
MATHEMATICAL TRIPOS Part II

List of Courses

Geometry of Surfaces
Graph Theory
Number Theory
Coding and Cryptography
Algorithms and Networks
Computational Statistics and Statistical Modelling
Quantum Physics
Statistical Physics and Cosmology
Symmetries and Groups in Physics
Transport Processes
Theoretical Geophysics
Mathematical Methods
Nonlinear Waves
Markov Chains
Principles of Dynamics
Functional Analysis
Groups, Rings and Fields
Electromagnetism
Dynamics of Differential Equations
Logic, Computation and Set Theory
Principles of Statistics
Stochastic Financial Models
Foundations of Quantum Mechanics
General Relativity
Numerical Analysis
Combinatorics
Representation Theory
Galois Theory
Differentiable Manifolds
Algebraic Topology
Number Fields
Hilbert Spaces
Riemann Surfaces
Algebraic Curves
Probability and Measure
Applied Probability
Information Theory
Optimization and Control
Dynamical Systems
Partial Differential Equations
Methods of Mathematical Physics
Electrodynamics
Statistical Physics
Applications of Quantum Mechanics
Fluid Dynamics II
Waves in Fluid and Solid Media

Part II



2

A2/7 Geometry of Surfaces

(i) Give the definition of the curvature κ(t) of a plane curve γ : [a, b] −→ R2. Show
that, if γ : [a, b] −→ R2 is a simple closed curve, then

∫ b

a

κ(t) ‖γ̇(t)‖ dt = 2π.

(ii) Give the definition of a geodesic on a parametrized surface in R3. Derive the
differential equations characterizing geodesics. Show that a great circle on the unit sphere
is a geodesic.

A3/7 Geometry of Surfaces

(i) Give the definition of the surface area of a parametrized surface in R3 and show
that it does not depend on the parametrization.

(ii) Let ϕ(u) > 0 be a differentiable function of u. Consider the surface of revolution:

(
u
v

)
7→ f(u, v) =

ϕ(u) cos(v)
ϕ(u) sin(v)

u

 .

Find a formula for each of the following:

(a) The first fundamental form.

(b) The unit normal.

(c) The second fundamental form.

(d) The Gaussian curvature.

A4/7 Geometry of Surfaces

Write an essay on the Gauss-Bonnet theorem. Make sure that your essay contains
a precise statement of the theorem, in its local form, and a discussion of some of its
applications, including the global Gauss-Bonnet theorem.
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A1/8 Graph Theory

(i) Show that any graph G with minimal degree δ contains a cycle of length at least
δ + 1. Give examples to show that, for each possible value of δ, there is a graph with
minimal degree δ but no cycle of length greater than δ + 1.

(ii) Let KN be the complete graph with N vertices labelled v1, v2, . . . , vN . Prove, from
first principles, that there are NN−2 different spanning trees in KN . In how many of these
spanning trees does the vertex v1 have degree 1?

A spanning tree in KN is chosen at random, with each of the NN−2 trees being
equally likely. Show that the average number of vertices of degree 1 in the random tree is
approximately N/e when N is large.

Find the average degree of vertices in the random tree.

A2/8 Graph Theory

(i) Prove that any graph G drawn on a compact surface S with negative Euler
characteristic E(S) has a vertex colouring that uses at most

h = b 1
2 (7 +

√
49− 24E(S))c

colours.

Briefly discuss whether the result is still true when E(S) > 0.

(ii) Prove that a graph G is k edge-connected if and only if the removal of no set of
less than k edges from G disconnects G.

[If you use any form of Menger’s theorem, you must prove it.]

Let G be a minimal example of a graph that requires k + 1 colours for a vertex
colouring. Show that G must be k edge-connected.

A4/9 Graph Theory

Write an essay on extremal graph theory. Your essay should include proofs of at
least two major results and a discussion of variations on these results or their proofs.
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A1/9 Number Theory

(i) Describe Euclid’s algorithm.

Find, in the RSA algorithm, the deciphering key corresponding to the enciphering
key 7, 527.

(ii) Explain what is meant by a primitive root modulo an odd prime p.

Show that, if g is a primitive root modulo p, then all primitive roots modulo p are
given by gm, where 1 6 m < p and (m, p− 1) = 1.

Verify, by Euler’s criterion, that 3 is a primitive root modulo 17. Hence find all
primitive roots modulo 17.

A3/9 Number Theory

(i) State the law of quadratic reciprocity.

Prove that 5 is a quadratic residue modulo primes p ≡ ±1 (mod 10) and a
quadratic non-residue modulo primes p ≡ ±3 (mod 10).

Determine whether 5 is a quadratic residue or non-residue modulo 119 and modulo
539.

(ii) Explain what is meant by the continued fraction of a real number θ. Define the
convergents to θ and write down the recurrence relations satisfied by their numerators and
denominators.

Use the continued fraction method to find two solutions in positive integers x, y of
the equation x2 − 15y2 = 1.

A4/10 Number Theory

Attempt one of the following:

(i) Discuss pseudoprimes and primality testing. Find all bases for which 57 is a Fermat
pseudoprime. Determine whether 57 is also an Euler pseudoprime for these bases.

(ii) Write a brief account of various methods for factoring large numbers. Use Fermat
factorization to find the factors of 10033. Would Pollard’s p − 1 method also be
practical in this instance?

(iii) Show that
∑

1/pn is divergent, where pn denotes the n-th prime.

Write a brief account of basic properties of the Riemann zeta-function.

State the prime number theorem. Show that it implies that for all sufficiently large
positive integers n there is a prime p satisfying n < p 6 2n.
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A1/10 Coding and Cryptography

(i) Explain briefly how and why a signature scheme is used. Describe the el Gamal
scheme.

(ii) Define a cyclic code. Define the generator of a cyclic code and show that it exists.
Prove a necessary and sufficient condition for a polynomial to be the generator of a cyclic
code of length n.

What is the BCH code? Show that the BCH code associated with {β, β2}, where
β is a root of X3 +X + 1 in an appropriate field, is Hamming’s original code.

A2/9 Coding and Cryptography

(i) Give brief answers to the following questions.

(a) What is a stream cypher?

(b) Explain briefly why a one-time pad is safe if used only once but becomes unsafe if
used many times.

(c) What is a feedback register of length d? What is a linear feedback register of length
d?

(d) A cypher stream is given by a linear feedback register of known length d. Show
that, given plain text and cyphered text of length 2d, we can find the complete
cypher stream.

(e) State and prove a similar result for a general feedback register.

(ii) Describe the construction of a Reed-Muller code. Establish its information rate
and its weight.
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A2/10 Algorithms and Networks

(i) Let G be a directed network with nodes N and arcs A. Let S ⊂ N be a subset
of the nodes, x be a flow on G, and y be the divergence of x. Describe carefully what is
meant by a cut Q = [S,N\S]. Define the arc-cut incidence eQ, and the flux of x across
Q. Define also the divergence y(S) of S. Show that y(S) = x.eQ.

Now suppose that capacity constraints are specified on each of the arcs. Define
the upper cut capacity c+(Q) of Q. State the feasible distribution problem for a specified
divergence b, and show that the problem only has a solution if b(N) = 0 and b(S) 6 c+(Q)
for all cuts Q = [S,N\S].

(ii) Describe an algorithm to find a feasible distribution given a specified divergence b
and capacity constraints on each arc. Explain what happens when no feasible distribution
exists.

Illustrate the algorithm by either finding a feasible circulation, or demonstrating
that one does not exist, in the network given below. Arcs are labelled with capacity
constraint intervals.

[0,10]

[2,10]

[−2,2][0,2]

[−4,3] [0,5]

[−10,10]

[−2,2]

[−1,1]
[5,10][−6,1]

Part II



7

A3/10 Algorithms and Networks

(i) Let P be the problem

minimize f(x) subject to h(x) = b, x ∈ X.

Explain carefully what it means for the problem P to be Strong Lagrangian.

Outline the main steps in a proof that a quadratic programming problem

minimize
1
2
xTQx+ cTx subject to Ax > b ,

where Q is a symmetric positive semi-definite matrix, is Strong Lagrangian.

[You should carefully state the results you need, but should not prove them.]

(ii) Consider the quadratic programming problem:

minimize x2
1 + 2x1x2 + 2x2

2 + x1 − 4x2

subject to 3x1 + 2x2 6 6, x1 + x2 > 1 .

State necessary and sufficient conditions for (x1, x2) to be optimal, and use the active-
set algorithm (explaining your steps briefly) to solve the problem starting with initial
condition (2, 0). Demonstrate that the solution you have found is optimal by showing that
it satisfies the necessary and sufficient conditions stated previously.

A4/11 Algorithms and Networks

State the optimal distribution problem. Carefully describe the simplex-on-a-graph
algorithm for solving optimal distribution problems when the flow in each arc in the
network is constrained to lie in the interval [0,∞). Explain how the algorithm can
be initialised if there is no obvious feasible solution with which to begin. Describe
the adjustments that are needed for the algorithm to cope with more general capacity
constraints x(j) ∈ [c−(j), c+(j)] for each arc j (where c±(j) may be finite or infinite).
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A1/13 Computational Statistics and Statistical Modelling

(i) Assume that the n-dimensional observation vector Y may be written as

Y = Xβ + ε ,

where X is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ2I).

Let Q(β) = (Y −Xβ)T (Y −Xβ). Find β̂, the least-squares estimator of β, and show that

Q(β̂) = Y T (I −H)Y ,

where H is a matrix that you should define.

(ii) Show that
∑
iHii = p. Show further for the special case of

Yi = β1 + β2xi + β3zi + εi, 1 6 i 6 n,

where Σxi = 0, Σzi = 0, that

H =
1
n
11T + axxT + b(xzT + zxT ) + czzT ;

here, 1 is a vector of which every element is one, and a, b, c, are constants that you should
derive.

Hence show that, if Ŷ = Xβ̂ is the vector of fitted values, then

1
σ2

var(Ŷi) =
1
n

+ ax2
i + 2bxizi + cz2

i , 1 6 i 6 n.
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A2/12 Computational Statistics and Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)].

Assume that E(Yi) = µi, and that g(µi) = βTxi, where g(·) is a known ‘link’ function,
x1, . . . , xn are known covariates, and β is an unknown vector. Show that

E(Yi) = b′(θi), var(Yi) = φb′′(θi) = Vi, say,

and hence

∂l

∂β
=

n∑
i=1

(yi − µi)xi
g′(µi)Vi

, where l = l(β, φ) is the log-likelihood.

(ii) The table below shows the number of train miles (in millions) and the number of
collisions involving British Rail passenger trains between 1970 and 1984. Give a detailed
interpretation of the R output that is shown under this table:

year collisions miles
1 1970 3 281
2 1971 6 276
3 1972 4 268
4 1973 7 269
5 1974 6 281
6 1975 2 271
7 1976 2 265
8 1977 4 264
9 1978 1 267
10 1979 7 265
11 1980 3 267
12 1981 5 260
13 1982 6 231
14 1983 1 249

Call:

glm(formula = collisions ∼ year + log(miles), family = poisson)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 127.14453 121.37796 1.048 0.295
year -0.05398 0.05175 -1.043 0.297
log(miles) -3.41654 4.18616 -0.816 0.414

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 15.937 on 13 degrees of freedom

Residual deviance: 14.843 on 11 degrees of freedom

Number of Fisher Scoring iterations: 4
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A4/14 Computational Statistics and Statistical Modelling

(i) Assume that independent observations Y1, . . . , Yn are such that

Yi ∼ Binomial(ti, πi), log
πi

1− πi
= βTxi for 1 6 i 6 n ,

where x1, . . . , xn are given covariates. Discuss carefully how to estimate β, and how to
test that the model fits.

(ii) Carmichael et al. (1989) collected data on the numbers of 5-year old children
with “dmft”, i.e. with 5 or more decayed, missing or filled teeth, classified by social class,
and by whether or not their tap water was fluoridated or non-fluoridated. The numbers
of such children with dmft, and the total numbers, are given in the table below:

dmft
Social Class Fluoridated Non-fluoridated
I 12/117 12/56
II 26/170 48/146
III 11/52 29/64
Unclassified 24/118 49/104

A (slightly edited) version of the R output is given below. Explain carefully what
model is being fitted, whether it does actually fit, and what the parameter estimates and
Std. Errors are telling you. (You may assume that the factors SClass (social class) and
Fl (with/without) have been correctly set up.)

Call:

glm(formula = Yes/Total ∼ SClass + Fl, family = binomial,
weights = Total)

Coefficients:

Estimate Std. Error z value
(Intercept) -2.2716 0.2396 -9.480
SClassII 0.5099 0.2628 1.940
SClassIII 0.9857 0.3021 3.262
SClassUnc 1.0020 0.2684 3.734
Flwithout 1.0813 0.1694 6.383

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.53785 on 7 degrees of freedom

Residual deviance: 0.64225 on 3 degrees of freedom

Number of Fisher Scoring iterations: 3

Here ‘Yes’ is the vector of numbers with dmft, taking values 12, 12, . . . , 24, 49,
‘Total’ is the vector of Total in each category, taking values 117, 56, . . . , 118, 104, and
SClass, Fl are the factors corresponding to Social class and Fluoride status, defined in the
obvious way.
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A1/14 Quantum Physics

(i) A spinless quantum mechanical particle of mass m moving in two dimensions is
confined to a square box with sides of length L. Write down the energy eigenfunctions for
the particle and the associated energies.

Show that, for large L, the number of states in the energy range E → E + dE is
ρ(E)dE, where

ρ(E) =
mL2

2π~2
.

(ii) If, instead, the particle is an electron with magnetic moment µ moving in an
external magnetic field, H, show that

ρ(E) =
mL2

2π~2
, −µH < E < µH

=
mL2

π~2
, µH < E.

Let there be N electrons in the box. Explain briefly how to construct the ground
state of the system. Let EF be the Fermi energy. Show that when EF > µH,

N =
mL2

π~2
EF .

Show also that the magnetic moment, M , of the system in the ground state is

M =
µ2mL2

π~2
H,

and that the ground state energy is

1
2
π~2

mL2
N2 − 1

2
MH.
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A2/14 Quantum Physics

(i) Each particle in a system of N identical fermions has a set of energy levels, Ei,
with degeneracy gi, where 1 ≤ i < ∞. Explain why, in thermal equilibrium, the average
number of particles with energy Ei is

Ni =
gi

eβ(Ei−µ) + 1
.

The physical significance of the parameters β and µ should be made clear.

(ii) A simple model of a crystal consists of a linear array of sites with separation a. At
the nth site an electron may occupy either of two states with probability amplitudes bn
and cn, respectively. The time-dependent Schrödinger equation governing the amplitudes
gives

i~ḃn = E0bn −A(bn+1 + bn−1 + cn+1 + cn−1),

i~ċn = E1cn −A(bn+1 + bn−1 + cn+1 + cn−1),

where A > 0.

By examining solutions of the form(
bn
cn

)
=
(
B
C

)
ei(kna−Et/~),

show that the energies of the electron fall into two bands given by

E =
1
2
(E0 + E1 − 4A cos ka)± 1

2

√
(E0 − E1)2 + 16A2 cos2 ka.

Describe briefly how the energy band structure for electrons in real crystalline
materials can be used to explain why they are insulators, conductors or semiconductors.

A4/16 Quantum Physics

A harmonic oscillator of frequency ω is in thermal equilibrium with a heat bath at
temperature T . Show that the mean number of quanta n in the oscillator is

n =
1

e~ω/kT − 1
.

