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Monday 3 June 2002 1.30 to 4.30

PAPER 1

Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions. If you submit answers to Parts of
more than six questions, your lowest scoring attempt(s) will be rejected.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i). Additional credit will be given for a
substantially complete answer to either Part.

Begin each answer on a separate sheet.

Write legibly and on only one side of the paper.

At the end of the examination:

Tie your answers in separate bundles, marked C,D,E, . . . , M according to the
letter affixed to each question. (For example, 2G, 19G should be in one bundle and
7J, 9J in another bundle.)

Attach a completed cover sheet to each bundle.

Complete a master cover sheet listing all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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1M Markov Chains

(i) We are given a finite set of airports. Assume that between any two airports, i and
j, there are aij = aji flights in each direction on every day. A confused traveller takes one
flight per day, choosing at random from all available flights. Starting from i, how many
days on average will pass until the traveller returns again to i? Be careful to allow for the
case where there may be no flights at all between two given airports.

(ii) Consider the infinite tree T with root R, where, for all m > 0, all vertices at
distance 2m from R have degree 3, and where all other vertices (except R) have degree 2.
Show that the random walk on T is recurrent.

2G Principles of Dynamics

(i) Derive Hamilton’s equations from Lagrange’s equations. Show that the Hamilto-
nian H is constant if the Lagrangian L does not depend explicitly on time.

(ii) A particle of mass m is constrained to move under gravity, which acts in the
negative z-direction, on the spheroidal surface ε−2(x2 + y2) + z2 = l2, with 0 < ε 6 1. If
θ, φ parametrize the surface so that

x = εl sin θ cosφ, y = εl sin θ sinφ, z = l cos θ,

find the Hamiltonian H(θ, φ, pθ, pφ).

Show that the energy

E =
p2

θ

2ml2(ε2 cos2 θ + sin2 θ)
+

α

sin2 θ
+mgl cos θ

is a constant of the motion, where α is a non-negative constant.

Rewrite this equation as
1
2
θ̇2 + Veff(θ) = 0

and sketch Veff(θ) for ε = 1 and α > 0, identifying the maximal and minimal values of θ(t)
for fixed α and E. If ε is now taken not to be unity, how do these values depend on ε?
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3K Functional Analysis

(i) Let Pr(eiθ) be the real part of
1 + reiθ

1− reiθ
. Establish the following properties of Pr

for 0 6 r < 1:

(a) 0 < Pr(eiθ) = Pr(e−iθ) 6
1 + r

1− r
;

(b) Pr(eiθ) 6 Pr(eiδ) for 0 < δ 6 |θ| 6 π;

(c) Pr(eiθ) → 0, uniformly on 0 < δ 6 |θ| 6 π, as r increases to 1.

(ii) Suppose that f ∈ L1(T), where T is the unit circle {eiθ : −π 6 θ 6 π}. By
definition, ‖f‖1 = 1

2π

∫ π

−π
|f(eiθ)| dθ. Let

Pr(f)(eiθ) =
1
2π

∫ π

−π

Pr(ei(θ−t))f(eit) dt.

Show that Pr(f) is a continuous function on T, and that ‖Pr(f)‖1 6 ‖f‖1.

[You may assume without proof that 1
2π

∫ π

−π
Pr(eiθ) dθ = 1.]

Show that Pr(f) → f , uniformly on T as r increases to 1, if and only if f is a
continuous function on T.

Show that ‖Pr(f)− f‖1 → 0 as r increases to 1.

4H Groups, Rings and Fields

(i) What is a Sylow subgroup? State Sylow’s Theorems.

Show that any group of order 33 is cyclic.

(ii) Prove the existence part of Sylow’s Theorems.

[You may use without proof any arithmetic results about binomial coefficients which you
need.]

Show that a group of order p2q, where p and q are distinct primes, is not simple.
Is it always abelian? Give a proof or a counterexample.
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5D Electromagnetism

(i) Show that, in a region where there is no magnetic field and the charge density
vanishes, the electric field can be expressed either as minus the gradient of a scalar potential
φ or as the curl of a vector potential A. Verify that the electric field derived from

A =
1

4πε0
p ∧ r
r3

is that of an electrostatic dipole with dipole moment p.

[You may assume the following identities:

∇(a · b) = a ∧ (∇∧ b) + b ∧ (∇∧ a) + (a · ∇)b + (b · ∇)a,

∇∧ (a ∧ b) = (b · ∇)a− (a · ∇)b + a∇ · b− b∇ · a.]

