
MATHEMATICAL TRIPOS Part II Alternative B

Monday 4 June 2001 1.30 to 4.30

PAPER 1

Before you begin read these instructions carefully.

The number of marks for each question is the same. Additional credit will be given
for a substantially complete answer.

Write legibly and on only one side of the paper.

Begin each answer on a separate sheet.

At the end of the examination:

Tie your answers in separate bundles, marked A, B, C, . . . , L according to the
letter affixed to each question. (For example, 1D, 13D should be in one bundle and
8B, 9B in another bundle.)

Attach a completed cover sheet to each bundle.

Complete a master cover sheet listing all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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1D Markov Chains

(i) Let X = (Xn : 0 6 n 6 N) be an irreducible Markov chain on the finite state
space S with transition matrix P = (pij) and invariant distribution π. What does it mean
to say that X is reversible in equilibrium?

Show that X is reversible in equilibrium if and only if πipij = πjpji for all i, j ∈ S.

(ii) A finite connected graph G has vertex set V and edge set E, and has neither loops
nor multiple edges. A particle performs a random walk on V , moving at each step to a
randomly chosen neighbour of the current position, each such neighbour being picked with
equal probability, independently of all previous moves. Show that the unique invariant
distribution is given by πv = dv/(2|E|) where dv is the degree of vertex v.

A rook performs a random walk on a chessboard; at each step, it is equally likely
to make any of the moves which are legal for a rook. What is the mean recurrence time
of a corner square. (You should give a clear statement of any general theorem used.)

[A chessboard is an 8 × 8 square grid. A legal move is one of any length parallel to the
axes.]

2H Principles of Dynamics

(i) Show that Newton’s equations in Cartesian coordinates, for a system of N particles
at positions xi(t), i = 1, 2 . . . N , in a potential V (x, t), imply Lagrange’s equations in a
generalised coordinate system

qj = qj(xi, t) , j = 1, 2 . . . 3N ;

that is,
d

dt

(
∂L

∂q̇j

)
=

∂L

∂qj
, j = 1, 2 . . . 3N,

where L = T − V , T (q, q̇, t) being the total kinetic energy and V (q, t) the total potential
energy.

(ii) Consider a light rod of length L, free to rotate in a vertical plane (the xz plane),
but with one end P forced to move in the x-direction. The other end of the rod is attached
to a heavy mass M upon which gravity acts in the negative z direction.

(a) Write down the Lagrangian for the system.

(b) Show that, if P is stationary, the rod has two equilibrium positions, one stable and
the other unstable.

(c) The end at P is now forced to move with constant acceleration, ẍ = A. Show that,
once more, there is one stable equilibrium value of the angle the rod makes with
the vertical, and find it.
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3C Groups, Rings and Fields

(i) Define the notion of a Sylow p-subgroup of a finite group G, and state a theorem
concerning the number of them and the relation between them.

(ii) Show that any group of order 30 has a non-trivial normal subgroup. Is it true that
every group of order 30 is commutative?

4J Electromagnetism

(i) Write down the two Maxwell equations that govern steady magnetic fields. Show
that the boundary conditions satisfied by the magnetic field on either side of a current
sheet, J, with unit normal to the sheet n, are

n ∧B2 − n ∧B1 = µ0J.

State without proof the force per unit area on J.

(ii) Conducting gas occupies the infinite slab 0 6 x 6 a. It carries a steady current
j = (0, 0, j) and a magnetic field B = (0, B, 0) where j,B depend only on x. The pressure
is p(x). The equation of hydrostatic equilibrium is ∇p = j∧B. Write down the equations
to be solved in this case. Show that p + (1/2µ0)B2 is independent of x. Using the suffixes
1,2 to denote values at x = 0, a, respectively, verify that your results are in agreement
with those of Part (i) in the case of a → 0.

Suppose that

j(x) =
πj0
2a

sin
(

πx

a

)
, B1 = 0, p2 = 0.

Find B(x) everywhere in the slab.

