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Before you begin read these instructions carefully.

Each question is divided into Part (i) and Part (ii), which may or may not be
related. Candidates may attempt either or both Parts of any question, but must not
attempt Parts from more than SIX questions.

The number of marks for each question is the same, with Part (ii) of each question
carrying twice as many marks as Part (i). Additional credit will be given for a
substantially complete answer to either part.

Begin each answer on a separate sheet.

Write legibly and on only one side of the paper.

At the end of the examination:

Tie your answers in separate bundles, marked A, B, C, . . . , L according to the
letter affixed to each question. (For example, 8A, 9A should be in one bundle and
10E, 12E in another bundle.)

Attach a completed cover sheet to each bundle.

Complete a master cover sheet listing all Parts of all questions attempted.

It is essential that every cover sheet bear the candidate’s examination
number and desk number.
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1D Markov Chains

(i) The fire alarm in Mill Lane is set off at random times. The probability of an alarm
during the time-interval (u, u+h) is λ(u)h+ o(h) where the ‘intensity function’ λ(u) may
vary with the time u. LetN(t) be the number of alarms by time t, and setN(0) = 0. Show,
subject to reasonable extra assumptions to be stated clearly, that pi(t) = P (N(t) = i)
satisfies

p′0(t) = −λ(t)p0(t), p′i(t) = λ(t){pi−1(t)− pi(t)}, i > 1.

Deduce that N(t) has the Poisson distribution with parameter Λ(t) =
∫ t

0
λ(u)du.

(ii) The fire alarm in Clarkson Road is different. The number M(t) of alarms by time
t is such that

P (M(t+ h) = m+ 1 |M(t) = m) = λmh+ o(h) ,

where λm = αm+β, m > 0, and α, β > 0. Show, subject to suitable extra conditions, that
pm(t) = P (M(t) = m) satisfies a set of differential-difference equations to be specified.
Deduce without solving these equations in their entirety that M(t) has mean β(eαt − 1)/α,
and find the variance of M(t).

2H Principles of Dynamics

(i) An axially symmetric top rotates freely about a fixed point O on its axis. The
principal moments of inertia are A, A, C and the centre of gravity G is a distance h from
O.

Define the three Euler angles θ, φ and ψ, specifying the orientation of the top.
Use Lagrange’s equations to show that there are three conserved quantities in the motion.
Interpret them physically.

(ii) Initially the top is spinning with angular speed n about OG, with OG vertical,
before it is slightly disturbed.

Show that, in the subsequent motion, θ stays close to zero if C2n2 > 4mghA, but
if this condition fails then θ attains a maximum value given approximately by

cos θ ≈ C2n2

2mghA
− 1.

Why is this only an approximation?
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3A Functional Analysis

(i) State the Stone-Weierstrass theorem for complex-valued functions. Use it to show
that the trigonometric polynomials are dense in the space C(T) of continuous, complex-
valued functions on the unit circle T with the uniform norm.

Show further that, for f ∈ C(T), the nth Fourier coefficient

f̂(n) =
1
2π

∫ 2π

0

f(eiθ) e−inθ dθ

tends to 0 as |n| tends to infinity.

(ii) (a) Let X be a normed space with the property that the series
∑∞

n=1 xn converges
whenever (xn) is a sequence in X with

∑∞
n=1 ||xn|| convergent. Show that X is a Banach

space.

(b) Let K be a compact metric space and L a closed subset of K. Let R : C(K) →
C(L) be the map sending f ∈ C(K) to its restriction R(f) = f |L to L. Show that R is a
bounded, linear map and that its image is a subalgebra of C(L) separating the points of
L.

Show further that, for each function g in the image of R, there is a function
f ∈ C(K) with R(f) = g and ||f ||∞ = ||g||∞. Deduce that every continuous, complex-
valued function on L can be extended to a continuous function on all of K.

4C Groups, Rings and Fields

(i) Show that the ring k = F2[X]/(X2 +X + 1) is a field. How many elements does
it have?

(ii) Let k be as in (i). By considering what happens to a chosen basis of the vector
space k2, or otherwise, find the order of the groups GL2(k) and SL2(k).

By considering the set of lines in k2, or otherwise, show that SL2(k) is a subgroup of the
symmetric group S5, and identify this subgroup.
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5J Electromagnetism

(i) Write down the expression for the electrostatic potential φ(r) due to a distribution
of charge ρ(r) contained in a volume V . Perform the multipole expansion of φ(r) taken
only as far as the dipole term.

