal branches of tz etc. are implied. Deduce that∫ ∞

0

tz−1

t + a
dt = πaz−1cosec πz (∗)

and that

P
∫ ∞

0

tz−1

t− a
dt = −πaz−1 cot πz .

Use (∗) to show that, if Im (b) > 0 , then∫ ∞

0

tz−1

t− b
dt = −πbz−1(cot πz − i) .

What is the value of this integral if Im (b) < 0 ?

19F Numerical Analysis

(i)

Given the finite-difference method

s∑
k=−r

αkun+1
m+k =

s∑
k=−r

βkun
m+k, m, n ∈ Z, n > 0,

define

H(z) =

s∑
k=−r

βkzk

s∑
k=−r

αkzk

.

Prove that this method is stable if and only if

|H(eiθ)| 6 1, −π 6 θ 6 π.

[You may quote without proof known properties of the Fourier transform.]

(ii) Find the range of the parameter µ such that the method

(1− 2µ)un+1
m−1 + 4µun+1

m + (1− 2µ)un+1
m+1 = un

m−1 + un
m+1

is stable. Supposing that this method is used to solve the diffusion equation for u(x, t),
determine the order of magnitude of the local error as a power of ∆x.
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20E Electrodynamics

A particle of rest mass m and charge q moves in an electromagnetic field given by
a potential Aa along a trajectory xa(τ), where τ is the proper time along the particle’s
worldline. The action for such a particle is

I =
∫ (

m
√
−ηabẋaẋb − qAaẋa

)
dτ .

Show that the Euler-Lagrange equations resulting from this action reproduce the
relativistic equation of motion for the particle.

Suppose that the particle is moving in the electrostatic field of a fixed point charge
Q with radial electric field Er given by

Er =
Q

4πε0r2
.

Show that one can choose a gauge such that Ai = 0 and only A0 6= 0. Find A0.

Assume that the particle executes planar motion, which in spherical polar coordi-
nates (r , θ , φ) can be taken to be in the plane θ = π/2. Derive the equations of motion
for t and φ.

By using the fact that ηabẋ
aẋb = −1, find the equation of motion for r, and hence

show that the shape of the orbit is described by

dr

dφ
= ±r2

`

√(
E +

γ

r

)2

− 1− `2

r2
,

where E (> 1) and ` are constants of integration and γ is to be determined.

By putting u = 1/r or otherwise, show that if γ2 < `2 then the orbits are bounded
and generally not closed, and show that the angle between successive minimal values of r
is 2π(1− γ2/`2)−1/2.
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21E Foundations of Quantum Mechanics

(i) A Hamiltonian H0 has energy eigenvalues Er and corresponding non-degenerate
eigenstates |r〉. Show that under a small change in the Hamiltonian δH,

δ|r〉 =
∑
s 6=r

〈s|δH|r〉
Er − Es

|s〉,

and derive the related formula for the change in the energy eigenvalue Er to first and
second order in δH.

(ii) The Hamiltonian for a particle moving in one dimension is H = H0 + λH ′, where
H0 = p2/2m + V (x), H ′ = p/m and λ is small. Show that

i

~
[H0, x] = H ′

and hence that
δEr = −λ2 i

~
〈r|H ′x|r〉 = λ2 i

~
〈r|xH ′|r〉

to second order in λ.

Deduce that δEr is independent of the particular state |r〉 and explain why this
change in energy is exact to all orders in λ.

22E Applications of Quantum Mechanics

Define the reciprocal lattice for a lattice L with lattice vectors `.

A beam of electrons, with wave vector k, is incident on a Bravais lattice L with
a large number of atoms, N . If the scattering amplitude for scattering on an individual
atom in the direction k̂′ is f(k̂′), show that the scattering amplitude for the whole lattice
is ∑

`∈L

eiq·`f(k̂′) , q = k− |k| k̂′ .