5A Combinatorics

Let A ⊂ [n](r) where r 6 n/2. Prove that, if A is 1-intersecting, then |A| 6
(
n−1
r−1

)
.

State an upper bound on |A| that is valid if A is t-intersecting and n is large compared
to r and t.

Let B ⊂ P([n]) be maximal 1-intersecting; that is, B is 1-intersecting but if
B ⊂ C ⊂ P([n]) and B 6= C then C is not 1-intersecting. Show that |B| = 2n−1.

Let B ⊂ P([n]) be 2-intersecting. Show that |B| > 2n−2 is possible. Can the
inequality be strict?
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6C Representation Theory

Compute the character table of A5 (begin by listing the conjugacy classes and their
orders).

[It is not enough to write down the result; you must justify your answer.]

7C Galois Theory

Prove that the Galois group G of the polynomial X6 + 3 over Q is of order 6. By
explicitly describing the elements of G, show that they have orders 1, 2 or 3. Hence deduce
that G is isomorphic to S3.

Why does it follow that X6 + 3 is reducible over the finite field Fp, for all primes
p?

8B Differentiable Manifolds

Define an immersion and an embedding of one manifold in another. State a
necessary and sufficient condition for an immersion to be an embedding and prove its
necessity.

Assuming the existence of “bump functions” on Euclidean spaces, state and prove
a version of Whitney’s embedding theorem.

Deduce that RPn embeds in R(n+1)2 .

9B Number Fields

Let K = Q(α) be a number field, where α ∈ OK . Let f be the (normalized)
minimal polynomial of α over Q. Show that the discriminant disc(f) of f is equal to
(OK : Z[α])2DK .

Show that f(x) = x3 + 5x2 − 19 is irreducible over Q. Determine disc(f) and the
ring of algebraic integers OK of K = Q(α), where α ∈ C is a root of f .
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10A Hilbert Spaces

State and prove the Riesz representation theorem for bounded linear functionals
on a Hilbert space H.

[You may assume, without proof, that H = E ⊕ E⊥, for every closed subspace E of H.]

Prove that, for every T ∈ B(H), there is a unique T ∗ ∈ B(H) such that
〈Tx, y〉 = 〈x, T ∗y〉 for every x, y ∈ H. Prove that ‖T ∗T‖ = ‖T‖2 for every T ∈ B(H).

Define a normal operator T ∈ B(H). Prove that T is normal if and only if
‖Tx‖ = ‖T ∗x‖ for every x ∈ H. Deduce that every point in the spectrum of a normal
operator T is an approximate eigenvalue of T .

[You may assume, without proof, any general criterion for the invertibility of a bounded
linear operator on H.]

11B Riemann Surfaces

Recall that an automorphism of a Riemann surface is a bijective analytic map onto
itself, and that the inverse map is then guaranteed to be analytic.

Let ∆ denote the disc {z ∈ C
∣∣∣|z| < 1}, and let ∆∗ = ∆− {0}.

(a) Prove that an automorphism φ : ∆ → ∆ with φ(0) = 0 is a Euclidian rotation.

[Hint: Apply the maximum modulus principle to the functions φ(z)/z and φ−1(z)/z.]

(b) Prove that a holomorphic map φ : ∆∗ → ∆ extends to the entire disc, and use
this to conclude that any automorphism of ∆∗ is a Euclidean rotation.

[You may use the result stated in part (a).]

(c) Define an analytic map between Riemann surfaces. Show that a continuous map
between Riemann surfaces, known to be analytic everywhere except perhaps at a single
point P , is, in fact, analytic everywhere.

12B Logic, Computation and Set Theory

(i) What is the Halting Problem? What is an unsolvable problem?

(ii) Prove that the Halting Problem is unsolvable. Is it decidable whether or not a
machine halts with input zero?
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13D Probability and Measure

State and prove Hölder’s Inequality.

[Jensen’s inequality, and other standard results, may be assumed.]