Use this result to show that the density of photons of frequency ω for cavity
radiation at temperature T is

n(ω) =
ω2

π2c3
1

e~ω/kT − 1
.

By considering this system in thermal equilibrium with a set of distinguishable
atoms, derive formulae for the Einstein A and B coefficients.

Give a brief description of the operation of a laser.
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A1/16 Statistical Physics and Cosmology

(i) Introducing the concept of a co-moving distance co-ordinate, explain briefly how
the velocity of a galaxy in an isotropic and homogeneous universe is determined by the
scale factor a(t). How is the scale factor related to the Hubble constant H0?

A homogeneous and isotropic universe has an energy density ρ(t)c2 and a pressure
P (t). Use the relation dE = −PdV to derive the “fluid equation”

ρ̇ = −3
(
ρ+

P

c2

)(
ȧ

a

)
,

where the overdot indicates differentiation with respect to time, t. Given that a(t) satisfies
the “acceleration equation”

ä = −4πG
3

a

(
ρ+

3P
c2

)
,

show that the quantity

k = c−2

(
8πG

3
ρa2 − ȧ2

)
is time-independent.

The pressure P is related to ρ by the “equation of state”

P = σρc2, |σ| < 1 .

Given that a(t0) = 1, find a(t) for k = 0, and hence show that a(0) = 0.

(ii) What is meant by the expression “the Hubble time”?

Assuming that a(0) = 0 and a(t0) = 1, where t0 is the time now (of the current
cosmological era), obtain a formula for the radius R0 of the observable universe.

Given that

a(t) =
(
t

t0

)α
for constant α, find the values of α for which R0 is finite. Given that R0 is finite, show that
the age of the universe is less than the Hubble time. Explain briefly, and qualitatively,
why this result is to be expected as long as

ρ+ 3
P

c2
> 0.
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A3/14 Statistical Physics and Cosmology

(i) A spherically symmetric star has pressure P (r) and mass density ρ(r), where r is
distance from the star’s centre. Stating without proof any theorems you may need, show
that mechanical equilibrium implies the Newtonian pressure support equation

P ′ = −Gmρ
r2

,

where m(r) is the mass within radius r and P ′ = dP/dr.

Write down an integral expression for the total gravitational potential energy, Egr.
Use this to derive the “virial theorem”

Egr = −3〈P 〉V ,

when 〈P 〉 is the average pressure.

(ii) Given that the total kinetic energy, Ekin, of a spherically symmetric star is related
to its average pressure by the formula

Ekin = α〈P 〉V (∗)

for constant α, use the virial theorem (stated in part (i)) to determine the condition on
α needed for gravitational binding. State the relation between pressure P and “internal
energy” U for an ideal gas of non-relativistic particles. What is the corresponding relation
for ultra-relativistic particles? Hence show that the formula (∗) applies in these cases, and
determine the values of α.

Why does your result imply a maximum mass for any star, whatever the source of
its pressure? What is the maximum mass, approximately, for stars supported by

(a) thermal pressure,

(b) electron degeneracy pressure (White Dwarf),

(c) neutron degeneracy pressure (Neutron Star).

A White Dwarf can accrete matter from a companion star until its mass exceeds
the Chandrasekar limit. Explain briefly the process by which it then evolves into a neutron
star.
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A4/18 Statistical Physics and Cosmology

(i) Given that g(p)dp is the number of eigenstates of a gas particle with momentum
between p and p + dp, write down the Bose-Einstein distribution n̄(p) for the average
number of particles with momentum between p and p+ dp, as a function of temperature
T and chemical potential µ.

Given that µ = 0 and g(p) = 8π V p
2

h3 for a gas of photons, obtain a formula for the
energy density ρT at temperature T in the form

ρT =
∫ ∞

0

εT (ν)dν,

where εT (ν) is a function of the photon frequency ν that you should determine. Hence
show that the value νpeak of ν at the maximum of εT (ν) is proportional to T .

A thermally isolated photon gas undergoes a slow change of its volume V . Why is
n̄(p) unaffected by this change? Use this fact to show that V T 3 remains constant.

(ii) According to the “Hot Big Bang” theory, the Universe evolved by expansion
from an earlier state in which it was filled with a gas of electrons, protons and photons
(with ne = np) at thermal equilibrium at a temperature T such that

2mec
2 � kT � B ,

where me is the electron mass and B is the binding energy of a hydrogen atom. Why
must the composition have been different when kT � 2mec

2? Why must it change as the
temperature falls to kT � B? Why does this lead to a thermal decoupling of radiation
from matter?

The baryon number of the Universe can be taken to be the number of protons, either
as free particles or as hydrogen atom nuclei. Let nb be the baryon number density and
nγ the photon number density. Why is the ratio η = nb/nγ unchanged by the expansion
of the universe? Given that η � 1, obtain an estimate of the temperature TD at which
decoupling occurs, as a function of η and B. How does this decoupling lead to the concept
of a “surface of last scattering” and a prediction of a Cosmic Microwave Background
Radiation (CMBR)?
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A1/17 Symmetries and Groups in Physics

(i) Let h : G→ G′ be a surjective homomorphism between two groups, G and G′. If
D′ : G′ → GL(Cn) is a representation of G′, show that D(g) = D′ (h(g)) for g ∈ G is a
representation of G and, if D′ is irreducible, show that D is also irreducible. Show further
that D̃(g̃) = D′

(
h̃(g̃)

)
is a representation of G/ker(h), where h̃(g̃) = h(g) for g ∈ G and

g̃ ∈ G/ker(h) (with g ∈ g̃). Deduce that the characters χ, χ̃, χ′ of D, D̃,D′, respectively,
satisfy

χ(g) = χ̃(g̃) = χ′(h(g)) .

(ii) D4 is the symmetry group of rotations and reflections of a square. If c is a rotation
by π/2 about the centre of the square and b is a reflection in one of its symmetry axes,
then D4 = {e, c, c2, c3, b, bc, bc2, bc3}. Given that the conjugacy classes are {e} {c2}, {c, c3}
{b, bc2} and {bc, bc3} derive the character table of D4.

Let H0 be the Hamiltonian of a particle moving in a central potential. The SO(3)
symmetry ensures that the energy eigenvalues of H0 are the same for all the angular
momentum eigenstates in a given irreducible SO(3) representation. Therefore, the energy
eigenvalues of H0 are labelled Enl with n ∈ N and l ∈ N0, l < n. Assume now that in
a crystal the symmetry is reduced to a D4 symmetry by an additional term H1 of the
total Hamiltonian, H = H0 +H1. Find how the H0 eigenstates in the SO(3) irreducible
representation with l = 2 (the D-wave orbital) decompose into irreducible representations
of H. You may assume that the character, g(θ), of a group element of SO(3), in a
representation labelled by l is given by

χ(gθ) = 1 + 2 cos θ + 2 cos(2θ) + . . .+ 2 cos(lθ),

where θ is a rotation angle and l(l + 1) is the eigenvalue of the total angular momentum,
L2.
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A3/15 Symmetries and Groups in Physics

(i) The pions form an isospin triplet with π+ = |1, 1〉, π0 = |1, 0〉 and π− = |1,−1〉,
whilst the nucleons form an isospin doublet with p = | 12 ,

1
2 〉 and n = | 12 ,−

1
2 〉. Consider

the isospin representation of two-particle states spanned by the basis

T = {|π+p〉, |π+n〉, |π0p〉, |π0n〉, |π−p〉, |π−n〉} .

State which irreducible representations are contained in this representation and explain
why |π+p〉 is an isospin eigenstate.

Using
I− |j,m〉 =

√
(j −m+ 1)(j +m) |j,m− 1〉,

where I− is the isospin ladder operator, write the isospin eigenstates in terms of the basis,
T .

(ii) The Lie algebra su(2) of generators of SU(2) is spanned by the operators
{J+, J−, J3} satisfying the commutator algebra [J+, J−] = 2J3 and [J3, J±] = ±J±. Let
Ψj be an eigenvector of J3: J3 (Ψj) = jΨj such that J+Ψj = 0. The vector space
Vj = span{Jn−Ψj : n ∈ N0} together with the action of an arbitrary su(2) operator A on
Vj defined by

J−
(
Jn−Ψj

)
= Jn+1

− Ψj , A
(
Jn−Ψj

)
= [A, J−]

(
Jn−1
− Ψj

)
+ J−

(
A
(
Jn−1
− Ψj

))
,

forms a representation (not necessarily reducible) of su(2). Show that if Jn−Ψj is non-
trivial then it is an eigenvector of J3 and find its eigenvalue. Given that [J+, J

n
−] =

αnJ
n−1
− J3 + βnJ

n−1
− show that αn and βn satisfy

αn = αn−1 + 2, βn = βn−1 − αn−1.

By solving these equations evaluate [J+, J
n
−]. Show that J+J

2j+1
− Ψj = 0. Hence show

that J2j+1
− Ψj is contained in a proper sub-representation of Vj .
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A1/18 Transport Processes

(i) The diffusion equation for a spherically-symmetric concentration field C(r, t) is

Ct =
D

r2
(
r2Cr

)
r
, (1)

where r is the radial coordinate. Find and sketch the similarity solution to (1) which
satisfies C → 0 as r → ∞ and

∫∞
0

4πr2C(r, t)dr = M = constant, assuming it to be of
the form

C =
M

(Dt)a
F (η), η =

r

(Dt)b
,

where a and b are numbers to be found.

(ii) A two-dimensional piece of heat-conducting material occupies the region a 6 r 6
b, −π/2 6 θ 6 π/2 (in plane polar coordinates). The surfaces r = a, θ = −π/2, θ = π/2
are maintained at a constant temperature T1; at the surface r = b the boundary condition
on temperature T (r, θ) is

Tr + βT = 0,

where β > 0 is a constant. Show that the temperature, which satisfies the steady heat
conduction equation

Trr +
1
r
Tr +

1
r2
Tθθ = 0,

is given by a Fourier series of the form

T

T1
= K +

∞∑
n=0

cos (αnθ)
[
An

( r
a

)2n+1

+Bn

(a
r

)2n+1
]
,

where K, αn, An, Bn are to be found.

In the limits a/b� 1 and βb� 1, show that∫ π/2

−π/2
Trrdθ ≈ −πβbT1,

given that
∞∑
n=0

1
(2n+ 1)2

=
π2

8
.

Explain how, in these limits, you could have obtained this result much more simply.
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A3/16 Transport Processes

(i) Incompressible fluid of kinematic viscosity ν occupies a parallel-sided channel
0 6 y 6 h0, −∞ < x < ∞. The wall y = 0 is moving parallel to itself, in the x-
direction, with velocity Re

{
Ueiωt

}
, where t is time and U, ω are real constants. The fluid

velocity u(y, t) satisfies the equation

ut = νuyy;

write down the boundary conditions satisfied by u.

Assuming that
u = Re

{
a sinh[b(1− η)]eiωt

}
,

where η = y/h0, find the complex constants a, b. Calculate the velocity (in real, not
complex, form) in the limit h0(ω/ν)1/2 → 0.

(ii) Incompressible fluid of viscosity µ fills the narrow gap between the rigid plane
y = 0, which moves parallel to itself in the x-direction with constant speed U , and the
rigid wavy wall y = h(x), which is at rest. The length-scale, L, over which h varies is
much larger than a typical value, h0, of h.

Assume that inertia is negligible, and therefore that the governing equations for
the velocity field (u, υ) and the pressure p are

ux + υy = 0, px = µ (uxx + uyy) , py = µ (υxx + υyy) .

Use scaling arguments to show that these equations reduce approximately to

px = µuyy, py = 0.

Hence calculate the velocity u(x, y), the flow rate

Q =
∫ h

0

udy,

and the viscous shear stress exerted by the fluid on the plane wall,

τ = −µuy|y=0

in terms of px, h, U and µ.

Now assume that h = h0(1 + ε sin kx), where ε � 1 and kh0 � 1, and that p is
periodic in x with wavelength 2π/k. Show that

Q =
h0U

2

(
1− 3

2
ε2 +O

(
ε4
))

and calculate τ correct to O
(
ε2
)
. Does increasing the amplitude ε of the corrugation cause

an increase or a decrease in the force required to move the plane y = 0 at the chosen speed
U?
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A4/19 Transport Processes

Fluid flows in the x-direction past the infinite plane y = 0 with uniform but time-
dependent velocity U(t) = U0G (t/t0), where G is a positive function with timescale t0.
A long region of the plane, 0 < x < L, is heated and has temperature T0 (1 + γ (x/L)n),
where T0, γ, n are constants [γ = O(1)]; the remainder of the plane is insulating (Ty = 0).
The fluid temperature far from the heated region is T0. A thermal boundary layer is formed
over the heated region. The full advection–diffusion equation for temperature T (x, y, t) is

Tt + U(t)Tx = D (Tyy + Txx) , (1)

where D is the thermal diffusivity. By considering the steady case (G ≡ 1), derive a
scale for the thickness of the boundary layer, and explain why the term Txx in (1) can be
neglected if U0L/D � 1.

Neglecting Txx, use the change of variables

τ =
t

t0
, ξ =

x

L
, η = y

[
U(t)
Dx

]1/2
,

T − T0

T0
= γ

( x
L

)n
f(ξ, η, τ)

to transform the governing equation to

fηη +
1
2
ηfη − nf = ξfξ +

Lξ

t0U0

(
Gτ
2G2

ηfη +
1
G
fτ

)
. (2)

Write down the boundary conditions to be satisfied by f in the region 0 < ξ < 1.

In the case in which U is slowly-varying, so ε = L
t0U0

� 1, consider a solution for f
in the form

f = f0(η) + εf1(ξ, η, τ) +O
(
ε2
)
.

Explain why f0 is independent of ξ and τ .

Henceforth take n = 1
2 . Calculate f0(η) and show that

f1 =
Gτξ

G2
g(η) ,

where g satisfies the ordinary differential equation

g′′ +
1
2
ηg′ − 3

2
g =

−η
4

∫ ∞

η

e−u
2/4du.

State the boundary conditions on g(η).

The heat transfer per unit length of the heated region is −DTy|y=0. Use the above
results to show that the total rate of heat transfer is

T0 [DLU(t)]1/2
γ

2

{√
π − εGτ

G2
g′(0) +O

(
ε2
)}

.
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A1/19 Theoretical Geophysics

(i) From the surface of a flat Earth, an explosive source emits P-waves downward
into a horizontal homogeneous elastic layer of uniform thickness h and P-wave speed α1

overlying a lower layer of infinite depth and P-wave speed α2, where α2 > α1. A line of
seismometers on the surface records the travel time t as a function of distance x from the
source for the various arrivals along different ray paths.

Sketch the ray paths associated with the direct, reflected and head waves arriving
at a given position. Calculate the travel times t(x) of the direct and reflected waves, and
sketch the corresponding travel-time curves. Hence explain how to estimate α1 and h from
the recorded arrival times. Explain briefly why head waves are only observed beyond a
minimum distance xc from the source and why they have a travel-time curve of the form
t = tc + (x− xc)/α2 for x > xc.
[You need not calculate xc or tc.]

(ii) A plane SH-wave in a homogeneous elastic solid has displacement proportional to
exp[i(kx+mz−ωt)]. Express the slowness vector s in terms of the wavevector k = (k, 0,m)
and ω. Deduce an equation for m in terms of k, ω and the S-wave speed β.