(ii) An infinite conducting cylinder of radius a is held at zero potential in the presence
of a line charge parallel to the axis of the cylinder at distance s0 > a, with charge density
q per unit length. Show that the electric field outside the cylinder is equivalent to that
produced by replacing the cylinder with suitably chosen image charges.

6F Dynamics of Differential Equations

(i) A system in R2 obeys the equations:

ẋ = x− x5 − 2xy4 − 2y3(a− x2) ,

ẏ = y − x4y − 2y5 + x3(a− x2) ,

where a is a positive constant.

By considering the quantity V = αx4 + βy4, where α and β are appropriately
chosen, show that if a > 1 then there is a unique fixed point and a unique limit cycle.
How many fixed points are there when a < 1?

(ii) Consider the second order system

ẍ− (a− bx2)ẋ+ x− x3 = 0 ,

where a, b are constants.

(a) Find the fixed points and determine their stability.

(b) Show that if the fixed point at the origin is unstable and 3a > b then there are
no limit cycles.

[You may find it helpful to use the Liénard coordinate z = ẋ− ax+ 1
3bx

3.]
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7J Logic, Computation and Set Theory

(i) State the Knaster-Tarski fixed point theorem. Use it to prove the Cantor-Bernstein
Theorem; that is, if there exist injections A → B and B → A for two sets A and B then
there exists a bijection A→ B.

(ii) Let A be an arbitrary set and suppose given a subset R of PA × A. We define a
subset B ⊆ A to be R-closed just if whenever (S, a) ∈ R and S ⊆ B then a ∈ B. Show
that the set of all R-closed subsets of A is a complete poset in the inclusion ordering.

Now assume that A is itself equipped with a partial ordering 6.
(a) Suppose R satisfies the condition that if b > a ∈ A then ({b}, a) ∈ R.

Show that if B is R-closed then c 6 b ∈ B implies c ∈ B.
(b) Suppose that R satisfies the following condition. Whenever (S, a) ∈ R and

b 6 a then there exists T ⊆ A such that (T, b) ∈ R, and for every t ∈ T we have (i)
({b}, t) ∈ R, and (ii) t 6 s for some s ∈ S. Let B and C be R-closed subsets of A. Show
that the set

[B → C] = {a ∈ A | ∀b 6 a (b ∈ B ⇒ b ∈ C)}

is R-closed.

8H Graph Theory

(i) State and prove a necessary and sufficient condition for a graph to be Eulerian
(that is, to have an Eulerian circuit).

Prove that, given any connected non-Eulerian graph G, there is an Eulerian graph
H and a vertex v ∈ H such that G = H − v.

(ii) Let G be a connected plane graph with n vertices, e edges and f faces. Prove that
n− e+ f = 2. Deduce that e ≤ g(n− 2)/(g − 2), where g is the smallest face size.

The crossing number c(G) of a non-planar graph G is the minimum number of edge-
crossings needed when drawing the graph in the plane. (The crossing of three edges at the
same point is not allowed.) Show that if G has n vertices and e edges then c(G) ≥ e−3n+6.
Find c(K6).

9J Number Theory

(i) Let p be a prime number. Prove that the multiplicative group of the field with p
elements is cyclic.

(ii) Let p be an odd prime, and let k > 1 be an integer. Prove that we have
x2 ≡ 1 mod pk if and only if either x ≡ 1 mod pk or x ≡ −1 mod pk. Is this statement true
when p = 2?

Let m be an odd positive integer, and let r be the number of distinct prime factors
of m. Prove that there are precisely 2r different integers x satisfying x2 ≡ 1 modm and
0 < x < m.

Paper 1 [TURN OVER



6

10H Coding and Cryptography

(i) Describe the original Hamming code of length 7. Show how to encode a message
word, and how to decode a received word involving at most one error. Explain why the
procedure works.

(ii) What is a linear binary code? What is its dual code? What is a cyclic binary
code? Explain how cyclic binary codes of length n correspond to polynomials in F2[X]
dividing Xn + 1. Show that the dual of a cyclic code of length n is cyclic of length n.

Using the factorization

X7 + 1 = (X + 1)(X3 +X + 1)(X3 +X2 + 1)

in F2[X], find all cyclic binary codes of length 7. Identify those which are Hamming codes
and their duals. Justify your answer.
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11L Stochastic Financial Models

(i) The prices, Si, of a stock in a binomial model at times i = 0, 1, 2 are represented
by the following binomial tree.

100

150

80

225

120

64

The fixed interest rate per period is 1/5 and the probability that the stock price increases
in a period is 1/3. Find the price at time 0 of a European call option with strike price 78
and expiry time 2.