Let (Xn) be a sequence of random variables bounded in Lp for some p > 1. Prove
that (Xn) is uniformly integrable.

Suppose that X ∈ Lp(Ω,F , P) for some probability space (Ω,F , P) and some
p ∈ (1,∞). Show that X ∈ Lr(Ω,F , P) for all 1 6 r < p and that ||X||r is an increasing
function of r on [1, p].

Show further that lim
r→1+

||X||r = ||X||1.

14E Information Theory

Let p1, . . . , pn be a probability distribution, with p∗ = maxi[pi]. Prove that

(i)−
∑

i

pi log pi > −p∗ log p∗ − (1− p∗) log(1− p∗);

(ii)−
∑

i

pi log pi > log(1/p∗); and

(iii)−
∑

i

pi log pi > 2(1− p∗).

All logarithms are to base 2.

[Hint: To prove (iii), it is convenient to use (i) for p∗ > 1
2 and (ii) for p∗ 6 1

2 .]

Random variables X and Y with values x and y from finite ‘alphabets’ I and J
represent the input and output of a transmission channel, with the conditional probability
p(x | y) = P(X = x | Y = y). Let h(p(· | y)) denote the entropy of the conditional
distribution p(· | y), y ∈ J , and h(X | Y ) denote the conditional entropy of X
given Y . Define the ideal observer decoding rule as a map f : J → I such that
p(f(y) | y) = maxx∈I p(x | y) for all y ∈ J . Show that under this rule the error probability

πer(y) =
∑
x∈I

x6=f(y)

p(x | y)

satisfies πer(y) 6 1
2h(p(· | y)), and the expected value satisfies

Eπer(Y ) 6 1
2h(X | Y ).
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15E Principles of Statistics

(i) What are the main approaches by which prior distributions are specified in
Bayesian inference?

Define the risk function of a decision rule d. Given a prior distribution, define what
is meant by a Bayes decision rule and explain how this is obtained from the posterior
distribution.

(ii) Dashing late into King’s Cross, I discover that Harry must have already boarded
the Hogwarts Express. I must therefore make my own way onto platform nine and three-
quarters. Unusually, there are two guards on duty, and I will ask one of them for directions.
It is safe to assume that one guard is a Wizard, who will certainly be able to direct me,
and the other a Muggle, who will certainly not. But which is which? Before choosing one
of them to ask for directions to platform nine and three-quarters, I have just enough time
to ask one of them “Are you a Wizard?”, and on the basis of their answer I must make
my choice of which guard to ask for directions. I know that a Wizard will answer this
question truthfully, but that a Muggle will, with probability 1

3 , answer it untruthfully.

Failure to catch the Hogwarts Express results in a loss which I measure as 1000
galleons, there being no loss associated with catching up with Harry on the train.

Write down an exhaustive set of non-randomised decision rules for my problem and,
by drawing the associated risk set, determine my minimax decision rule.

My prior probability is 2
3 that the guard I ask “Are you a Wizard?” is indeed a

Wizard. What is my Bayes decision rule?
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16D Stochastic Financial Models

(i) The price of the stock in the binomial model at time r, 1 6 r 6 n, is

Sr = S0

r∏
j=1

Yj , where Y1, Y2, . . . , Yn are independent, identically-distributed random

variables with P (Y1 = u) = p = 1 − P (Y1 = d) and the initial price S0 is a constant.
Denote the fixed interest rate on the bank account by ρ, where u > 1 + ρ > d > 0, and
let the discount factor α = 1/ (1 + ρ). Determine the unique value p = p for which the
sequence {αrSr, 0 6 r 6 n} is a martingale.

Explain briefly the significance of p for the pricing of contingent claims in the model.

(ii) Let Ta denote the first time that a standard Brownian motion reaches the level
a > 0. Prove that for t > 0,

P (Ta 6 t) = 2
[
1− Φ

(
a/
√

t
)]

,

where Φ is the standard normal distribution function.