A homogeneous elastic layer of uniform thickness h, S-wave speed β1 and shear
modulus µ1 has a stress-free surface z = 0 and overlies a lower layer of infinite depth,
S-wave speed β2 (> β1) and shear modulus µ2. Find the vertical structure of Love waves
with displacement proportional to exp[i(kx − ωt)], and show that the horizontal phase
speed c obeys

tan

[(
1
β2

1

− 1
c2

)1/2

ωh

]
=
µ2

µ1

(
1/c2 − 1/β2

2

1/β2
1 − 1/c2

)1/2

.

By sketching both sides of the equation as a function of c in β1 6 c 6 β2 show that
at least one mode exists for every value of ω.
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A2/16 Theoretical Geophysics

(i) In a reference frame rotating with constant angular velocity Ω the equations of
motion for an inviscid, incompressible fluid of density ρ in a gravitational field g = −∇Φ
are

ρ
Du
Dt

+ 2ρΩ ∧ u = −∇p+ ρg , ∇ · u = 0 .

Define the Rossby number and explain what is meant by geostrophic flow.

Derive the vorticity equation

Dω

Dt
= (ω + 2Ω) · ∇u +

∇ρ ∧∇p
ρ2

.

[Recall that u · ∇u = ∇( 1
2u

2)− u ∧ (∇∧ u).]

Give a physical interpretation for the term (ω + 2Ω) · ∇u.

(ii) Consider the rotating fluid of part (i), but now let ρ be constant and absorb the
effects of gravity into a modified pressure P = p− ρg · x. State the linearized equations of
motion and the linearized vorticity equation for small-amplitude motions (inertial waves).

Use the linearized equations of motion to show that

∇2P = 2ρΩ · ω .

Calculate the time derivative of the curl of the linearized vorticity equation. Hence
show that

∂2

∂t2
(∇2u) = −(2Ω · ∇)2u .

Deduce the dispersion relation for waves proportional to exp[i(k · x − nt)]. Show
that |n| ≤ 2Ω. Show further that if n = 2Ω then P = 0.
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A4/20 Theoretical Geophysics

Write down expressions for the phase speed c and group velocity cg in one dimension
for general waves of the form A exp[i(kx − ωt)] with dispersion relation ω(k). Briefly
indicate the physical significance of c and cg for a wavetrain of finite size.

The dispersion relation for internal gravity waves with wavenumber k = (k, 0,m)
in an incompressible stratified fluid with constant buoyancy frequency N is

ω =
±Nk

(k2 +m2)1/2
.

Calculate the group velocity cg and show that it is perpendicular to k. Show further
that the horizontal components of k/ω and cg have the same sign and that the vertical
components have the opposite sign.

The vertical velocity w of small-amplitude internal gravity waves is governed by

∂2

∂t2
(
∇2w

)
+N2∇2

hw = 0 , (∗)

where ∇2
h is the horizontal part of the Laplacian and N is constant.

Find separable solutions to (∗) of the form w(x, z, t) = X(x−Ut)Z(z) corresponding
to waves with constant horizontal phase speed U > 0. Comment on the nature of these
solutions for 0 < k < N/U and for k > N/U .

A semi-infinite stratified fluid occupies the region z > h(x, t) above a moving lower
boundary z = h(x, t). Construct the solution to (∗) for the case h = ε sin[k(x−Ut)], where
ε and k are constants and ε� 1.

Sketch the orientation of the wavecrests, the propagation direction and the group
velocity for the case 0 < k < N/U .
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A2/17 Mathematical Methods

(i) A certain physical quantity q(x) can be represented by the series
∞∑
n=0

cnx
n in

0 6 x < x0, but the series diverges for x > x0. Describe the Euler transformation to a
new series which may enable q(x) to be computed for x > x0. Give the first four terms of
the new series.

Describe briefly the disadvantages of the method.

(ii) The series
∞∑
1
cr has partial sums Sn =

n∑
1
cr. Describe Shanks’ method to

approximate Sn by
Sn = A+BCn , (∗)

giving expressions for A,B and C.

Denote by BN and CN the values of B and C respectively derived from these
expressions using SN−1, SN and SN+1 for some fixed N . Now let A(n) be the value of A
obtained from (∗) with B = BN , C = CN . Show that, if |CN | < 1,

∞∑
1

cr = lim
n→∞

A(n) .

If, in fact, the partial sums satisfy

Sn = a+ αcn + βdn ,

with 1 > |c| > |d|, show that

A(n) = A+ γdn + o(dn) ,

where γ is to be found.
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A3/17 Mathematical Methods

(i) The function y(x) satisfies the differential equation

y′′ + by′ + cy = 0 , 0 < x < 1 ,

where b and c are constants, with boundary conditions y(0) = 0, y′(0) = 1. By integrating
this equation or otherwise, show that y must also satisfy the integral equation

y(x) = g(x) +
∫ 1

0

K(x, t)y(t)dt ,

and find the functions g(x) and K(x, t).

(ii) Solve the integral equation

ϕ(x) = 1 + λ2

∫ x

0

(x− t)ϕ(t)dt , x > 0 , λ real ,

by finding an ordinary differential equation satisfied by ϕ(x) together with boundary
conditions.

Now solve the integral equation by the method of successive approximations and
show that the two solutions are the same.

A4/21 Mathematical Methods

The equation
Ax = λx ,

where A is a real square matrix and x a column vector, has a simple eigenvalue λ = µ with
corresponding right-eigenvector x = X. Show how to find expressions for the perturbed
eigenvalue and right-eigenvector solutions of

Ax + εb(x) = λx , |ε| � 1 ,

to first order in ε, where b is a vector function of x. State clearly any assumptions you
make.

If A is (n×n) and has a complete set of right-eigenvectors X(j), j = 1, 2, ...n, which
span Rn and correspond to separate eigenvalues µ(j), j = 1, 2, ...n, find an expression for
the first-order perturbation to X(1) in terms of the

{
X(j)

}
and the corresponding left-

eigenvectors of A.

Find the normalised eigenfunctions and eigenvalues of the equation
d2y

dx2
+ λy = 0, 0 < x < 1 ,

with y(0) = y(1) = 0. Let these be the zeroth order approximations to the eigenfunctions
of

d2y

dx2
+ λy + εb(y) = 0, 0 < x < 1 ,

with y(0) = y(1) = 0 and where b is a function of y. Show that the first-order perturbations
of the eigenvalues are given by

λ(1)
n = −ε

√
2
∫ 1

0

sin(nπx) b
(√

2 sinnπx
)
dx .
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A2/18 Nonlinear Waves

(i) Establish two conservation laws for the MKdV equation

∂u

∂t
+ u2 ∂u

∂x
+
∂3u

∂x3
= 0.

State sufficient boundary conditions that u should satisfy for the conservation laws to be
valid.

(ii) The equation
∂ρ

∂t
+

∂

∂x

(
ρV

)
= 0

models traffic flow on a single-lane road, where ρ(x, t) represents the density of cars, and
V is a given function of ρ. By considering the rate of change of the integral∫ b

a

ρ dx,

show that V represents the velocity of the cars.

Suppose now that V = 1 − ρ (in suitable units), and that 0 6 ρ 6 1 everywhere.
Assume that a queue is building up at a traffic light at x = 1, so that, when the light
turns green at t = 0,

ρ(x, 0) =
{

0 for x < 0 and x > 1
x for 0 6 x < 1.

For this problem, find and sketch the characteristics in the (x, t) plane, for t > 0, paying
particular attention to those emerging from the point (1, 0). Show that a shock forms at
t = 1

2 . Find the density of cars ρ(x, t) for 0 < t < 1
2 , and all x.

A3/18 Nonlinear Waves

(i) The so-called breather solution of the sine-Gordon equation is

φ(x, t) = 4 tan−1

(
(1− λ2)

1
2

λ

sinλt
cosh(1− λ2)

1
2x

)
, 0 < λ < 1.

Describe qualitatively the behaviour of φ(x, t), for λ � 1, when |x| � ln(2/λ), when
|x| � 1, and when coshx ≈ 1

λ | sinλt|. Explain how this solution can be interpreted in
terms of motion of a kink and an antikink. Estimate the greatest separation of the kink
and antikink.

(ii) The field ψ(x, t) obeys the nonlinear wave equation

∂2ψ

∂t2
− ∂2ψ

∂x2
+
dU

dψ
= 0,

where the potential U has the form

U(ψ) =
1
2
(ψ − ψ3)2.

Show that ψ = 0 and ψ = 1 are stable constant solutions.

Find a steady wave solution ψ = f(x−vt) satisfying the boundary conditions ψ → 0
as x→ −∞, ψ → 1 as x→∞. What constraint is there on the velocity v?
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A1/1 B1/1 Markov Chains

(i) Let X = (Xn : 0 6 n 6 N) be an irreducible Markov chain on the finite state
space S with transition matrix P = (pij) and invariant distribution π. What does it mean
to say that X is reversible in equilibrium?

Show that X is reversible in equilibrium if and only if πipij = πjpji for all i, j ∈ S.

(ii) A finite connected graph G has vertex set V and edge set E, and has neither loops
nor multiple edges. A particle performs a random walk on V , moving at each step to a
randomly chosen neighbour of the current position, each such neighbour being picked with
equal probability, independently of all previous moves. Show that the unique invariant
distribution is given by πv = dv/(2|E|) where dv is the degree of vertex v.

A rook performs a random walk on a chessboard; at each step, it is equally likely
to make any of the moves which are legal for a rook. What is the mean recurrence time
of a corner square. (You should give a clear statement of any general theorem used.)

[A chessboard is an 8 × 8 square grid. A legal move is one of any length parallel to the
axes.]

A2/1 Markov Chains

(i) The fire alarm in Mill Lane is set off at random times. The probability of an alarm
during the time-interval (u, u+h) is λ(u)h+ o(h) where the ‘intensity function’ λ(u) may
vary with the time u. LetN(t) be the number of alarms by time t, and setN(0) = 0. Show,
subject to reasonable extra assumptions to be stated clearly, that pi(t) = P (N(t) = i)
satisfies

p′0(t) = −λ(t)p0(t), p′i(t) = λ(t){pi−1(t)− pi(t)}, i > 1.

Deduce that N(t) has the Poisson distribution with parameter Λ(t) =
∫ t
0
λ(u)du.

(ii) The fire alarm in Clarkson Road is different. The number M(t) of alarms by time
t is such that

P (M(t+ h) = m+ 1 |M(t) = m) = λmh+ o(h) ,

where λm = αm+β, m > 0, and α, β > 0. Show, subject to suitable extra conditions, that
pm(t) = P (M(t) = m) satisfies a set of differential-difference equations to be specified.
Deduce without solving these equations in their entirety that M(t) has mean β(eαt − 1)/α,
and find the variance of M(t).
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A3/1 B3/1 Markov Chains

(i) Explain what is meant by the transition semigroup {Pt} of a Markov chain X in
continuous time. If the state space is finite, show under assumptions to be stated clearly,
that P ′t = GPt for some matrix G. Show that a distribution π satisfies πG = 0 if and only
if πPt = π for all t > 0, and explain the importance of such π.

(ii) Let X be a continuous-time Markov chain on the state space S = {1, 2} with
generator

G =
(
−β β
γ −γ

)
, where β, γ > 0.

Show that the transition semigroup Pt = exp(tG) is given by

(β + γ)Pt =
(
γ + βh(t) β(1− h(t))
γ(1− h(t)) β + γh(t)

)
,

where h(t) = e−t(β+γ).

For 0 < α < 1, let

H(α) =
(

α 1− α
1− α α

)
.

For a continuous-time chain X, let M be a matrix with (i, j) entry
P (X(1) = j | X(0) = i), for i, j ∈ S. Show that there is a chain X with M = H(α) if and
only if α > 1

2 .

A4/1 Markov Chains

Write an essay on the convergence to equilibrium of a discrete-time Markov chain
on a countable state-space. You should include a discussion of the existence of invariant
distributions, and of the limit theorem in the non-null recurrent case.
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A1/2 B1/2 Principles of Dynamics

(i) Show that Newton’s equations in Cartesian coordinates, for a system of N particles
at positions xi(t), i = 1, 2 . . . N , in a potential V (x, t), imply Lagrange’s equations in a
generalised coordinate system

qj = qj(xi, t) , j = 1, 2 . . . 3N ;

that is,
d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
, j = 1, 2 . . . 3N,

where L = T − V , T (q, q̇, t) being the total kinetic energy and V (q, t) the total potential
energy.

(ii) Consider a light rod of length L, free to rotate in a vertical plane (the xz plane),
but with one end P forced to move in the x-direction. The other end of the rod is attached
to a heavy mass M upon which gravity acts in the negative z direction.

(a) Write down the Lagrangian for the system.

(b) Show that, if P is stationary, the rod has two equilibrium positions, one stable and
the other unstable.

(c) The end at P is now forced to move with constant acceleration, ẍ = A. Show that,
once more, there is one stable equilibrium value of the angle the rod makes with
the vertical, and find it.

A2/2 B2/1 Principles of Dynamics

(i) An axially symmetric top rotates freely about a fixed point O on its axis. The
principal moments of inertia are A, A, C and the centre of gravity G is a distance h from
O.

Define the three Euler angles θ, φ and ψ, specifying the orientation of the top.
Use Lagrange’s equations to show that there are three conserved quantities in the motion.
Interpret them physically.

(ii) Initially the top is spinning with angular speed n about OG, with OG vertical,
before it is slightly disturbed.

Show that, in the subsequent motion, θ stays close to zero if C2n2 > 4mghA, but
if this condition fails then θ attains a maximum value given approximately by

cos θ ≈ C2n2

2mghA
− 1.

Why is this only an approximation?
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A3/2 Principles of Dynamics

(i) (a) Write down Hamilton’s equations for a dynamical system. Under what
condition is the Hamiltonian a constant of the motion? What is the condition for one
of the momenta to be a constant of the motion?

(b) Explain the notion of an adiabatic invariant. Give an expression, in terms of
Hamiltonian variables, for one such invariant.

(ii) A mass m is attached to one end of a straight spring with potential energy 1
2kr

2,
where k is a constant and r is the length. The other end is fixed at a point O. Neglecting
gravity, consider a general motion of the mass in a plane containing O. Show that the
Hamiltonian is given by

H =
1
2
p2
θ

mr2
+

1
2
p2
r

m
+

1
2
kr2, (1)

where θ is the angle made by the spring relative to a fixed direction, and pθ, pr are the
generalised momenta. Show that pθ and the energy E are constants of the motion, using
Hamilton’s equations.

If the mass moves in a non-circular orbit, and the spring constant k is slowly
varied, the orbit gradually changes. Write down the appropriate adiabatic invariant
J (E, pθ, k,m). Show that J is proportional to

√
mk (r+ − r−)2 ,

where

r2± =
E

k
±

√(
E

k

)2

−
p2
θ

mk
.

Consider an orbit for which pθ is zero. Show that, as k is slowly varied, the energy
E ∝ kα, for a constant α which should be found.

[You may assume without proof that

∫ r+

r−

dr

√(
1− r2

r2+

)(
1−

r2−
r2

)
=

π

4r+
(r+ − r−)2 .

]
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A4/2 Principles of Dynamics

(i) Consider a particle of charge q and mass m, moving in a stationary magnetic field
B. Show that Lagrange’s equations applied to the Lagrangian

L =
1
2
mṙ2 + qṙ ·A(r),

where A is the vector potential such that B = curl A, lead to the correct Lorentz force
law. Compute the canonical momentum p, and show that the Hamiltonian is H = 1

2mṙ2.