Explain briefly the ideas underlying your calculations.

(ii) Consider an investor in a one-period model who may invest in s assets, all of
which are risky, with a random return vector R having mean ER = r and positive-
definite covariance matrix V ; assume that not all the assets have the same expected return.
Show that any minimum-variance portfolio is equivalent to the investor dividing his wealth
between two portfolios, the global minimum-variance portfolio and the diversified portfolio,
both of which should be specified clearly in terms of r and V .

Now suppose that R = (R1, R2, . . . , Rs)
>

where R1, R2, . . . , Rs are independent
random variables with Ri having the exponential distribution with probability density
function λie

−λix, x > 0, where λi > 0, 1 6 i 6 s. Determine the global minimum-variance
portfolio and the diversified portfolio explicitly.

Consider further the situation when the investor has the utility function u(x) =
1 − e−x, where x denotes his wealth. Suppose that he acts to maximize the expected
utility of his final wealth, and that his initial wealth is w > 0. Show that he now divides
his wealth between the diversified portfolio and the uniform portfolio, in which wealth
is apportioned equally between the assets, and determine the amounts that he invests in
each.
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12M Principles of Statistics

(i) Explain in detail the minimax and Bayes principles of decision theory.

Show that if d(X) is a Bayes decision rule for a prior density π(θ) and has constant
risk function, then d(X) is minimax.

(ii) Let X1, . . . , Xp be independent random variables, with Xi ∼ N(µi, 1), i = 1, . . . , p.

Consider estimating µ = (µ1, . . . , µp)T by d = (d1, . . . , dp)T , with loss function

L(µ, d) =
p∑

i=1

(µi − di)2 .

What is the risk function of X = (X1, . . . , Xp)T ?

Consider the class of estimators of µ of the form

da(X) =
(
1− a

XTX

)
X ,

indexed by a > 0. Find the risk function of da(X) in terms of E
(
1/XTX

)
, which you

should not attempt to evaluate, and deduce that X is inadmissible. What is the optimal
value of a?

[You may assume Stein’s Lemma, that for suitably behaved real-valued functions h,

E {(Xi − µi)h(X)} = E

{
∂h(X)
∂Xi

}
. ]
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13L Computational Statistics and Statistical Modelling

(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi , logµi = α+ βTxi , 1 6 i 6 n

where α, β are unknown parameters, and x1, . . . , xn are given covariates, each of dimension
p. Obtain the maximum-likelihood equations for α, β, and explain briefly how you would
check the validity of this model.

(ii) The data below show y1, . . . , y33, which are the monthly accident counts on a
major US highway for each of the 12 months of 1970, then for each of the 12 months of
1971, and finally for the first 9 months of 1972. The data-set is followed by the (slightly
edited) R output. You may assume that the factors ‘Year’ and ‘month’ have been set up
in the appropriate fashion. Give a careful interpretation of this R output, and explain (a)
how you would derive the corresponding standardised residuals, and (b) how you would
predict the number of accidents in October 1972.

52 37 49 29 31 32 28 34 32 39 50 63
35 22 27 27 34 23 42 30 36 56 48 40
33 26 31 25 23 20 25 20 36

> first.glm glm(y∼ Year + month, poisson) ; summary(first.glm)

Call:

glm(formula = y ∼ Year + month, family = poisson)

Coefficients:
Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.81969 0.09896 38.600 < 2e− 16 ***
Year1971 -0.12516 0.06694 -1.870 0.061521 .
Year1972 -0.28794 0.08267 -3.483 0.000496 ***
month2 -0.34484 0.14176 -2.433 0.014994 *
month3 -0.11466 0.13296 -0.862 0.388459
month4 -0.39304 0.14380 -2.733 0.006271 **
month5 -0.31015 0.14034 -2.210 0.027108 *
month6 -0.47000 0.14719 -3.193 0.001408 **
month7 -0.23361 0.13732 -1.701 0.088889 .
month8 -0.35667 0.14226 -2.507 0.012168 *
month9 -0.14310 0.13397 -1.068 0.285444
month10 0.10167 0.13903 0.731 0.464628
month11 0.13276 0.13788 0.963 0.335639
month12 0.18252 0.13607 1.341 0.179812

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 101.143 on 32 degrees of freedom
Residual deviance: 27.273 on 19 degrees of freedom

Number of Fisher Scoring iterations: 3
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14E Quantum Physics

(i) A system of N identical non-interacting bosons has energy levels Ei with degen-
eracy gi, 1 ≤ i < ∞, for each particle. Show that in thermal equilibrium the number of
particles Ni with energy Ei is given by

Ni =
gi

eβ(Ei−µ) − 1
,

where β and µ are parameters whose physical significance should be briefly explained.