(ii) If the volume V is the sphere |r| 6 a and the charge distribution is given by

ρ(r) =
{
r2 cos θ r 6 a
0 r > a ,

where r, θ are spherical polar coordinates, calculate the charge and dipole moment. Hence
deduce φ as far as the dipole term.

Obtain an exact solution for r > a by solving the boundary value problem using
trial solutions of the forms

φ =
A cos θ
r2

for r > a,

and
φ = Br cos θ + Cr4 cos θ for r < a.

Show that the solution obtained from the multipole expansion is in fact exact for r > a.

[You may use without proof the result

∇2(rk cos θ) = (k + 2)(k − 1)rk−2 cos θ, k ∈ N.]

6K Dynamics of Differential Equations

(i) Define a Liapounov function for a flow φ on Rn. Explain what it means for a
fixed point of the flow to be Liapounov stable. State and prove Liapounov’s first stability
theorem.

(ii) Consider the damped pendulum

θ̈ + kθ̇ + sin θ = 0,

where k > 0. Show that there are just two fixed points (considering the phase space as
an infinite cylinder), and that one of these is the origin and is Liapounov stable. Show
further that the origin is asymptotically stable, and that the the ω-limit set of each point
in the phase space is one or other of the two fixed points, justifying your answer carefully.

[You should state carefully any theorems you use in your answer, but you need not prove
them.]
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7C Geometry of Surfaces

(i) Give the definition of the curvature κ(t) of a plane curve γ : [a, b] −→ R2. Show
that, if γ : [a, b] −→ R2 is a simple closed curve, then

∫ b

a

κ(t) ‖γ̇(t)‖ dt = 2π.

(ii) Give the definition of a geodesic on a parametrized surface in R3. Derive the
differential equations characterizing geodesics. Show that a great circle on the unit sphere
is a geodesic.

8A Graph Theory

(i) Prove that any graph G drawn on a compact surface S with negative Euler
characteristic E(S) has a vertex colouring that uses at most

h = b 1
2 (7 +

√
49− 24E(S))c

colours.

Briefly discuss whether the result is still true when E(S) > 0.

(ii) Prove that a graph G is k edge-connected if and only if the removal of no set of
less than k edges from G disconnects G.

[If you use any form of Menger’s theorem, you must prove it.]

Let G be a minimal example of a graph that requires k + 1 colours for a vertex
colouring. Show that G must be k edge-connected.

9A Coding and Cryptography

(i) Give brief answers to the following questions.

(a) What is a stream cypher?

(b) Explain briefly why a one-time pad is safe if used only once but becomes unsafe if
used many times.

(c) What is a feedback register of length d? What is a linear feedback register of length
d?

(d) A cypher stream is given by a linear feedback register of known length d. Show
that, given plain text and cyphered text of length 2d, we can find the complete
cypher stream.

(e) State and prove a similar result for a general feedback register.

(ii) Describe the construction of a Reed-Muller code. Establish its information rate
and its weight.
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10E Algorithms and Networks

(i) Let G be a directed network with nodes N and arcs A. Let S ⊂ N be a subset
of the nodes, x be a flow on G, and y be the divergence of x. Describe carefully what is
meant by a cut Q = [S,N\S]. Define the arc-cut incidence eQ, and the flux of x across
Q. Define also the divergence y(S) of S. Show that y(S) = x.eQ.

Now suppose that capacity constraints are specified on each of the arcs. Define
the upper cut capacity c+(Q) of Q. State the feasible distribution problem for a specified
divergence b, and show that the problem only has a solution if b(N) = 0 and b(S) 6 c+(Q)
for all cuts Q = [S,N\S].

(ii) Describe an algorithm to find a feasible distribution given a specified divergence b
and capacity constraints on each arc. Explain what happens when no feasible distribution
exists.

Illustrate the algorithm by either finding a feasible circulation, or demonstrating
that one does not exist, in the network given below. Arcs are labelled with capacity
constraint intervals.

[0,10]

[2,10]

[−2,2][0,2]

[−4,3] [0,5]

[−10,10]

[−2,2]

[−1,1]
[5,10][−6,1]
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11E Principles of Statistics

(i) Let X1, . . . , Xn be independent, identically-distributed N(µ, µ2) random variables,
µ > 0.