(ii) Expressing the velocity components ṙi in terms of the canonical momenta and
co-ordinates for the above system, derive the following formulae for Poisson brackets:

(a) {FG,H} = F {G,H}+ {F,H}G, for any functions F , G, H;

(b) {mṙi,mṙj} = qεijkBk;

(c) {mṙi, rj} = −δij ;

(d) {mṙi, f (rj)} = − ∂
∂ri
f(rj).

Now consider a particle moving in the field of a magnetic monopole,

Bi = g
ri
r3
.

Show that {H,J} = 0, where J = mr ∧ ṙ − gqr̂. Explain why this means that J is
conserved.

Show that, if g = 0, conservation of J implies that the particle moves in a plane
perpendicular to J. What type of surface does the particle move on if g 6= 0?
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A1/3 Functional Analysis

(i) Define the adjoint of a bounded, linear map u : H → H on the Hilbert space H.
Find the adjoint of the map

u : H → H ; x 7→ φ(x)a

where a, b ∈ H and φ ∈ H∗ is the linear map x 7→ 〈b, x〉.

Now let J be an incomplete inner product space and u : J → J a bounded, linear
map. Is it always true that there is an adjoint u∗ : J → J?

(ii) Let H be the space of analytic functions f : D → C on the unit disc D for which∫ ∫
D
|f(z)|2 dx dy < ∞ (z = x+ iy).

You may assume that this is a Hilbert space for the inner product:

〈f, g〉 =
∫ ∫

D
f(z)g(z) dx dy .

Show that the functions uk : z 7→ αkz
k (k = 0, 1, 2, . . .) form an orthonormal sequence in

H when the constants αk are chosen appropriately.

Prove carefully that every function f ∈ H can be written as the sum of a convergent
series

∑∞
k=0 fkuk in H with fk ∈ C.

For each smooth curve γ in the disc D starting from 0, prove that

φ : H → C ; f 7→
∫
γ

f(z) dz

is a continuous, linear map. Show that the norm of φ satisfies

||φ||2 =
1
π

log
(

1
1− |w|2

)
,

where w is the endpoint of γ.

Part II



33

A2/3 B2/2 Functional Analysis

(i) State the Stone-Weierstrass theorem for complex-valued functions. Use it to show
that the trigonometric polynomials are dense in the space C(T) of continuous, complex-
valued functions on the unit circle T with the uniform norm.

Show further that, for f ∈ C(T), the nth Fourier coefficient

f̂(n) =
1
2π

∫ 2π

0

f(eiθ) e−inθ dθ

tends to 0 as |n| tends to infinity.

(ii) (a) Let X be a normed space with the property that the series
∑∞
n=1 xn converges

whenever (xn) is a sequence in X with
∑∞
n=1 ||xn|| convergent. Show that X is a Banach

space.

(b) Let K be a compact metric space and L a closed subset of K. Let R : C(K) →
C(L) be the map sending f ∈ C(K) to its restriction R(f) = f |L to L. Show that R is a
bounded, linear map and that its image is a subalgebra of C(L) separating the points of
L.

Show further that, for each function g in the image of R, there is a function
f ∈ C(K) with R(f) = g and ||f ||∞ = ||g||∞. Deduce that every continuous, complex-
valued function on L can be extended to a continuous function on all of K.
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A3/3 B3/2 Functional Analysis

(i) Define the notion of a measurable function between measurable spaces. Show that
a continuous function R2 → R is measurable with respect to the Borel σ-fields on R2 and
R.

By using this, or otherwise, show that, when f, g : X → R are measurable with
respect to some σ-field F on X and the Borel σ-field on R, then f + g is also measurable.

(ii) State the Monotone Convergence Theorem for [0,∞]-valued functions. Prove the
Dominated Convergence Theorem.

[You may assume the Monotone Convergence Theorem but any other results about inte-
gration that you use will need to be stated carefully and proved.]

Let X be the real Banach space of continuous real-valued functions on [0, 1] with
the uniform norm. Fix u ∈ X and define

T : X → R ; f 7→
∫ 1

0

f(t)u(t) dt .

Show that T is a bounded, linear map with norm

||T || =
∫ 1

0

|u(t)| dt .

Is it true, for every choice of u, that there is function f ∈ X with ||f || = 1 and
||T (f)|| = ||T ||?

A4/3 Functional Analysis

Write an account of the classical sequence spaces: `p (1 6 p 6 ∞) and c0. You
should define them, prove that they are Banach spaces, and discuss their properties,
including their dual spaces. Show that `∞ is inseparable but that c0 and `p for 1 6 p <∞
are separable.

Prove that, if T : X → Y is an isomorphism between two Banach spaces, then

T ∗ : Y ∗ → X∗ ; f 7→ f ◦ T

is an isomorphism between their duals.

Hence, or otherwise, show that no two of the spaces c0, `1, `2, `∞ are isomorphic.

Part II



35

A1/4 B1/3 Groups, Rings and Fields

(i) Define the notion of a Sylow p-subgroup of a finite group G, and state a theorem
concerning the number of them and the relation between them.

(ii) Show that any group of order 30 has a non-trivial normal subgroup. Is it true that
every group of order 30 is commutative?

A2/4 B2/3 Groups, Rings and Fields

(i) Show that the ring k = F2[X]/(X2 +X + 1) is a field. How many elements does
it have?

(ii) Let k be as in (i). By considering what happens to a chosen basis of the vector
space k2, or otherwise, find the order of the groups GL2(k) and SL2(k).

By considering the set of lines in k2, or otherwise, show that SL2(k) is a subgroup of the
symmetric group S5, and identify this subgroup.

A3/4 Groups, Rings and Fields

(i) Let G be the cyclic subgroup of GL2(C) generated by the matrix
(

1 2
0 −1

)
,

acting on the polynomial ring C[X,Y ]. Determine the ring of invariants C[X,Y ]G.

(ii) Determine C[X,Y ]G when G is the cyclic group generated by
(

0 −1
1 −1

)
.

[Hint: consider the eigenvectors.]

A4/4 Groups, Rings and Fields

Show that the ring Z[ω] is Euclidean, where ω = exp(2πi/3).

Show that a prime number p 6= 3 is reducible in Z[ω] if and only if p ≡ 1(mod 3).

Which prime numbers p can be written in the form p = a2 + ab+ b2 with a, b ∈ Z
(and why)?
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A1/5 B1/4 Electromagnetism

(i) Write down the two Maxwell equations that govern steady magnetic fields. Show
that the boundary conditions satisfied by the magnetic field on either side of a current
sheet, J, with unit normal to the sheet n, are

n ∧B2 − n ∧B1 = µ0J.

State without proof the force per unit area on J.

(ii) Conducting gas occupies the infinite slab 0 6 x 6 a. It carries a steady current
j = (0, 0, j) and a magnetic field B = (0, B, 0) where j,B depend only on x. The pressure
is p(x). The equation of hydrostatic equilibrium is ∇p = j∧B. Write down the equations
to be solved in this case. Show that p+ (1/2µ0)B2 is independent of x. Using the suffixes
1,2 to denote values at x = 0, a, respectively, verify that your results are in agreement
with those of Part (i) in the case of a→ 0.

Suppose that

j(x) =
πj0
2a

sin
(
πx

a

)
, B1 = 0, p2 = 0.

Find B(x) everywhere in the slab.

A2/5 Electromagnetism

(i) Write down the expression for the electrostatic potential φ(r) due to a distribution
of charge ρ(r) contained in a volume V . Perform the multipole expansion of φ(r) taken
only as far as the dipole term.

(ii) If the volume V is the sphere |r| 6 a and the charge distribution is given by

ρ(r) =
{
r2 cos θ r 6 a
0 r > a ,

where r, θ are spherical polar coordinates, calculate the charge and dipole moment. Hence
deduce φ as far as the dipole term.

Obtain an exact solution for r > a by solving the boundary value problem using
trial solutions of the forms

φ =
A cos θ
r2

for r > a,

and
φ = Br cos θ + Cr4 cos θ for r < a.

Show that the solution obtained from the multipole expansion is in fact exact for r > a.

[You may use without proof the result

∇2(rk cos θ) = (k + 2)(k − 1)rk−2 cos θ, k ∈ N.]
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A3/5 B3/3 Electromagnetism

(i) Develop the theory of electromagnetic waves starting from Maxwell equations in
vacuum. You should relate the wave-speed c to ε0 and µ0 and establish the existence of
plane, plane-polarized waves in which E takes the form

E = (E0 cos(kz − ωt), 0, 0) .

You should give the form of the magnetic field B in this case.

(ii) Starting from Maxwell’s equation, establish Poynting’s theorem.

−j ·E =
∂W

∂t
+∇ · S ,

where W = ε0
2 E2 + 1

2µ0
B2 and S = 1

µ0
E ∧B. Give physical interpretations of W , S and

the theorem.

Compute the averages over space and time of W and S for the plane wave described
in (i) and relate them. Comment on the result.

A4/5 Electromagnetism

Write down the form of Ohm’s Law that applies to a conductor if at a point r it is
moving with velocity v(r).

Use two of Maxwell’s equations to prove that∫
C

(E + v ∧B) · dr = − d

dt

∫
S

B · dS ,

where C(t) is a moving closed loop, v is the velocity at the point r on C, and S is a surface
spanning C. The time derivative on the right hand side accounts for changes in both C
and B. Explain briefly the physical importance of this result.

Find and sketch the magnetic field B described in the vector potential

A(r, θ, z) = (0, 1
2 brz, 0)

in cylindrical polar coordinates (r, θ, z) , where b > 0 is constant.

A conducting circular loop of radius a and resistance R lies in the plane z = h(t)
with its centre on the z-axis.

Find the magnitude and direction of the current induced in the loop as h(t) changes
with time, neglecting self-inductance.

At time t = 0 the loop is at rest at z = 0. For time t > 0 the loop moves with
constant velocity dh/dt = v > 0. Ignoring the inertia of the loop, use energy considerations
to find the force F (t) necessary to maintain this motion.

[In cylindrical polar coordinates

curl A =
(

1
r

∂Az
∂θ

− ∂Aθ
∂z

,
∂Ar
∂z

− ∂Az
∂r

,
1
r

∂

∂r
(rAθ)−

1
r

∂Ar
∂θ

)
.

]
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A1/6 Dynamics of Differential Equations

(i) Given a differential equation ẋ = f(x) for x ∈ Rn, explain what it means to say
that the solution is given by a flow φ : R × Rn → Rn. Define the orbit, o(x), through a
point x and the ω-limit set, ω(x), of x. Define also a homoclinic orbit to a fixed point x0.
Sketch a flow in R2 with a homoclinic orbit, and identify (without detailed justification)
the ω-limit sets ω(x) for each point x in your diagram.

(ii) Consider the differential equations

ẋ = zy, ẏ = −zx, ż = −z2 .

Transform the equations to polar coordinates (r, θ) in the (x, y) plane. Solve the equation
for z to find z(t), and hence find θ(t). Hence, or otherwise, determine (with justification)
the ω-limit set for all points (x0, y0, z0) ∈ R3.

A2/6 B2/4 Dynamics of Differential Equations

(i) Define a Liapounov function for a flow φ on Rn. Explain what it means for a
fixed point of the flow to be Liapounov stable. State and prove Liapounov’s first stability
theorem.

(ii) Consider the damped pendulum

θ̈ + kθ̇ + sin θ = 0,

where k > 0. Show that there are just two fixed points (considering the phase space as
an infinite cylinder), and that one of these is the origin and is Liapounov stable. Show
further that the origin is asymptotically stable, and that the the ω-limit set of each point
in the phase space is one or other of the two fixed points, justifying your answer carefully.

[You should state carefully any theorems you use in your answer, but you need not prove
them.]
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A3/6 B3/4 Dynamics of Differential Equations

(i) Define a hyperbolic fixed point x0 of a flow determined by a differential equation
ẋ = f(x) where x ∈ Rn and f is C1 (i.e. differentiable). State the Hartman-Grobman
Theorem for flow near a hyperbolic fixed point. For nonlinear flows in R2 with a hyperbolic
fixed point x0, does the theorem necessarily allow us to distinguish, on the basis of the
linearized flow near x0 between (a) a stable focus and a stable node; and (b) a saddle and
a stable node? Justify your answers briefly.

(ii) Show that the system:

ẋ = −(µ+ 1) + (µ− 3)x− y + 6x2 + 12xy + 5y2 − 2x3 − 6x2y − 5xy2,

ẏ = 2− 2x+ (µ− 5)y + 4xy + 6y2 − 2x2y − 6xy2 − 5y3

has a fixed point (x0, 0) on the x-axis. Show that there is a bifurcation at µ = 0 and
determine the stability of the fixed point for µ > 0 and for µ < 0.

Make a linear change of variables of the form u = x − x0 + αy, v = x − x0 + βy,
where α and β are constants to be determined, to bring the system into the form:

u̇ = v + u[µ− (u2 + v2)]

v̇ = −u+ v[µ− (u2 + v2)]

and hence determine whether the periodic orbit produced in the bifurcation is stable or
unstable, and whether it exists in µ < 0 or µ > 0.

A4/6 Dynamics of Differential Equations

Write a short essay about periodic orbits in flows in two dimensions. Your essay
should include criteria for the existence and non-existence of periodic orbits, and should
mention (with sketches) at least two bifurcations that create or destroy periodic orbits
in flows as a parameter is altered (though a detailed analysis of any bifurcation is not
required).

Part II



40

A1/7 B1/12 Logic, Computation and Set Theory

(i) What is the Halting Problem? What is an unsolvable problem?

(ii) Prove that the Halting Problem is unsolvable. Is it decidable whether or not a
machine halts with input zero?

B2/11 Logic, Computation and Set Theory

Let U be an arbitrary set, and P(U) the power set of U . For X a subset of P(U),
the dual X∨ of X is the set {y ⊆ U : (∀x ∈ X)(y ∩ x 6= ∅)}.

(i) Show that X ⊆ Y → Y ∨ ⊆ X∨.

Show that for {Xi : i ∈ I} a family of subsets of P(U)(⋃
{Xi : i ∈ I}

)∨
=
⋂
{X∨

i : i ∈ I}.

(ii) Consider S = {X ⊆ P(U) : X ⊆ X∨}. Show that S,⊆ is a chain-complete poset.

State Zorn’s lemma and use it to deduce that there exists X with X = X∨.

Show that if X = X∨ then the following hold:

X is closed under superset; for all U ′ ⊆ U , X contains either U ′ or U \ U ′.

A3/8 B3/11 Logic, Computation and Set Theory

(i) Write down a set of axioms for the theory of dense linear order with a bottom
element but no top element.

(ii) Prove that this theory has, up to isomorphism, precisely one countable model.

A4/8 B4/10 Logic, Computation and Set Theory

What is a wellfounded relation, and how does wellfoundedness underpin wellfounded
induction?

A formula φ(x, y) with two free variables defines an ∈-automorphism if for all x
there is a unique y, the function f , defined by y = f(x) if and only if φ(x, y), is a
permutation of the universe, and we have (∀xy)(x ∈ y ↔ f(x) ∈ f(y)).

Use wellfounded induction over ∈ to prove that all formulæ defining ∈-automorphisms
are equivalent to x = y.
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A1/12 B1/15 Principles of Statistics

(i) What are the main approaches by which prior distributions are specified in
Bayesian inference?

Define the risk function of a decision rule d. Given a prior distribution, define what
is meant by a Bayes decision rule and explain how this is obtained from the posterior
distribution.