(ii) A photon moves in a cubical box of side L. Assuming periodic boundary conditions,
show that, for large L, the number of photon states lying in the frequency range ω → ω+dω
is ρ(ω)dω where

ρ(ω) = L3

(
ω2

π2c3

)
.

If the box is filled with thermal radiation at temperature T , show that the number of
photons per unit volume in the frequency range ω → ω + dω is n(ω)dω where

n(ω) =
(
ω2

π2c3

)
1

e~ω/kT − 1
.

Calculate the energy densityW of the thermal radiation. Show that the pressure P exerted
on the surface of the box satisfies

P =
1
3
W .

[You may use the result
∫∞
0

x3dx
ex−1 = π4

15 .]
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15D General Relativity

(i) Given a covariant vector field Va, define the curvature tensor Ra
bcd by

Va;bc − Va;cb = VeR
e
abc. (∗)

Express Re
abc in terms of the Christoffel symbols and their derivatives. Show that

Re
abc = −Re

acb.

Further, by setting Va = ∂φ/∂xa, deduce that

Re
abc +Re

cab +Re
bca = 0.

(ii) Write down an expression similar to (∗) given in Part (i) for the quantity

gab;cd − gab;dc

and hence show that
Reabc = −Raebc.

Define the Ricci tensor, show that it is symmetric and write down the contracted
Bianchi identities.

In certain spacetimes of dimension n ≥ 2, Rabcd takes the form

Rabcd = K(xe)[gacgbd − gadgbc].

Obtain the Ricci tensor and Ricci scalar. Deduce that K is a constant in such spacetimes
if the dimension n is greater than 2.
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16D Statistical Physics and Cosmology

(i) Consider a one-dimensional model universe with “stars” distributed at random on
the x-axis, and choose the origin to coincide with one of the stars; call this star the “home-
star.” Home-star astronomers have discovered that all other stars are receding from them
with a velocity v(x), that depends on the position x of the star. Assuming non-relativistic
addition of velocities, show how the assumption of homogeneity implies that v(x) = H0x
for some constant H0.

In attempting to understand the history of their one-dimensional universe, home-
star astronomers seek to determine the velocity v(t) at time t of a star at position x(t).
Assuming homogeneity, show how x(t) is determined in terms of a scale factor a(t) and
hence deduce that v(t) = H(t)x(t) for some function H(t). What is the relation between
H(t) and H0?

(ii) Consider a three-dimensional homogeneous and isotropic universe with mass
density ρ(t), pressure p(t) and scale factor a(t). Given that E(t) is the energy in volume
V (t), show how the relation dE = −p dV yields the “fluid” equation

ρ̇ = −3
(
ρ+

p

c2

)
H,

where H = ȧ/a.

Show how conservation of energy applied to a test particle at the boundary of a
spherical fluid element yields the Friedmann equation

ȧ2 − 8πG
3

ρa2 = −kc2

for constant k. Hence obtain an equation for the acceleration ä in terms of ρ, p and a.

A model universe has mass density and pressure

ρ =
ρ0

a3
+ ρ1, p = −ρ1c

2,

where ρ0 is constant. What does the fluid equation imply about ρ1? Show that the
acceleration ä vanishes if

a =
(
ρ0

2ρ1

) 1
3

.

Hence show that this universe is static and determine the sign of the constant k.
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17E Symmetries and Groups in Physics

(i) Let H be a normal subgroup of the group G. Let G/H denote the group of cosets
g̃ = gH for g ∈ G. If D : G → GL(Cn) is a representation of G with D(h1) = D(h2) for
all h1, h2 ∈ H show that D̃(g̃) = D(g) is well-defined and that it is a representation of
G/H. Show further that D̃(g̃) is irreducible if and only if D(g) is irreducible.

(ii) For a matrix U ∈ SU(2) define the linear map ΦU : R3 → R3 by ΦU (x).σ =
Ux.σU† with σ = (σ1, σ2, σ3)T as the vector of the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Show that ‖ΦU (x)‖ = ‖x‖. Because of the linearity of ΦU there exists a matrix R(U)
such that ΦU (x) = R(U)x. Given that any SU(2) matrix can be written as

U = cosα I − i sinα n.σ ,

where α ∈ [0, π] and n is a unit vector, deduce that R(U) ∈ SO(3) for all U ∈ SU(2).
Compute R(U)n and R(U)x in the case that x.n = 0 and deduce that R(U) is the matrix
of a rotation about n with angle 2α.