Suppose that At and Bt represent the prices at time t of two different stocks with
initial prices 1 and 2, respectively; the prices evolve so that they may be represented
as At = eσ1Xt+µt and Bt = 2eσ2Yt+µt, respectively, where {Xt}t>0 and {Yt}t>0 are
independent standard Brownian motions and σ1, σ2 and µ are constants. Let T denote
the first time, if ever, that the prices of the two stocks are the same. Determine P (T 6 t),
for t > 0.

17K Dynamical Systems

Define topological conjugacy and C1-conjugacy.

Let a, b be real numbers with a > b > 0 and let Fa, Fb be the maps of (0,∞) to
itself given by Fa(x) = ax, Fb(x) = bx. For which pairs a, b are Fa and Fb topologically
conjugate? Would the answer be the same for C1-conjugacy? Justify your statements.
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18A Partial Differential Equations

(a) Solve the equation
∂u

∂x
+

∂u

∂y
= u2

together with the boundary condition on the x-axis:

u(x, 0) = f(x) ,

where f is a smooth function. You should discuss the domain on which the solution is
smooth. For which functions f can the solution be extended to give a smooth solution on
the upper half plane {y > 0}?

(b) Solve the equation

x
∂u

∂x
+ y

∂u

∂y
= 0

together with the boundary condition on the unit circle:

u(x, y) = x when x2 + y2 = 1.

19L Methods of Mathematical Physics

State and prove the convolution theorem for Laplace transforms.

Use the convolution theorem to prove that the Beta function

B(p, q) =
∫ 1

0

(1− τ)p−1τ q−1dτ

may be written in terms of the Gamma function as

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

.
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20K Numerical Analysis

(i) Let A be a symmetric n× n matrix such that

Ak,k >

n∑
l=1
l 6=k

|Ak,l| 1 6 k 6 n.

Prove that it is positive definite.

(ii) Prove that both Jacobi and Gauss-Seidel methods for the solution of the linear
system Ax = b, where the matrix A obeys the conditions of (i), converge.

[You may quote the Householder-John theorem without proof.]

21F Electrodynamics

Explain the multipole expansion in electrostatics, and devise formulae for the total
charge, dipole moments and quadrupole moments given by a static charge distribution
ρ(r).

A nucleus is modelled as a uniform distribution of charge inside the ellipsoid

x2

a2
+

y2

a2
+

z2

c2
= 1.

The total charge of the nucleus is Q. What are the dipole moments and quadrupole
moments of this distribution?

Describe qualitatively what happens if the nucleus starts to oscillate.

Paper 1
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22F Statistical Physics

Write down the first law of thermodynamics in differential form for an infinitesimal
reversible change in terms of the increments dE, dS and dV , where E,S and V are to be
defined. Briefly give an interpretation of each term and deduce that

P = −
(

∂E

∂V

)
S

, T =
(

∂E

∂S

)
V

.

Define the specific heat at constant volume CV and show that for an adiabatic change

CV dT +
((

∂E

∂V

)
T

+ P

)
dV = 0 .

Derive the Maxwell relation (
∂S

∂V

)
T

=
(

∂P

∂T

)
V

,

where T is temperature and hence show that(
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

.

An imperfect gas of volume V obeys the van der Waals equation of state(
P +

a

V 2

)
(V − b) = RT ,

where a and b are non-negative constants. Show that(
∂CV

∂V

)
T

= 0 ,

and deduce that CV is a function of T only. It can further be shown that in this case CV

is independent of T . Hence show that

T (V − b)R/CV

is constant on adiabatic curves.
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23J Applications of Quantum Mechanics

A steady beam of particles, having wavenumber k and moving in the z direction,
scatters on a spherically-symmetric potential. Write down the asymptotic form of the
wave function at large r.

The incoming wave is written as a partial-wave series

∞∑
`=0

χ`(kr)P`(cos θ).

Show that for large r

χ`(kr) ∼
` + 1

2

ikr

(
eikr − (−1)`e−ikr

)
and calculate χ0(kr) and χ1(kr) for all r.