(ii) Dashing late into King’s Cross, I discover that Harry must have already boarded
the Hogwarts Express. I must therefore make my own way onto platform nine and three-
quarters. Unusually, there are two guards on duty, and I will ask one of them for directions.
It is safe to assume that one guard is a Wizard, who will certainly be able to direct me,
and the other a Muggle, who will certainly not. But which is which? Before choosing one
of them to ask for directions to platform nine and three-quarters, I have just enough time
to ask one of them “Are you a Wizard?”, and on the basis of their answer I must make
my choice of which guard to ask for directions. I know that a Wizard will answer this
question truthfully, but that a Muggle will, with probability 1

3 , answer it untruthfully.

Failure to catch the Hogwarts Express results in a loss which I measure as 1000
galleons, there being no loss associated with catching up with Harry on the train.

Write down an exhaustive set of non-randomised decision rules for my problem and,
by drawing the associated risk set, determine my minimax decision rule.

My prior probability is 2
3 that the guard I ask “Are you a Wizard?” is indeed a

Wizard. What is my Bayes decision rule?
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A2/11 B2/16 Principles of Statistics

(i) Let X1, . . . , Xn be independent, identically-distributed N(µ, µ2) random variables,
µ > 0.

Find a minimal sufficient statistic for µ.

Let T1 = n−1
∑n
i=1Xi and T2 =

√
n−1

∑n
i=1X

2
i . Write down the distribution of

Xi/µ, and hence show that Z = T1/T2 is ancillary. Explain briefly why the Conditionality
Principle would lead to inference about µ being drawn from the conditional distribution
of T2 given Z.

What is the maximum likelihood estimator of µ?

(ii) Describe briefly the Bayesian approach to predictive inference.

Let Z1, . . . , Zn be independent, identically-distributed N(µ, σ2) random variables,
with µ, σ2 both unknown. Derive the maximum likelihood estimators µ̂, σ̂2 of µ, σ2 based
on Z1, . . . , Zn, and state, without proof, their joint distribution.

Suppose that it is required to construct a prediction interval
I1−α ≡ I1−α(Z1, . . . , Zn) for a future, independent, random variable Z0 with the same
N(µ, σ2) distribution, such that

P (Z0 ∈ I1−α) = 1− α,

with the probability over the joint distribution of Z0, Z1, . . . , Zn. Let

I1−α(Z1, . . . , Zn;σ2) =
[
Z̄n − zα/2σ

√
1 + 1/n, Z̄n + zα/2σ

√
1 + 1/n

]
,

where Z̄n = n−1
∑n
i=1 Zi, and Φ(zβ) = 1−β, with Φ the distribution function of N(0, 1).

Show that P (Z0 ∈ I1−α(Z1, . . . , Zn;σ2)) = 1− α.

By considering the distribution of (Z0 − Z̄n)/
(
σ̂
√

n+1
n−1

)
, or otherwise, show that

P (Z0 ∈ I1−α(Z1, . . . , Zn; σ̂2)) < 1− α,

and show how to construct an interval I1−γ(Z1, . . . , Zn; σ̂2) with

P (Z0 ∈ I1−γ(Z1, . . . , Zn; σ̂2)) = 1− α.

[Hint: if Y has the t-distribution with m degrees of freedom and t
(m)
β is defined by

P (Y < t
(m)
β ) = 1− β then tβ > zβ for β < 1

2 .
]
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A3/12 B3/15 Principles of Statistics

(i) Explain what is meant by a uniformly most powerful unbiased test of a null
hypothesis against an alternative.

Let Y1, . . . , Yn be independent, identically distributed N(µ, σ2) random variables,
with σ2 known. Explain how to construct a uniformly most powerful unbiased size α test
of the null hypothesis that µ = 0 against the alternative that µ 6= 0.

(ii) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.

Let the distribution of Y1, . . . , Yn be as in (i) above, and suppose we wish to test,
as in (i), µ = 0 against the alternative µ 6= 0. Suppose we assume a N(0, τ2) prior for µ
under the alternative. Find the form of the Bayes factor B, and show that, for fixed n, B
→∞ as τ →∞.

A4/13 B4/15 Principles of Statistics

Write an account, with appropriate examples, of one of the following:

(a) Inference in multi-parameter exponential families;

(b) Asymptotic properties of maximum-likelihood estimators and their use in hypoth-
esis testing;

(c) Bootstrap inference.
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A1/11 B1/16 Stochastic Financial Models

(i) The price of the stock in the binomial model at time r, 1 6 r 6 n, is

Sr = S0

r∏
j=1

Yj , where Y1, Y2, . . . , Yn are independent, identically-distributed random

variables with P (Y1 = u) = p = 1 − P (Y1 = d) and the initial price S0 is a constant.
Denote the fixed interest rate on the bank account by ρ, where u > 1 + ρ > d > 0, and
let the discount factor α = 1/ (1 + ρ). Determine the unique value p = p for which the
sequence {αrSr, 0 6 r 6 n} is a martingale.

Explain briefly the significance of p for the pricing of contingent claims in the model.

(ii) Let Ta denote the first time that a standard Brownian motion reaches the level
a > 0. Prove that for t > 0,

P (Ta 6 t) = 2
[
1− Φ

(
a/
√
t
)]
,

where Φ is the standard normal distribution function.

Suppose that At and Bt represent the prices at time t of two different stocks with
initial prices 1 and 2, respectively; the prices evolve so that they may be represented
as At = eσ1Xt+µt and Bt = 2eσ2Yt+µt, respectively, where {Xt}t>0 and {Yt}t>0 are
independent standard Brownian motions and σ1, σ2 and µ are constants. Let T denote
the first time, if ever, that the prices of the two stocks are the same. Determine P (T 6 t),
for t > 0.
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A3/11 B3/16 Stochastic Financial Models

(i) Suppose that Z is a random variable having the normal distribution with EZ = β
and Var Z = τ2.

For positive constants a, c show that

E
(
aeZ − c

)
+

= ae(β+τ2/2)Φ
(

log(a/c) + β

τ
+ τ

)
− cΦ

(
log(a/c) + β

τ

)
,

where Φ is the standard normal distribution function.

In the context of the Black-Scholes model, derive the formula for the price at time
0 of a European call option on the stock at strike price c and maturity time t0 when the
interest rate is ρ and the volatility of the stock is σ.

(ii) Let p denote the price of the call option in the Black-Scholes model specified in
(i). Show that ∂p

∂ρ > 0 and sketch carefully the dependence of p on the volatility σ (when
the other parameters in the model are held fixed).

Now suppose that it is observed that the interest rate lies in the range 0 < ρ < ρ0

and when it changes it is linked to the volatility by the formula σ = ln (ρ0/ρ). Consider a
call option at strike price c = S0, where S0 is the stock price at time 0. There is a small
increase ∆ρ in the interest rate; will the price of the option increase or decrease (assuming
that the stock price is unaffected)? Justify your answer carefully.

[You may assume that the function φ (x) /Φ (x) is decreasing in x, −∞ < x < ∞, and
increases to +∞ as x → −∞, where Φ is the standard-normal distribution function and
φ = Φ′.]

A4/12 B4/16 Stochastic Financial Models

Write an essay on the mean-variance approach to portfolio selection in a one-period
model. Your essay should contrast the solution in the case when all the assets are risky
with that for the case when there is a riskless asset.

Part II



46

A2/13 B2/21 Foundations of Quantum Mechanics

(i) Hermitian operators x̂, p̂, satisfy [x̂, p̂] = i~. The eigenvectors |p〉, satisfy
p̂|p〉 = p|p〉 and 〈p′|p〉 = δ(p′ − p). By differentiating with respect to b verify that

e−ibx̂/~p̂ eibx̂/~ = p̂+ b

and hence show that
eibx̂/~|p〉 = |p+ b〉.

Show that
〈p|x̂|ψ〉 = i~

∂

∂p
〈p|ψ〉

and
〈p|p̂|ψ〉 = p 〈p|ψ〉 .

(ii) A quantum system has Hamiltonian H = H0 + H1, where H1 is a small
perturbation. The eigenvalues of H0 are εn. Give (without derivation) the formulae
for the first order and second order perturbations in the energy level of a non-degenerate
state. Suppose that the rth energy level of H0 has j degenerate states. Explain how to
determine the eigenvalues of H corresponding to these states to first order in H1.

In a particular quantum system an orthonormal basis of states is given by |n1, n2〉,
where ni are integers. The Hamiltonian is given by

H =
∑
n1,n2

(n2
1 + n2

2) |n1, n2〉〈n1, n2|+
∑

n1,n2,n′1,n′2

λ|n1−n′1|,|n2−n′2| |n1, n2〉〈n′1, n′2| ,

where λr,s = λs,r, λ0,0 = 0 and λr,s = 0 unless r and s are both even.

Obtain an expression for the ground state energy to second order in the pertur-
bation, λr,s. Find the energy eigenvalues of the first excited state to first order in the
perturbation. Determine a matrix (which depends on two independent parameters) whose
eigenvalues give the first order energy shift of the second excited state.
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A3/13 B3/21 Foundations of Quantum Mechanics

(i) Write the Hamiltonian for the harmonic oscillator,

H =
p2

2m
+

1
2
mω2x2,

in terms of creation and annihilation operators, defined by

a† =
(mω

2~

) 1
2
(
x− i

p

mω

)
, a =

(mω
2~

) 1
2
(
x+ i

p

mω

)
.

Obtain an expression for [a†, a] by using the usual commutation relation between p and
x. Deduce the quantized energy levels for this system.

(ii) Define the number operator, N , in terms of creation and annihilation operators,
a† and a. The normalized eigenvector of N with eigenvalue n is |n〉. Show that n ≥ 0.

Determine a|n〉 and a†|n〉 in the basis defined by {|n〉}.

Show that

a†mam|n〉 =


n!

(n−m)! |n〉, m ≤ n ,

0 , m > n .

Verify the relation

|0〉〈0| =
∑
m=0

1
m!

(−1)ma†mam ,

by considering the action of both sides of the equation on an arbitrary basis vector.
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A4/15 B4/22 Foundations of Quantum Mechanics

(i) The two states of a spin- 1
2 particle corresponding to spin pointing along the z axis

are denoted by |↑〉 and |↓〉. Explain why the states

|↑, θ〉 = cos
θ

2
|↑〉+ sin

θ

2
|↓〉, |↓, θ〉 = − sin

θ

2
|↑〉+ cos

θ

2
|↓〉

correspond to the spins being aligned along a direction at an angle θ to the z direction.

The spin-0 state of two spin- 1
2 particles is

|0〉 =
1√
2

(
|↑〉1|↓〉2 − |↓〉1|↑〉2

)
.

Show that this is independent of the direction chosen to define | ↑〉1,2, | ↓〉1,2. If the spin
of particle 1 along some direction is measured to be 1

2~ show that the spin of particle 2
along the same direction is determined, giving its value.

[The Pauli matrices are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

]

(ii) Starting from the commutation relation for angular momentum in the form

[J3, J±] = ±~J±, [J+, J−] = 2~J3,

obtain the possible values of j,m, where m~ are the eigenvalues of J3 and j(j + 1)~2 are
the eigenvalues of J2 = 1

2 (J+J− + J−J+) + J 2
3 . Show that the corresponding normalized

eigenvectors, |j,m〉, satisfy

J±|j,m〉 = ~ ((j ∓m)(j ±m+ 1))1/2 |j,m±1〉,

and that
1
n!
J n− |j, j〉 = ~n

(
(2j)!

n!(2j − n)!

)1/2

|j, j−n〉, n ≤ 2j.

The state |w〉 is defined by

|w〉 = ewJ−/~|j, j〉,

for any complex w. By expanding the exponential show that 〈w|w〉 = (1 + |w|2)2j . Verify
that

e−wJ−/~J3 e
wJ−/~ = J3 − wJ−,

and hence show that

J3|w〉 = ~
(
j − w

∂

∂w

)
|w〉.

If H = αJ3 verify that |eiαt〉 e−ijαt is a solution of the time-dependent Schrödinger
equation.
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A1/15 B1/24 General Relativity

(i) The metric of any two-dimensional curved space, rotationally symmetric about a
point P , can by suitable choice of coordinates be written locally in the form

ds2 = e2φ(r)(dr2 + r2dθ2),

where r = 0 at P , r > 0 away from P , and 0 6 θ < 2π. Labelling the coordinates as
(x1, x2) = (r, θ), show that the Christoffel symbols Γ1

12,Γ
2
11 and Γ2

22 are each zero, and
compute the non-zero Christoffel symbols Γ1

11,Γ
1
22 and Γ2

12 = Γ2
21.

The Ricci tensor Rab (a, b = 1, 2) is defined by

Rab = Γcab,c − Γcac,b + ΓccdΓ
d
ab − ΓdacΓ

c
bd,

where a comma denotes a partial derivative. Show that R12 = 0 and that

R11 = −φ′′ − r−1φ′, R22 = r2R11.

(ii) Suppose further that, in a neighbourhood of P , the Ricci scalarR takes the constant
value −2. Find a second order differential equation, which you should denote by (∗), for
φ(r).

This space of constant Ricci scalar can, by a suitable coordinate transformation
r → χ(r), leaving θ invariant, be written locally as

ds2 = dχ2 + sinh2 χdθ2

By studying this coordinate transformation, or otherwise, find coshχ and sinhχ in terms
of r (up to a constant of integration). Deduce that

eφ(r) =
2A

(1−A2r2)
, (0 6 Ar < 1),

where A is a positive constant and verify that your equation (∗) for φ holds.[
Note that ∫

dχ

sinhχ
= const.+

1
2

log
(
coshχ− 1

)
− 1

2
log
(
coshχ+ 1

)
.

]
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A2/15 B2/23 General Relativity

(i) Show that the geodesic equation follows from a variational principle with La-
grangian

L = gabẋ
aẋb

where the path of the particle is xa(λ), and λ is an affine parameter along that path.

(ii) The Schwarzschild metric is given by

ds2 = dr2
(

1− 2M
r

)−1

+ r2(dθ2 + sin2 θdφ2)−
(

1− 2M
r

)
dt2.

Consider a photon which moves within the equatorial plane θ = π
2 . Using the above

Lagrangian, or otherwise, show that(
1− 2M

r

)(
dt

dλ

)
= E, and r2

(
dφ

dλ

)
= h,

for constants E and h. Deduce that(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
. (∗)

Assume further that the photon approaches from infinity. Show that the impact
parameter b is given by

b =
h

E
.

By considering the equation (∗), or otherwise

(a) show that, if b2 > 27M2, the photon is deflected but not captured by the black
hole;

(b) show that, if b2 < 27M2, the photon is captured;

(c) describe, with justification, the qualitative form of the photon’s orbit in the case
b2 = 27M2.

A4/17 B4/25 General Relativity

Discuss how Einstein’s theory of gravitation reduces to Newton’s in the limit of
weak fields. Your answer should include discussion of:

(a) the field equations;

(b) the motion of a point particle;

(c) the motion of a pressureless fluid.

[The metric in a weak gravitational field, with Newtonian potential φ, may be taken as

ds2 = dx2 + dy2 + dz2 − (1 + 2φ)dt2.

The Riemann tensor is

Rabcd = Γabd,c − Γabc,d + ΓacfΓ
f
bd − ΓadfΓ

f
bc.

]
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A1/20 B1/20 Numerical Analysis

(i) Let A be a symmetric n× n matrix such that

Ak,k >

n∑
l=1
l 6=k

|Ak,l| 1 6 k 6 n.