[Hint: m.σ n.σ = m.n I + i(m× n).σ .]

Show that R(U) defines a surjective homomorphism Θ : SU(2) → SO(3) and find
the kernel of Θ.
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18C Transport Processes

(i) Material of thermal diffusivity D occupies the semi-infinite region x > 0 and is
initially at uniform temperature T0. For time t > 0 the temperature at x = 0 is held at a
constant value T1 > T0. Given that the temperature T (x, t) in x > 0 satisfies the diffusion
equation Tt = DTxx, write down the equation and the boundary and initial conditions
satisfied by the dimensionless temperature θ = (T − T0) / (T1 − T0).

Use dimensional analysis to show that the lengthscale of the region in which T is
significantly different from T0 is proportional to (Dt)1/2. Hence show that this problem
has a similarity solution

θ = erfc (ξ/2) ≡ 2√
π

∫ ∞

ξ/2

e−u2
du ,

where ξ = x/(Dt)1/2.

What is the rate of heat input, −DTx, across the plane x = 0?

(ii) Consider the same problem as in Part (i) except that the boundary condition at
x = 0 is replaced by one of constant rate of heat input Q. Show that θ(ξ, t) satisfies the
partial differential equation

θξξ +
ξ

2
θξ = tθt

and write down the boundary conditions on θ(ξ, t). Deduce that the problem has a
similarity solution of the form

θ =
Q(t/D)1/2

T1 − T0
f(ξ).

Derive the ordinary differential equation and boundary conditions satisfied by f(ξ).
Differentiate this equation once to obtain

f ′′′ +
ξ

2
f ′′ = 0

and solve for f ′(ξ). Hence show that

f(ξ) =
2√
π
e−ξ2/4 − ξ erfc (ξ/2) .

Sketch the temperature distribution T (x, t) for various times t, and calculate T (0, t)
explicitly.
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19G Theoretical Geophysics

(i) In a reference frame rotating about a vertical axis with constant angular velocity
f/2 the horizontal components of the momentum equation for a shallow layer of inviscid,
incompressible fluid of constant density ρ are

Du

Dt
− fv = −1

ρ

∂P

∂x
,

Dv

Dt
+ fu = −1

ρ

∂P

∂y
,

where u, v and P are independent of the vertical coordinate z.

Define the Rossby number Ro for a flow with typical velocity U and lengthscale L.
What is the approximate form of the above equations when Ro� 1?

Show that the solution to the approximate equations is given by a streamfunction
ψ proportional to P .

Conservation of potential vorticity for such a flow is represented by

D

Dt

ζ + f

h
= 0,

where ζ is the vertical component of relative vorticity and h(x, y) is the thickness of the
layer. Explain briefly why the potential vorticity of a column of fluid should be conserved.

(ii) Suppose that the thickness of the rotating, shallow-layer flow in Part (i) is
h(y) = H0 exp(−αy) where H0 and α are constants. By linearising the equation of
conservation of potential vorticity about u = v = ζ = 0, show that the stream function
for small disturbances to the state of rest obeys

∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)
ψ + β

∂ψ

∂x
= 0 ,

where β is a constant that should be found.

Obtain the dispersion relationship for plane-wave solutions of the form ψ ∝
exp[i(kx+ ly − ωt)]. Hence calculate the group velocity.

Show that if β > 0 then the phase of these waves always propagates to the left
(negative x direction) but that the energy may propagate to either left or right.
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20F Numerical Analysis

(i) Let A be an n×n symmetric real matrix with distinct eigenvalues λ1, λ2, . . . , λn and
corresponding eigenvectors v1,v2, ....,vn, where ‖vl‖ = 1. Given x(0) ∈ Rn, ‖x(0)‖ = 1,
the sequence x(k) is generated in the following manner. We set

µ = x(k) TAx(k),

y = (A− µI)−1x(k),

x(k+1) =
y
‖y‖

.

Show that if

x(k) = c−1

(
v1 + α

n∑
l=2

dlvl

)
,

where α is a real scalar and c is chosen so that ‖x(k)‖ = 1, then

µ = c−2

λ1 + α2
n∑

j=2

λjd
2
j

 .

Give an explicit expression for c.

(ii) Use the above result to prove that, if |α| is small,

x(k+1) = c̃−1

(
v1 + α3

n∑
l=2

d̃lvl

)
+O(α4)

and obtain the numbers c̃ and d̃2, . . . , d̃n.
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