Find a minimal sufficient statistic for µ.

Let T1 = n−1
∑n

i=1Xi and T2 =
√
n−1

∑n
i=1X

2
i . Write down the distribution of

Xi/µ, and hence show that Z = T1/T2 is ancillary. Explain briefly why the Conditionality
Principle would lead to inference about µ being drawn from the conditional distribution
of T2 given Z.

What is the maximum likelihood estimator of µ?

(ii) Describe briefly the Bayesian approach to predictive inference.

Let Z1, . . . , Zn be independent, identically-distributed N(µ, σ2) random variables,
with µ, σ2 both unknown. Derive the maximum likelihood estimators µ̂, σ̂2 of µ, σ2 based
on Z1, . . . , Zn, and state, without proof, their joint distribution.

Suppose that it is required to construct a prediction interval
I1−α ≡ I1−α(Z1, . . . , Zn) for a future, independent, random variable Z0 with the same
N(µ, σ2) distribution, such that

P (Z0 ∈ I1−α) = 1− α,

with the probability over the joint distribution of Z0, Z1, . . . , Zn. Let

I1−α(Z1, . . . , Zn;σ2) =
[
Z̄n − zα/2σ

√
1 + 1/n, Z̄n + zα/2σ

√
1 + 1/n

]
,

where Z̄n = n−1
∑n

i=1 Zi, and Φ(zβ) = 1−β, with Φ the distribution function of N(0, 1).

Show that P (Z0 ∈ I1−α(Z1, . . . , Zn;σ2)) = 1− α.

By considering the distribution of (Z0 − Z̄n)/
(
σ̂
√

n+1
n−1

)
, or otherwise, show that

P (Z0 ∈ I1−α(Z1, . . . , Zn; σ̂2)) < 1− α,

and show how to construct an interval I1−γ(Z1, . . . , Zn; σ̂2) with

P (Z0 ∈ I1−γ(Z1, . . . , Zn; σ̂2)) = 1− α.

[Hint: if Y has the t-distribution with m degrees of freedom and t
(m)
β is defined by

P (Y < t
(m)
β ) = 1− β then tβ > zβ for β < 1

2 .
]
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12E Computational Statistics and Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)].

Assume that E(Yi) = µi, and that g(µi) = βTxi, where g(·) is a known ‘link’ function,
x1, . . . , xn are known covariates, and β is an unknown vector. Show that

E(Yi) = b′(θi), var(Yi) = φb′′(θi) = Vi, say,

and hence

∂l

∂β
=

n∑
i=1

(yi − µi)xi

g′(µi)Vi
, where l = l(β, φ) is the log-likelihood.

(ii) The table below shows the number of train miles (in millions) and the number of
collisions involving British Rail passenger trains between 1970 and 1984. Give a detailed
interpretation of the R output that is shown under this table:

year collisions miles
1 1970 3 281
2 1971 6 276
3 1972 4 268
4 1973 7 269
5 1974 6 281
6 1975 2 271
7 1976 2 265
8 1977 4 264
9 1978 1 267
10 1979 7 265
11 1980 3 267
12 1981 5 260
13 1982 6 231
14 1983 1 249

Call:

glm(formula = collisions ∼ year + log(miles), family = poisson)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 127.14453 121.37796 1.048 0.295
year -0.05398 0.05175 -1.043 0.297
log(miles) -3.41654 4.18616 -0.816 0.414

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 15.937 on 13 degrees of freedom

Residual deviance: 14.843 on 11 degrees of freedom

Number of Fisher Scoring iterations: 4
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13F Foundations of Quantum Mechanics

(i) Hermitian operators x̂, p̂, satisfy [x̂, p̂] = i~. The eigenvectors |p〉, satisfy
p̂|p〉 = p|p〉 and 〈p′|p〉 = δ(p′ − p). By differentiating with respect to b verify that

e−ibx̂/~p̂ eibx̂/~ = p̂+ b

and hence show that
eibx̂/~|p〉 = |p+ b〉.

Show that
〈p|x̂|ψ〉 = i~

∂

∂p
〈p|ψ〉

and
〈p|p̂|ψ〉 = p 〈p|ψ〉 .