Derive the formula for the differential cross section

dσ

dΩ
= N |f(k̂′)|2∆(q) ,

obtaining an explicit form for ∆(q). Show that ∆(q) is strongly peaked when q = g, a
reciprocal lattice vector. Show that this leads to the Bragg formula 2d sin θ

2 = λ, where θ
is the scattering angle, λ the electron wavelength and d the separation between planes of
atoms in the lattice.
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23D General Relativity

(i) Consider the line element describing the interior of a star,

ds2 = e2α(r)dr2 + r2(dθ2 + sin2 θ dφ2)− e2γ(r)dt2 ,

defined for 0 ≤ r ≤ r0 by
e−2α(r) = 1−Ar2

and
eγ(r) =

3
2
e−α0 − 1

2
e−α(r).

Here A = 2M/r3
0, M is the mass of the star, and α0 is defined to be α(r0).

The star is made of a perfect fluid with energy-momentum tensor

Tab = (p + ρ)uaub + pgab.

Here ua is the 4-velocity of the fluid which is at rest, the density ρ is constant throughout
the star (0 ≤ r ≤ r0) and the pressure p = p(r) depends only on the radial coordinate.
Write down the Einstein field equations and show that (in geometrical units with
G = c = 1) they may equivalently be written as

Rab = 8π(p + ρ)uaub + 4π(p− ρ)gab.

(ii) Using the formulae below, or otherwise, show that for 0 ≤ r ≤ r0 one has

ρ =
3A

8π
, p(r) =

3A

8π

(
e−α(r) − e−α0

3e−α0 − e−α(r)

)
.

[The non-zero components of the Ricci tensor are:

R11 = −γ′′ + α′γ′ − γ′2 +
2α′

r
, R22 = e−2α[(α′ − γ′)r − 1] + 1,

R33 = sin2 θR22, R44 = e2γ−2α[γ′′ − α′γ′ + γ′2 +
2γ′

r
].

Note that

α′ = Are2α, γ′ =
1
2
Areα−γ , γ′′ =

1
2
Aeα−γ +

1
2
A2r2e3α−γ − 1

4
A2r2e2α−2γ . ]
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24C Fluid Dynamics II

A thin layer of liquid of kinematic viscosity ν flows under the influence of gravity
down a plane inclined at an angle α to the horizontal (0 ≤ α ≤ π/2). With origin O on
the plane, and axes Ox down the line of steepest slope and Oy normal to the plane, the
free surface is given by y = h(x, t), where |∂h/∂x| � 1. The pressure distribution in the
liquid may be assumed to be hydrostatic. Using the approximations of lubrication theory,
show that

∂h

∂t
=

g

3ν

∂

∂x

{
h3(cos α

∂h

∂x
− sinα)

}
.

Now suppose that
h = h0 + η(x, t) ,

where
η(x, 0) = η0e

−x2/a2

and h0, η0 and a are constants with η0 � a, h0. Show that, to leading order,

η(x, t) =
aη0

(a2 + 4Dt)1/2
exp

{
− (x− Ut)2

a2 + 4Dt

}
,

where U and D are constants to be determined.

Explain in physical terms the meaning of this solution.

25C Waves in Fluid and Solid Media

Starting from the equations for one-dimensional unsteady flow of a perfect gas of
uniform entropy, show that the Riemann invariants,

R± = u± 2
γ − 1

(c− c0) ,

are constant on characteristics C± given by
dx

dt
= u ± c, where u(x, t) is the velocity of

the gas, c(x, t) is the local speed of sound and γ is the specific heat ratio.

Such a gas initially occupies the region x > 0 to the right of a piston in an infinitely
long tube. The gas and the piston are initially at rest. At time t = 0 the piston starts
moving to the left at a constant speed V . Find u(x, t) and c(x, t) in the three regions

(i) c0t ≤ x,

(ii) at ≤ x < c0t,

(iii) − V t ≤ x < at,

where a = c0− 1
2 (γ+1)V . What is the largest value of V for which c is positive throughout

region (iii)? What happens if V exceeds this value?
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