Prove that it is positive definite.

(ii) Prove that both Jacobi and Gauss-Seidel methods for the solution of the linear
system Ax = b, where the matrix A obeys the conditions of (i), converge.

[You may quote the Householder-John theorem without proof.]

A2/19 B2/19 Numerical Analysis

(i) Define m-step BDF (backward differential formula) methods for the numerical
solution of ordinary differential equations and derive explicitly their coefficients.

(ii) Prove that the linear stability domain of the two-step BDF method includes the
interval (−∞, 0).

A3/19 B3/20 Numerical Analysis

(i) The diffusion equation
∂u

∂t
=

∂2u

∂x2

is discretized by the finite-difference method

un+1
m − 1

2
(µ− α)(un+1

m−1 − 2un+1
m + un+1

m+1) = unm +
1
2
(µ+ α)(unm−1 − 2unm + unm+1),

where unm ≈ u(m∆x, n∆t), µ = ∆t/(∆x)2 and α is a constant. Derive the order of
magnitude (as a power of ∆x) of the local error for different choices of α.

(ii) Investigate the stability of the above finite-difference method for different values
of α by the Fourier technique.

A4/22 B4/20 Numerical Analysis

Write an essay on the computation of eigenvalues and eigenvectors of matrices.
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B1/5 Combinatorics

Let A ⊂ [n](r) where r 6 n/2. Prove that, if A is 1-intersecting, then |A| 6
(
n−1
r−1

)
.

State an upper bound on |A| that is valid if A is t-intersecting and n is large compared
to r and t.

Let B ⊂ P([n]) be maximal 1-intersecting; that is, B is 1-intersecting but if
B ⊂ C ⊂ P([n]) and B 6= C then C is not 1-intersecting. Show that |B| = 2n−1.

Let B ⊂ P([n]) be 2-intersecting. Show that |B| > 2n−2 is possible. Can the
inequality be strict?

B2/5 Combinatorics

As usual, R(r)
k (m) denotes the smallest integer n such that every k-colouring of

[n](r) yields a monochromatic m-subset M ∈ [n](m). Prove that R(2)
2 (m) > 2m/2 for

m > 3.

Let P([n]) have the colex order, and for a, b ∈ P([n]) let δ(a, b) = max a4b ;
thus a < b means δ(a, b) ∈ b. Show that if a < b < c then δ(a, b) 6= δ(b, c), and that
δ(a, c) = max{δ(a, b), δ(b, c)}.

Given a red-blue colouring of [n](2), the 4-colouring

χ : P([n])(3) → {red,blue} × {0, 1}

is defined as follows:

χ({a, b, c}) =


(red, 0) if {δ(a, b), δ(b, c)} is red and δ(a, b) < δ(b, c)
(red, 1) if {δ(a, b), δ(b, c)} is red and δ(a, b) > δ(b, c)
(blue, 0) if {δ(a, b), δ(b, c)} is blue and δ(a, b) < δ(b, c)
(blue, 1) if {δ(a, b), δ(b, c)} is blue and δ(a, b) > δ(b, c)

where a < b < c. Show that if M = {a0, a1, . . . , am} ∈ P([n])(m+1) is monochromatic then
{δ1, . . . , δm} ∈ [n](m) is monochromatic, where δi = δ(ai−1, ai) and a0 < a1 < · · · < am.

Deduce that R(3)
4 (m+ 1) > 22m/2

for m > 3.

B4/1 Combinatorics

Write an essay on extremal graph theory. You should give proofs of at least two
major theorems and you should also include a description of alternative proofs or of further
results.
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B1/6 Representation Theory

Compute the character table of A5 (begin by listing the conjugacy classes and their
orders).

[It is not enough to write down the result; you must justify your answer.]

B2/6 Representation Theory

(i) Let G be a group, and X and Y finite G-sets. Define the permutation representa-
tion C[X] and compute its character. Show that

dim HomG(C[X],C[Y ])

is equal to the number of G-orbits in X × Y .

(ii) Let G = Sn (n > 4), X = {1, . . . , n}, and

Z = { {i, j} ⊆ X | i 6= j}

be the set of 2-element subsets of X. Decompose C[Z] into irreducibles, and determine
the dimension of each irreducible constituent.

B3/5 Representation Theory

Let G = SU2, and Vn be the vector space of homogeneous polynomials of degree n
in the variables x and y.

(i) Define the action of G on Vn, and prove that Vn is an irreducible representation of
G.

(ii) Decompose V4 ⊗ V3 into irreducible representations of SU2. Briefly justify your
answer.

(iii) SU2 acts on the vector space M3(C) of complex 3× 3 matrices via

ρ

(
a b
c d

)
·X =

 a b 0
c d 0
0 0 1

X

 a b 0
c d 0
0 0 1

−1

, X ∈M3(C).

Decompose this representation into irreducible representations.
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B4/2 Representation Theory

Let G be the Heisenberg group of order p3. This is the subgroup

G =


 1 a x

0 1 b
0 0 1

 ∣∣∣ a, b, x ∈ Fp


of 3 × 3 matrices over the finite field Fp (p prime). Let H be the subgroup of G of such
matrices with a = 0.

(i) Find all one dimensional representations of G.

[You may assume without proof that [G,G] is equal to the set of matrices in G with
a = b = 0.]

(ii) Let ψ : Fp = Z/pZ −→ C∗ be a non-trivial one dimensional representation of Fp,
and define a one dimensional representation ρ of H by

ρ

 1 0 x
0 1 b
0 0 1

 = ψ(x).

Show that Vψ = IndGH(ρ) is irreducible.

(iii) List all the irreducible representations of G and explain why your list is complete.
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B1/7 Galois Theory

Prove that the Galois group G of the polynomial X6 + 3 over Q is of order 6. By
explicitly describing the elements of G, show that they have orders 1, 2 or 3. Hence deduce
that G is isomorphic to S3.

Why does it follow that X6 + 3 is reducible over the finite field Fp, for all primes
p?

B3/6 Galois Theory

Let Fp be the finite field with p elements (p a prime), and let k be a finite extension
of Fp. Define the Frobenius automorphism σ : k −→ k, verifying that it is an Fp-
automorphism of k.

Suppose f = Xp+1 +Xp+1 ∈ Fp[X] and that K is its splitting field over Fp. Why
are the zeros of f distinct? If α is any zero of f in K, show that σ(α) = − 1

α+1 . Prove
that f has at most two zeros in Fp and that σ3 = id. Deduce that the Galois group of f
over Fp is a cyclic group of order three.

B4/3 Galois Theory

Define the concept of separability and normality for algebraic field extensions.
Suppose K = k(α) is a simple algebraic extension of k, and that Aut(K/k) denotes
the group of k-automorphisms of K. Prove that
|Aut(K/k)| 6 [K : k], with equality if and only if K/k is normal and separable.

[You may assume that the splitting field of a separable polynomial f ∈ k[X] is normal and
separable over k.]

Suppose now that G is a finite group of automorphisms of a field F , and E = FG

is the fixed subfield. Prove:

(i) F/E is separable.

(ii) G = Aut(F/E) and [F : E] = |G|.

(iii) F/E is normal.

[The Primitive Element Theorem for finite separable extensions may be used without proof.]
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B1/8 Differentiable Manifolds

Define an immersion and an embedding of one manifold in another. State a
necessary and sufficient condition for an immersion to be an embedding and prove its
necessity.

Assuming the existence of “bump functions” on Euclidean spaces, state and prove
a version of Whitney’s embedding theorem.

Deduce that RPn embeds in R(n+1)2 .

B2/7 Differentiable Manifolds

State Stokes’ Theorem.

Prove that, if Mm is a compact connected manifold and Φ : U → Rm is a
surjective chart on M , then for any ω ∈ Ωm(M) there is η ∈ Ωm−1(M) such that
supp(ω + dη) ⊆ Φ−1(Bm), where Bm is the unit ball in Rm.

[You may assume that, if ω ∈ Ωm(Rm) with supp(ω) ⊆ Bm and
∫

Rm

ω = 0, then

∃ η ∈ Ωm−1(Rm) with supp(η) ⊆ Bm such that dη = ω.]

By considering the m-form

ω = x1dx2 ∧ ... ∧ dxm+1 + · · ·+ xm+1dx1 ∧ ... ∧ dxm

on Rm+1, or otherwise, deduce that Hm(Sm) ∼= R.

B4/4 Differentiable Manifolds

Describe the Mayer-Vietoris exact sequence for forms on a manifold M and show
how to derive from it the Mayer-Vietoris exact sequence for the de Rham cohomology.

Calculate H∗(RPn).
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B2/8 Algebraic Topology

Show that the fundamental group of the 2-torus S1 × S1 is isomorphic to Z× Z.

Show that an injective continuous map from the circle S1 to itself induces multi-
plication by ±1 on the fundamental group.

Show that there is no retraction from the solid torus S1 ×D2 to its boundary.

B3/7 Algebraic Topology

Write down the Mayer-Vietoris sequence and describe all the maps involved.

Use the Mayer-Vietoris sequence to compute the homology of the n-sphere Sn for
all n.

B4/5 Algebraic Topology

Write an essay on the definition of simplicial homology groups. The essay should
include a discussion of orientations, of the action of a simplicial map and a proof of ∂2 = 0.
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B1/9 Number Fields

Let K = Q(α) be a number field, where α ∈ OK . Let f be the (normalized)
minimal polynomial of α over Q. Show that the discriminant disc(f) of f is equal to
(OK : Z[α])2DK .

Show that f(x) = x3 + 5x2 − 19 is irreducible over Q. Determine disc(f) and the
ring of algebraic integers OK of K = Q(α), where α ∈ C is a root of f .

B2/9 Number Fields

Determine the ideal class group of Q(
√
−11).

Find all solutions of the diophantine equation

y2 + 11 = x3 (x, y ∈ Z) .

[Minkowski’s bound is n!n−n(4/π)r2 |Dk|1/2.]

B4/6 Number Fields

For a prime number p > 2, set ζ = e2πi/p,K = Q(ζ) and K+ = Q(ζ + ζ−1).

(a) Show that the (normalized) minimal polynomial of ζ − 1 over Q is equal to

f(x) =
(x+ 1)p − 1

x
.

(b) Determine the degrees [K : Q] and [K+ : Q].

(c) Show that
p−1∏
j=1

(1− ζj) = p.

(d) Show that disc(f) = (−1)
p−1
2 pp−2.

(e) Show that K contains Q(
√
p∗), where p∗ = (−1)

p−1
2 p.

(f) If j, k ∈ Z are not divisible by p, show that 1−ζj

1−ζk lies in O∗K .

(g) Show that the ideal (p) = pOK is equal to (1− ζ)p−1.
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B1/10 Hilbert Spaces

State and prove the Riesz representation theorem for bounded linear functionals
on a Hilbert space H.

[You may assume, without proof, that H = E ⊕ E⊥, for every closed subspace E of H.]

Prove that, for every T ∈ B(H), there is a unique T ∗ ∈ B(H) such that
〈Tx, y〉 = 〈x, T ∗y〉 for every x, y ∈ H. Prove that ‖T ∗T‖ = ‖T‖2 for every T ∈ B(H).

Define a normal operator T ∈ B(H). Prove that T is normal if and only if
‖Tx‖ = ‖T ∗x‖ for every x ∈ H. Deduce that every point in the spectrum of a normal
operator T is an approximate eigenvalue of T .

[You may assume, without proof, any general criterion for the invertibility of a bounded
linear operator on H.]

B3/8 Hilbert Spaces

Let T be a bounded linear operator on a Hilbert space H. Define what it means
to say that T is (i) compact, and (ii) Fredholm. What is the index, ind(T ), of a Fredholm
operator T?

Let S, T be bounded linear operators on H. Prove that S and T are Fredholm if
and only if both ST and TS are Fredholm. Prove also that if S is invertible and T is
Fredholm then ind(ST ) = ind(TS) = ind(T ).

Let K be a compact linear operator on H. Prove that I + K is Fredholm with
index zero.

B4/7 Hilbert Spaces

Write an essay on the use of Hermite functions in the elementary theory of the
Fourier transform on L2(R).

[You should assume, without proof, any results that you need concerning the approximation
of functions by Hermite functions.]
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B1/11 Riemann Surfaces

Recall that an automorphism of a Riemann surface is a bijective analytic map onto
itself, and that the inverse map is then guaranteed to be analytic.

Let ∆ denote the disc {z ∈ C
∣∣∣|z| < 1}, and let ∆∗ = ∆− {0}.

(a) Prove that an automorphism φ : ∆ → ∆ with φ(0) = 0 is a Euclidian rotation.

[Hint: Apply the maximum modulus principle to the functions φ(z)/z and φ−1(z)/z.]

(b) Prove that a holomorphic map φ : ∆∗ → ∆ extends to the entire disc, and use
this to conclude that any automorphism of ∆∗ is a Euclidean rotation.

[You may use the result stated in part (a).]

(c) Define an analytic map between Riemann surfaces. Show that a continuous map
between Riemann surfaces, known to be analytic everywhere except perhaps at a single
point P , is, in fact, analytic everywhere.

B3/9 Riemann Surfaces

Let f : X → Y be a nonconstant holomorphic map between compact connected
Riemann surfaces. Define the valency of f at a point, and the degree of f .

Define the genus of a compact connected Riemann surface X (assuming the
existence of a triangulation).

State the Riemann-Hurwitz theorem. Show that a holomorphic non-constant self-
map of a compact Riemann surface of genus g > 1 is bijective, with holomorphic inverse.
Verify that the Riemann surface in C2 described in the equation w4 = z4−1 is non-singular,
and describe its topological type.

[Note: The description can be in the form of a picture or in words. If you apply Riemann-
Hurwitz, explain first how you compactify the surface.]
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B4/8 Riemann Surfaces

Let λ and µ be fixed, non-zero complex numbers, with λ/µ 6∈ R, and let Λ = Zµ+Zλ
be the lattice they generate in C. The series

℘(z) =
1
z2

+
∑
m,n

[ 1
(z −mλ− nµ)2

− 1
(mλ+ nµ)2

]
,

with the sum taken over all pairs (m,n) ∈ Z × Z other than (0,0), is known to converge
to an elliptic function, meaning a meromorphic function ℘ : C → C ∪ {∞} satisfying
℘(z) = ℘(z + µ) = ℘(z + λ) for all z ∈ C. (℘ is called the Weierstrass function.)

(a) Find the three zeros of ℘′ modulo Λ, explaining why there are no others.

(b) Show that, for any number a ∈ C, other than the three values ℘(λ/2), ℘(µ/2) and
℘((λ+µ)/2), the equation ℘(z) = a has exactly two solutions, modulo Λ; whereas,
for each of the specified values, it has a single solution.

[In (a) and (b), you may use, without proof, any known results about valencies and
degrees of holomorphic maps between compact Riemann surfaces, provided you state
them correctly.]

(c) Prove that every even elliptic function φ(z) is a rational function of ℘(z); that is,
there exists a rational function R for which φ(z) = R(℘(z)).
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B2/10 Algebraic Curves

Let f : P2 99K P2 be the rational map given by f(X0 : X1 : X2) = (X1X2 : X0X2 :
X0X1). Determine whether f is defined at the following points: (1 : 1 : 1), (0 : 1 : 1), (0 :
0 : 1).

Let C ⊂ P2 be the curve defined by X2
1X2 −X3

0 = 0. Define a bijective morphism
α : P1 → C. Prove that α is not an isomorphism.