Write down the second-order differential equation satisfied by the χ`(kr). Construct
a second linearly-independent solution for each ` that is singular at r = 0 and, when it is
suitably normalised, has large-r behaviour

` + 1
2

ikr

(
eikr + (−1)`e−ikr

)
.
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24J General Relativity

(i) The metric of any two-dimensional curved space, rotationally symmetric about a
point P , can by suitable choice of coordinates be written locally in the form

ds2 = e2φ(r)(dr2 + r2dθ2),

where r = 0 at P , r > 0 away from P , and 0 6 θ < 2π. Labelling the coordinates as
(x1, x2) = (r, θ), show that the Christoffel symbols Γ1

12,Γ
2
11 and Γ2

22 are each zero, and
compute the non-zero Christoffel symbols Γ1

11,Γ
1
22 and Γ2

12 = Γ2
21.

The Ricci tensor Rab (a, b = 1, 2) is defined by

Rab = Γc
ab,c − Γc

ac,b + Γc
cdΓ

d
ab − Γd

acΓ
c
bd,

where a comma denotes a partial derivative. Show that R12 = 0 and that

R11 = −φ′′ − r−1φ′, R22 = r2R11.

(ii) Suppose further that, in a neighbourhood of P , the Ricci scalar R takes the constant
value −2. Find a second order differential equation, which you should denote by (∗), for
φ(r).

This space of constant Ricci scalar can, by a suitable coordinate transformation
r → χ(r), leaving θ invariant, be written locally as

ds2 = dχ2 + sinh2 χdθ2

By studying this coordinate transformation, or otherwise, find coshχ and sinhχ in terms
of r (up to a constant of integration). Deduce that

eφ(r) =
2A

(1−A2r2)
, (0 6 Ar < 1),

where A is a positive constant and verify that your equation (∗) for φ holds.[
Note that ∫

dχ

sinhχ
= const. +

1
2

log
(
coshχ− 1

)
− 1

2
log
(
coshχ + 1

)
.

]
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25H Fluid Dynamics II

The energy equation for the motion of a viscous, incompressible fluid states that

d

dt

∫
V (t)

1
2
ρu2dV =

∫
S(t)

uiσijnjdS − 2µ

∫
V (t)

eijeijdV.

Interpret each term in this equation and explain the meaning of the symbols used.

For steady rectilinear flow in a (not necessarily circular) pipe having rigid stationary
walls, deduce a relation between the viscous dissipation per unit length of the pipe, the
pressure gradient G, and the volume flux Q.

Starting from the Navier-Stokes equations, calculate the velocity field for steady
rectilinear flow in a circular pipe of radius a. Using the relationship derived above, or
otherwise, find in terms of G the viscous dissipation per unit length for this flow.

[In cylindrical polar coordinates,

∇2w(r) =
1
r

d

dr

(
r
dw

dr

)
.
]

26L Waves in Fluid and Solid Media

Derive Riemann’s equations for finite amplitude, one-dimensional sound waves in
a perfect gas with ratio of specific heats γ.

At time t = 0 the gas is at rest and has uniform density ρ0, pressure p0 and
sound speed c0. A piston initially at x = 0 starts moving backwards at time t = 0 with
displacement x = −a sinωt, where a and ω are positive constants. Explain briefly how
to find the resulting disturbance using a graphical construction in the xt-plane, and show
that prior to any shock forming c = c0 + 1

2 (γ − 1)u.

For small amplitude a, show that the excess pressure ∆p = p − p0 and the excess
sound speed ∆c = c− c0 are related by

∆p

p0
=

2γ

γ − 1
∆c

c0
+

γ(γ + 1)
(γ − 1)2

(
∆c

c0

)2

+ O

((
∆c

c0

)3
)

.

Deduce that the time-averaged pressure on the face of the piston exceeds p0 by

1
8
ρ0a

2ω2(γ + 1) + O(a3).
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