B3/10 Algebraic Curves

Let C be the projective curve (over an algebraically closed field k of characteristic
zero) defined by the affine equation

x5 + y5 = 1 .

Determine the points at infinity of C and show that C is smooth.

Determine the divisors of the rational functions x, y ∈ k(C).

Show that ω = dx/y4 is a regular differential on C.

Compute the divisor of ω. What is the genus of C?

B4/9 Algebraic Curves

Write an essay on curves of genus one (over an algebraically closed field k of
characteristic zero). Legendre’s normal form should not be discussed.
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B1/13 Probability and Measure

State and prove Hölder’s Inequality.

[Jensen’s inequality, and other standard results, may be assumed.]

Let (Xn) be a sequence of random variables bounded in Lp for some p > 1. Prove
that (Xn) is uniformly integrable.

Suppose that X ∈ Lp(Ω,F ,P) for some probability space (Ω,F ,P) and some
p ∈ (1,∞). Show that X ∈ Lr(Ω,F ,P) for all 1 6 r < p and that ||X||r is an increasing
function of r on [1, p].

Show further that lim
r→1+

||X||r = ||X||1.

B2/12 Probability and Measure

(a) Let Ω = (0, 1), F = B ((0, 1)) be the Borel σ-field and let P be Lebesgue measure
on (Ω,F). What is the distribution of the random variable Z, where Z(ω) = 2ω − 1?

Let ω =
∑∞
n=1 2−nRn(ω) be the binary expansion of the point ω ∈ Ω and

set U(ω) =
∑
n odd

2−nQn(ω), where Qn(ω) = 2Rn(ω) − 1. Find a random variable V

independent of U such that U and V are identically distributed and U + 1
2V is uniformly

distributed on (−1, 1).

(b) Now suppose that on some probability triple X and Y are independent, identically-
distributed random variables such that X + 1

2Y is uniformly distributed on (−1, 1).

Let φ be the characteristic function of X. Calculate φ(t)/φ(t/4). Show that the
distribution of X must be the same as the distribution of the random variable U in (a).

B3/12 Probability and Measure

State and prove Birkhoff’s almost-everywhere ergodic theorem.

[You need not prove convergence in Lp and the maximal ergodic lemma may be assumed
provided that it is clearly stated.]

Let Ω = [0, 1), F = B([0, 1)) be the Borel σ-field and let P be Lebesgue measure
on (Ω,F). Give an example of an ergodic measure-preserving map θ : Ω → Ω (you need
not prove it is ergodic).

Let f(x) = x for x ∈ [0, 1). Find (at least for all x outside a set of measure zero)

lim
n→∞

1
n

n∑
i=1

(f ◦ θi−1)(x).

Briefly justify your answer.
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B4/11 Probability and Measure

State the first and second Borel-Cantelli Lemmas and the Kolmogorov 0-1 law.

Let (Xn)n>1 be a sequence of independent random variables with distribution given
by

P(Xn = n) =
1
n

= 1− P(Xn = 0),

and set Sn =
∑n
i=1Xi.

(a) Show that there exist constants 0 6 c1 6 c2 6 ∞ such that
lim infn(Sn/n) = c1, almost surely and lim supn(Sn/n) = c2 almost surely.

(b) Let Yk =
∑2k
i=k+1Xi and Ỹk =

∑k
i=1 Z

(k)
i , where (Z(k)

i )ki=1 are independent with

P(Z(k)
i = k) =

1
2k

= 1− P(Z(k)
i = 0), 1 6 i 6 k,

and suppose that α ∈ Z+.

Use the fact that P(Yk > αk) > P(Ỹk > αk) to show that there exists pα > 0 such
that P(Yk > αk) > pα for all sufficiently large k.

[You may use the Poisson approximation to the binomial distribution without proof.]

By considering a suitable subsequence of (Yk), or otherwise, show that c2 = ∞.

(c) Show that c1 6 1. Consider an appropriately chosen sequence of random times Ti,
with 2Ti 6 Ti+1, for which (STi/Ti) 6 3c1/2. Using the fact that the random
variables (YTi) are independent, and by considering the events {YTi = 0}, or
otherwise, show that c1 = 0.
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B2/13 Applied Probability

Let M be a Poisson random measure on E = R × [0, π) with constant intensity λ.
For (x, θ) ∈ E, denote by l(x, θ) the line in R2 obtained by rotating the line {(x, y) : y ∈ R}
through an angle θ about the origin.

Consider the line process L = M ◦ l−1.

(i) What is the distribution of the number of lines intersecting the disc
{z ∈ R2 : |z| 6 a} ?

(ii) What is the distribution of the distance from the origin to the nearest line?

(iii) What is the distribution of the distance from the origin to the kth nearest line?

B3/13 Applied Probability

Consider an M/G/1 queue with arrival rate λ and traffic intensity less
than 1. Prove that the moment-generating function of a typical busy period, MB(θ),
satisfies

MB(θ) = MS(θ − λ+ λ MB(θ)),

where MS(θ) is the moment-generating function of a typical service time.

If service times are exponentially distributed with parameter µ > λ, show that

MB(θ) =
λ+ µ− θ − {(λ+ µ− θ)2 − 4λµ }1/2

2λ

for all sufficiently small but positive values of θ.

B4/12 Applied Probability

Define a renewal process and a renewal reward process.

State and prove the strong law of large numbers for these processes.

[You may assume the strong law of large numbers for independent, identically-distributed
random variables.]

State and prove Little’s formula.

Customers arrive according to a Poisson process with rate ν at a single server, but
a restricted waiting room causes those who arrive when n customers are already present
to be lost. Accepted customers have service times which are independent and identically-
distributed with mean α and independent of the arrival process. Let Pj be the equilibrium
probability that an arriving customer finds j customers already present.

Using Little’s formula, or otherwise, determine a relationship between P0, Pn, ν and
α.
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B1/14 Information Theory

Let p1, . . . , pn be a probability distribution, with p∗ = maxi[pi]. Prove that

(i)−
∑
i

pi log pi > −p∗ log p∗ − (1− p∗) log(1− p∗);

(ii)−
∑
i

pi log pi > log(1/p∗); and

(iii)−
∑
i

pi log pi > 2(1− p∗).

All logarithms are to base 2.

[Hint: To prove (iii), it is convenient to use (i) for p∗ > 1
2 and (ii) for p∗ 6 1

2 .]

Random variables X and Y with values x and y from finite ‘alphabets’ I and J
represent the input and output of a transmission channel, with the conditional probability
p(x | y) = P(X = x | Y = y). Let h(p(· | y)) denote the entropy of the conditional
distribution p(· | y), y ∈ J , and h(X | Y ) denote the conditional entropy of X
given Y . Define the ideal observer decoding rule as a map f : J → I such that
p(f(y) | y) = maxx∈I p(x | y) for all y ∈ J . Show that under this rule the error probability

πer(y) =
∑
x∈I

x6=f(y)

p(x | y)

satisfies πer(y) 6 1
2h(p(· | y)), and the expected value satisfies

Eπer(Y ) 6 1
2h(X | Y ).
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B2/14 Information Theory

A subset C of the Hamming space {0, 1}n of cardinality |C| = r and with the
minimal (Hamming) distance min [d(x, x′) : x, x′ ∈ C, x 6= x′] = δ is called an [n, r, δ]-code
(not necessarily linear). An [n, r, δ]-code is called maximal if it is not contained in any
[n, r + 1, δ]-code. Prove that an [n, r, δ]-code is maximal if and only if for any y ∈ {0, 1}n
there exists x ∈ C such that d(x, y) < δ. Conclude that if there are δ or more changes
made in a codeword then the new word is closer to some other codeword than to the
original one.

Suppose that a maximal [n, r, δ]-code is used for transmitting information via a
binary memoryless channel with the error probability p, and the receiver uses the maximum
likelihood decoder. Prove that the probability of erroneous decoding, πml

err, obeys the
bounds

1− b(n, δ − 1) 6 πml
err 6 1− b(n, [(δ − 1)/2]),

where

b(n,m) =
∑

06k6m

(
n

k

)
pk(1− p)n−k

is a partial binomial sum and [ · ] is the integer part.

B4/13 Information Theory

State the Kraft inequality. Prove that it gives a necessary and sufficient condition
for the existence of a prefix-free code with given codeword lengths.
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B2/15 Optimization and Control

A street trader wishes to dispose of k counterfeit Swiss watches. If he offers one
for sale at price u he will sell it with probability ae−u. Here a is known and less than 1.
Subsequent to each attempted sale (successful or not) there is a probability 1− β that he
will be arrested and can make no more sales. His aim is to choose the prices at which he
offers the watches so as to maximize the expected values of his sales up until the time he
is arrested or has sold all k watches.

Let V (k) be the maximum expected amount he can obtain when he has k watches
remaining and has not yet been arrested. Explain why V (k) is the solution to

V (k) = max
u>0

{
ae−u[u+ βV (k − 1)] + (1− ae−u)βV (k)

}
.

Denote the optimal price by uk and show that

uk = 1 + βV (k)− βV (k − 1)

and that
V (k) = ae−uk/(1− β) .

Show inductively that V (k) is a nondecreasing and concave function of k.

B3/14 Optimization and Control

A file of X Mb is to be transmitted over a communications link. At each time t the
sender can choose a transmission rate, u(t), within the range [0, 1] Mb per second. The
charge for transmitting at rate u(t) at time t is u(t)p(t). The function p is fully known at
time 0. If it takes a total time T to transmit the file then there is a delay cost of γT 2,
γ > 0. Thus u and T are to be chosen to minimize∫ T

0

u(t)p(t)dt+ γT 2 ,

where u(t) ∈ [0, 1], dx(t)/dt = −u(t), x(0) = X and x(T ) = 0. Quoting and applying
appropriate results of Pontryagin’s maximum principle show that a property of the optimal
policy is that there exists p∗ such that u(t) = 1 if p(t) < p∗ and u(t) = 0 if p(t) > p∗.

Show that the optimal p∗ and T are related by p∗ = p(T ) + 2γT .

Suppose p(t) = t+ 1/t and X = 1. For what value of γ is it optimal to transmit at
a constant rate 1 between times 1/2 and 3/2?
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B4/14 Optimization and Control

Consider the scalar system with plant equation xt+1 = xt+ut, t = 0, 1, . . . and cost

Cs(x0, u0, u1, . . .) =
s∑
t=0

[
u2
t +

4
3
x2
t

]
.

Show from first principles that minu0,u1,... Cs = Vsx
2
0, where V0 = 4/3 and for s = 0, 1, . . .,

Vs+1 = 4/3 + Vs/(1 + Vs) .

Show that Vs → 2 as s→∞.

Prove that C∞ is minimized by the stationary control, ut = −2xt/3 for all t.

Consider the stationary policy π0 that has ut = −xt for all t. What is the value of
C∞ under this policy?

Consider the following algorithm, in which steps 1 and 2 are repeated as many
times as desired.

1. For a given stationary policy πn, for which ut = knxt for all t, determine
the value of C∞ under this policy as V πnx2

0 by solving for V πn in

V πn = k2
n + 4/3 + (1 + kn)2V πn .

2. Now find kn+1 as the minimizer of

k2
n+1 + 4/3 + (1 + kn+1)2V πn

and define πn+1 as the policy for which ut = kn+1xt for all t.

Explain why πn+1 is guaranteed to be a better policy than πn.

Let π0 be the stationary policy with ut = −xt. Determine π1 and verify that it
minimizes C∞ to within 0.2% of its optimum.
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B1/17 Dynamical Systems

Define topological conjugacy and C1-conjugacy.

Let a, b be real numbers with a > b > 0 and let Fa, Fb be the maps of (0,∞) to
itself given by Fa(x) = ax, Fb(x) = bx. For which pairs a, b are Fa and Fb topologically
conjugate? Would the answer be the same for C1-conjugacy? Justify your statements.

B3/17 Dynamical Systems

If A =
(

0 1
1 1

)
show that An+2 = An+1 + An for all n > 0. Show that A5 has

trace 11 and deduce that the subshift map defined by A has just two cycles of exact period
5. What are they?

B4/17 Dynamical Systems

Define the rotation number ρ(f) of an orientation-preserving circle map f and the
rotation number ρ(F ) of a lift F of f . Prove that ρ(f) and ρ(F ) are well-defined. Prove
also that ρ(F ) is a continuous function of F .

State without proof the main consequence of ρ(f) being rational.

Part II



71

B1/18 Partial Differential Equations

(a) Solve the equation
∂u

∂x
+
∂u

∂y
= u2

together with the boundary condition on the x-axis:

u(x, 0) = f(x) ,

where f is a smooth function. You should discuss the domain on which the solution is
smooth. For which functions f can the solution be extended to give a smooth solution on
the upper half plane {y > 0}?

(b) Solve the equation

x
∂u

∂x
+ y

∂u

∂y
= 0

together with the boundary condition on the unit circle:

u(x, y) = x when x2 + y2 = 1.

B2/17 Partial Differential Equations

Define the Schwartz space S(R) and the corresponding space of tempered distribu-
tions S ′(R) .

Use the Fourier transform to give an integral formula for the solution of the equation

−d
2u

dx2
+
du

dx
+ u = f (∗)

for f ∈ S(R). Prove that your solution lies in S(R). Is your formula the unique solution
to (∗) in the Schwartz space?

Deduce from this formula an integral expression for the fundamental solution of
the operator P = − d2

dx2 + d
dx + 1.

Let K be the function:

K(x) =


1√
5
e−(

√
5−1)x/2 for x > 0,

1√
5
e(
√

5+1)x/2 for x 6 0.

Using the definition of distributional derivatives verify that this function is a fundamental
solution for P .
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B3/18 Partial Differential Equations

Write down a formula for the solution u = u(t, x), for t > 0 and x ∈ Rn, of the
initial value problem for the heat equation:

∂u

∂t
−∆u = 0 u(0, x) = f(x),

for f a bounded continuous function f : Rn → R. State (without proof) a theorem which
ensures that this formula is the unique solution in some class of functions (which should
be explicitly described).

By writing u = etv, or otherwise, solve the initial value problem

∂v

∂t
+ v −∆v = 0, v(0, x) = g(x), (†)

for g a bounded continuous function g : Rn → R and give a class of functions in which
your solution is the unique one.

Hence, or otherwise, prove that for all t > 0:

sup
x∈Rn

v(t, x) 6 sup
x∈Rn

g(x)

and deduce that the solutions v1(t, x) and v2(t, x) of (†) corresponding to initial values
g1(x) and g2(x) satisfy, for t > 0,

sup
x∈Rn

|v1(t, x)− v2(t, x)| 6 sup
x∈Rn

|g1(x)− g2(x)|.

B4/18 Partial Differential Equations

Write an essay on one of the following two topics:

(a) The notion of well-posedness for initial and boundary value problems for differential
equations. Your answer should include a definition and give examples and state
precise theorems for some specific problems.

(b) The concepts of distribution and tempered distribution and their use in the study
of partial differential equations.
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B1/19 Methods of Mathematical Physics

State and prove the convolution theorem for Laplace transforms.

Use the convolution theorem to prove that the Beta function

B(p, q) =
∫ 1

0

(1− τ)p−1τ q−1dτ

may be written in terms of the Gamma function as

B(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

.

B2/18 Methods of Mathematical Physics

The Bessel function Jν(z) is defined, for | arg z| < π/2, by

Jν(z) =
1

2πi

∫ (0+)

−∞
e(t−t−1)z/2t−ν−1dt ,

where the path of integration is the Hankel contour and t−ν−1 is the principal branch.

Use the method of steepest descent to show that, as z → +∞,

Jν(z) ∼ (2/πz)
1
2 cos(z − πν/2− π/4) .

You should give a rough sketch of the steepest descent paths.

B3/19 Methods of Mathematical Physics

Consider the integral ∫ ∞

0

tze−at

1 + t
dt ,

where tz is the principal branch and a is a positive constant. State the region of the
complex z–plane in which the integral defines a holomorphic function.

Show how the analytic continuation of this function can be obtained by means of
an alternative integral representation using the Hankel contour.

Hence show that the analytic continuation is holomorphic except for simple poles
at z = −1, −2, . . . , and that the residue at z = −n is

(−1)n−1
n−1∑
r=0

ar

r!
.
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B4/19 Methods of Mathematical Physics

Show that
∫ π
0

eix cos t dt satisfies the differential equation

xy′′ + y′ + xy = 0,

and find a second solution, in the form of an integral, for x > 0.

Show, by finding the asymptotic behaviour as x → +∞, that your two solutions
are linearly independent.
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B1/21 Electrodynamics

Explain the multipole expansion in electrostatics, and devise formulae for the total
charge, dipole moments and quadrupole moments given by a static charge distribution
ρ(r).

A nucleus is modelled as a uniform distribution of charge inside the ellipsoid

x2

a2
+
y2

a2
+
z2

c2
= 1.

The total charge of the nucleus is Q. What are the dipole moments and quadrupole
moments of this distribution?

Describe qualitatively what happens if the nucleus starts to oscillate.

B2/20 Electrodynamics

In a superconductor, there are superconducting charge carriers with number density
n, mass m and charge q. Starting from the quantum mechanical wavefunction Ψ = ReiΦ

(with real R and Φ), construct a formula for the electric current and explain carefully why
your result is gauge invariant.

Now show that inside a superconductor a static magnetic field obeys the equation

∇2 B =
µ0 n q

2

m
B.

A superconductor occupies the region z > 0, while for z < 0 there is a vacuum
with a constant magnetic field in the x direction. Show that the magnetic field cannot
penetrate deep into the superconductor.

B4/21 Electrodynamics

The Liénard-Wiechert potential for a particle of charge q, assumed to be moving
non-relativistically along the trajectory yµ(τ), τ being the proper time along the trajectory,
is

Aµ(x, t) =
µ0q

4π
dyµ/dτ

(x− y(τ))νdyν/dτ

∣∣∣
τ=τ0

.

Explain how to calculate τ0 given xµ = (x, t) and yµ = (y, t′).

Derive Larmor’s formula for the rate at which electromagnetic energy is radiated
from a particle of charge q undergoing an acceleration a.

Suppose that one considers the classical non-relativistic hydrogen atom with an
electron of mass m and charge −e orbiting a fixed proton of charge +e, in a circular orbit
of radius r0. What is the total energy of the electron? As the electron is accelerated
towards the proton it will radiate, thereby losing energy and causing the orbit to decay.
Derive a formula for the lifetime of the orbit.
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B1/22 Statistical Physics

Write down the first law of thermodynamics in differential form for an infinitesimal
reversible change in terms of the increments dE, dS and dV , where E,S and V are to be
defined. Briefly give an interpretation of each term and deduce that

P = −
(
∂E

∂V

)
S

, T =
(
∂E

∂S

)
V

.

Define the specific heat at constant volume CV and show that for an adiabatic change

CV dT +
((

∂E

∂V

)
T

+ P

)
dV = 0 .

Derive the Maxwell relation (
∂S

∂V

)
T

=
(
∂P

∂T

)
V

,

where T is temperature and hence show that(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

.

An imperfect gas of volume V obeys the van der Waals equation of state(
P +

a

V 2

)
(V − b) = RT ,

where a and b are non-negative constants. Show that(
∂CV
∂V

)
T

= 0 ,

and deduce that CV is a function of T only. It can further be shown that in this case CV
is independent of T . Hence show that

T (V − b)R/CV

is constant on adiabatic curves.
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B3/22 Statistical Physics

A system consists of N weakly interacting non-relativistic fermions, each of mass
m, in a three-dimensional volume, V . Derive the Fermi-Dirac distribution

n(ε) = KV g
ε1/2

exp((ε− µ)/kT ) + 1
,

where n(ε)dε is the number of particles with energy in (ε, ε+ dε) and K = 2π(2m)3/2/h3.
Explain the physical significance of g.

Explain how the constant µ is determined by the number of particles N and write
down expressions for N and the internal energy E in terms of n(ε).

Show that, in the limit κ ≡ e−µ/kT � 1,

N =
V

Aκ

(
1− 1

2
√

2κ
+O

(
1
κ2

) )
,

where A = h3/g(2πmkT )3/2.

Show also that in this limit

E =
3
2
NkT

(
1 +

1
4
√

2κ
+O

(
1
κ2

) )
.

Deduce that the condition κ� 1 implies that AN/V � 1. Discuss briefly whether
or not this latter condition is satisfied in a white dwarf star and in a dilute electron gas
at room temperature.[

Note that
∫∞
0
du e−u

2a = 1
2

√
π
a

]
.
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B4/23 Statistical Physics

Given that the free energy F can be written in terms of the partition function Z
as F = −kT logZ show that the entropy S and internal energy E are given by

S = k
∂(T logZ)

∂T
, E = kT 2 ∂ logZ

∂T
.

A system of particles has Hamiltonian H(p,q) where p is the set of particle
momenta and q the set of particle coordinates. Write down the expression for the classical
partition function ZC for this system in equilibrium at temperature T . In a particular
case H is given by

H(p,q) = pαAαβ(q)pβ + qαBαβ(q)qβ .

Let H be a homogeneous function in all the pα, 1 ≤ α ≤ N , and in a subset of the
qα, 1 ≤ α ≤M (M ≤ N). Derive the principle of equipartition for this system.

A system consists of N weakly interacting harmonic oscillators each with Hamilto-
nian

h(p, q) =
1
2
p2 +

1
2
ω2q2 .

Using equipartition calculate the classical specific heat of the system, CC(T ). Also
calculate the classical entropy SC(T ).

Write down the expression for the quantum partition function of the system and
derive expressions for the specific heat C(T ) and the entropy S(T ) in terms of N and the
parameter θ = ~ω/kT . Show for θ � 1 that

C(T ) = CC(T ) +O (θ) , S(T ) = SC(T ) + S0 +O (θ) ,

where S0 should be calculated. Comment briefly on the physical significance of the
constant S0 and why it is non-zero.
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B1/23 Applications of Quantum Mechanics

A steady beam of particles, having wavenumber k and moving in the z direction,
scatters on a spherically-symmetric potential. Write down the asymptotic form of the
wave function at large r.

The incoming wave is written as a partial-wave series

∞∑
`=0

χ`(kr)P`(cos θ).

Show that for large r

χ`(kr) ∼
`+ 1

2

ikr

(
eikr − (−1)`e−ikr

)
and calculate χ0(kr) and χ1(kr) for all r.

Write down the second-order differential equation satisfied by the χ`(kr). Construct
a second linearly-independent solution for each ` that is singular at r = 0 and, when it is
suitably normalised, has large-r behaviour

`+ 1
2

ikr

(
eikr + (−1)`e−ikr

)
.

B2/22 Applications of Quantum Mechanics

A particle of charge e moves freely within a cubical box of side a. Its initial
wavefunction is

(2/a)−
3
2 sin(πx/a) sin(πy/a) sin(πz/a).

A uniform electric field E in the x direction is switched on for a time T . Derive from first
principles the probability, correct to order E2, that after the field has been switched off
the wave function will be found to be

(2/a)−
3
2 sin(2πx/a) sin(πy/a) sin(πz/a).
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B3/23 Applications of Quantum Mechanics

Write down the commutation relations satisfied by the cartesian components of the
total angular momentum operator J.

In quantum mechanics an operator V is said to be a vector operator if, under
rotations, its components transform in the same way as those of the coordinate operator
r. Show from first principles that this implies that its cartesian components satisfy the
commutation relations

[Jj , Vk] = iεjklVl .

Hence calculate the total angular momentum of the nonvanishing states Vj |0〉, where |0〉
is the vacuum state.

B4/24 Applications of Quantum Mechanics

Derive the Bloch form of the wave function ψ(x) of an electron moving in a one-
dimensional crystal lattice.

The potential in such an N -atom lattice is modelled by

V (x) =
∑
n

(
− ~2U

2m
δ(x− nL)

)
.

Assuming that ψ(x) is continuous across each lattice site, and applying periodic boundary
conditions, derive an equation for the allowed electron energy levels. Show that for suitable
values of UL they have a band structure, and calculate the number of levels in each band
when UL > 2. Verify that when UL� 1 the levels are very close to those corresponding
to a solitary atom.

Describe briefly how the band structure in a real 3-dimensional crystal differs from
that of this simple model.
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B1/25 Fluid Dynamics II

The energy equation for the motion of a viscous, incompressible fluid states that

d

dt

∫
V (t)

1
2
ρu2dV =

∫
S(t)

uiσijnjdS − 2µ
∫
V (t)

eijeijdV.

Interpret each term in this equation and explain the meaning of the symbols used.

For steady rectilinear flow in a (not necessarily circular) pipe having rigid stationary
walls, deduce a relation between the viscous dissipation per unit length of the pipe, the
pressure gradient G, and the volume flux Q.

Starting from the Navier-Stokes equations, calculate the velocity field for steady
rectilinear flow in a circular pipe of radius a. Using the relationship derived above, or
otherwise, find in terms of G the viscous dissipation per unit length for this flow.

[In cylindrical polar coordinates,

∇2w(r) =
1
r

d

dr

(
r
dw

dr

)
.
]

B2/24 Fluid Dynamics II

Explain what is meant by a Stokes flow and show that, in such a flow, in the absence
of body forces, ∂σij/∂xj = 0, where σij is the stress tensor.

State and prove the reciprocal theorem for Stokes flow.

When a rigid sphere of radius a translates with velocity U through unbounded fluid
at rest at infinity, it may be shown that the traction per unit area, σ · n, exerted by the
sphere on the fluid, has the uniform value 3µU/2a over the sphere surface. Find the drag
on the sphere.

Suppose that the same sphere is free of external forces and is placed with its centre
at the origin in an unbounded Stokes flow given in the absence of the sphere as us(x). By
applying the reciprocal theorem to the perturbation to the flow generated by the presence
of the sphere, and assuming this to tend to zero sufficiently rapidly at infinity, show that
the instantaneous velocity of the centre of the sphere is

V =
1

4πa2

∫
r=a

us(x)dS.
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B3/24 Fluid Dynamics II

A planar flow of an inviscid, incompressible fluid is everywhere in the x-direction
and has velocity profile

u =

{
U y > 0,
0 y < 0.

By examining linear perturbations to the vortex sheet at y = 0 that have the form eikx−iωt,
show that

ω =
1
2
kU(1± i)

and deduce the temporal stability of the sheet to disturbances of wave number k.

Use this result to determine also the spatial growth rate and propagation speed of
disturbances of frequency ω introduced at a fixed spatial position.

B4/26 Fluid Dynamics II

Starting from the steady planar vorticity equation

u .∇ω = ν∇2ω,

outline briefly the derivation of the boundary layer equation

uux + υuy = UdU/dx+ νuyy,

explaining the significance of the symbols used.

Viscous fluid occupies the region y > 0 with rigid stationary walls along y = 0 for
x > 0 and x < 0. There is a line sink at the origin of strength πQ, Q > 0, with Q/ν � 1.
Assuming that vorticity is confined to boundary layers along the rigid walls:

(a) Find the flow outside the boundary layers.

(b) Explain why the boundary layer thickness δ along the wall x > 0 is proportional to
x, and deduce that

δ =
(
ν

Q

) 1
2

x .

(c) Show that the boundary layer equation admits a solution having stream function

ψ = (νQ)1/2f(η) with η = y/δ .

Find the equation and boundary conditions satisfied by f .

(d) Verify that a solution is

f ′ =
6

1 + cosh(η
√

2 + c)
− 1,

provided that c has one of two values to be determined. Should the positive or
negative value be chosen?
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B1/26 Waves in Fluid and Solid Media

Derive Riemann’s equations for finite amplitude, one-dimensional sound waves in
a perfect gas with ratio of specific heats γ.

At time t = 0 the gas is at rest and has uniform density ρ0, pressure p0 and
sound speed c0. A piston initially at x = 0 starts moving backwards at time t = 0 with
displacement x = −a sinωt, where a and ω are positive constants. Explain briefly how
to find the resulting disturbance using a graphical construction in the xt-plane, and show
that prior to any shock forming c = c0 + 1

2 (γ − 1)u.

For small amplitude a, show that the excess pressure ∆p = p − p0 and the excess
sound speed ∆c = c− c0 are related by

∆p
p0

=
2γ
γ − 1

∆c
c0

+
γ(γ + 1)
(γ − 1)2

(
∆c
c0

)2

+O

((
∆c
c0

)3
)
.

Deduce that the time-averaged pressure on the face of the piston exceeds p0 by

1
8
ρ0a

2ω2(γ + 1) +O(a3).

B2/25 Waves in Fluid and Solid Media

A semi-infinite elastic medium with shear modulus µ1 and shear-wave speed c1 lies
in y < 0. Above it there is a layer 0 ≤ y 6 h of a second elastic medium with shear
modulus µ2 and shear-wave speed c2 (< c1). The top boundary y = h is stress-free.
Consider a monochromatic shear wave propagating at speed c with wavenumber k in the
x-direction and with displacements only in the z-direction.

Obtain the dispersion relation

tan khθ =
µ1c2
µ2c1

1
θ

(
c21
c22
− 1− θ2

)1/2

, where θ =

√
c2

c22
− 1.

Deduce that the modes have a cut-off frequency πnc1c2/h
√
c21 − c22 where they propagate

at speed c = c1.
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B3/25 Waves in Fluid and Solid Media

Consider the equation

φtt + α2φxxxx + β2φ = 0, (∗)

where α and β are real constants. Find the dispersion relation for waves of frequency ω
and wavenumber k. Find the phase velocity c(k) and the group velocity cg(k) and sketch
graphs of these functions.

Multiplying equation (∗) by φt, obtain an equation of the form

∂A

∂t
+
∂B

∂x
= 0

where A and B are expressions involving φ and its derivatives. Give a physical interpre-
tation of this equation.

Evaluate the time-averaged energy 〈E〉 and energy flux 〈I〉 of a monochromatic
wave φ = cos(kx− wt), and show that

〈I〉 = cg〈E〉.

B4/27 Waves in Fluid and Solid Media

Derive the ray-tracing equations governing the evolution of a wave packet φ(x, t) =
A(x, t) exp{iψ(x, t)} in a slowly varying medium, stating the conditions under which the
equations are valid.

Consider now a stationary obstacle in a steadily moving homogeneous two-dimen-
sional medium which has the dispersion relation

ω(k1, k2) = α
(
k2
1 + k2

2

)1/4 − V k1,

where (V, 0) is the velocity of the medium. The obstacle generates a steady wave system.
Writing (k1, k2) = κ(cosφ, sinφ), show that the wave satisfies

κ =
α2

V 2 cos2 φ
.

Show that the group velocity of these waves can be expressed as

cg = V ( 1
2 cos2 φ− 1, 1

2 cosφ sinφ).

Deduce that the waves occupy a wedge of semi-angle sin−1 1
3 about the negative x1-axis.
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