(ii) A quantum system has Hamiltonian H = H0 + H1, where H1 is a small
perturbation. The eigenvalues of H0 are εn. Give (without derivation) the formulae
for the first order and second order perturbations in the energy level of a non-degenerate
state. Suppose that the rth energy level of H0 has j degenerate states. Explain how to
determine the eigenvalues of H corresponding to these states to first order in H1.

In a particular quantum system an orthonormal basis of states is given by |n1, n2〉,
where ni are integers. The Hamiltonian is given by

H =
∑

n1,n2

(n2
1 + n2

2) |n1, n2〉〈n1, n2|+
∑

n1,n2,n′1,n′2

λ|n1−n′1|,|n2−n′2| |n1, n2〉〈n′1, n′2| ,

where λr,s = λs,r, λ0,0 = 0 and λr,s = 0 unless r and s are both even.

Obtain an expression for the ground state energy to second order in the pertur-
bation, λr,s. Find the energy eigenvalues of the first excited state to first order in the
perturbation. Determine a matrix (which depends on two independent parameters) whose
eigenvalues give the first order energy shift of the second excited state.
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14F Quantum Physics

(i) Each particle in a system of N identical fermions has a set of energy levels, Ei,
with degeneracy gi, where 1 ≤ i < ∞. Explain why, in thermal equilibrium, the average
number of particles with energy Ei is

Ni =
gi

eβ(Ei−µ) + 1
.

The physical significance of the parameters β and µ should be made clear.

(ii) A simple model of a crystal consists of a linear array of sites with separation a. At
the nth site an electron may occupy either of two states with probability amplitudes bn
and cn, respectively. The time-dependent Schrödinger equation governing the amplitudes
gives

i~ḃn = E0bn −A(bn+1 + bn−1 + cn+1 + cn−1),

i~ċn = E1cn −A(bn+1 + bn−1 + cn+1 + cn−1),

where A > 0.

By examining solutions of the form(
bn
cn

)
=

(
B
C

)
ei(kna−Et/~),

show that the energies of the electron fall into two bands given by

E =
1
2
(E0 + E1 − 4A cos ka)± 1

2

√
(E0 − E1)2 + 16A2 cos2 ka.

Describe briefly how the energy band structure for electrons in real crystalline
materials can be used to explain why they are insulators, conductors or semiconductors.
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15J General Relativity

(i) Show that the geodesic equation follows from a variational principle with La-
grangian

L = gabẋ
aẋb

where the path of the particle is xa(λ), and λ is an affine parameter along that path.

(ii) The Schwarzschild metric is given by

ds2 = dr2
(

1− 2M
r

)−1

+ r2(dθ2 + sin2 θdφ2)−
(

1− 2M
r

)
dt2.

Consider a photon which moves within the equatorial plane θ = π
2 . Using the above

Lagrangian, or otherwise, show that(
1− 2M

r

)(
dt

dλ

)
= E, and r2

(
dφ

dλ

)
= h,

for constants E and h. Deduce that(
dr

dλ

)2

= E2 − h2

r2

(
1− 2M

r

)
. (∗)

Assume further that the photon approaches from infinity. Show that the impact
parameter b is given by

b =
h

E
.

By considering the equation (∗), or otherwise

(a) show that, if b2 > 27M2, the photon is deflected but not captured by the black
hole;

(b) show that, if b2 < 27M2, the photon is captured;

(c) describe, with justification, the qualitative form of the photon’s orbit in the case
b2 = 27M2.
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16L Theoretical Geophysics

(i) In a reference frame rotating with constant angular velocity Ω the equations of
motion for an inviscid, incompressible fluid of density ρ in a gravitational field g = −∇Φ
are

ρ
Du
Dt

+ 2ρΩ ∧ u = −∇p+ ρg , ∇ · u = 0 .

Define the Rossby number and explain what is meant by geostrophic flow.

Derive the vorticity equation

Dω

Dt
= (ω + 2Ω) · ∇u +

∇ρ ∧∇p
ρ2

.

[Recall that u · ∇u = ∇( 1
2u

2)− u ∧ (∇∧ u).]

Give a physical interpretation for the term (ω + 2Ω) · ∇u.

(ii) Consider the rotating fluid of part (i), but now let ρ be constant and absorb the
effects of gravity into a modified pressure P = p− ρg · x. State the linearized equations of
motion and the linearized vorticity equation for small-amplitude motions (inertial waves).

Use the linearized equations of motion to show that

∇2P = 2ρΩ · ω .

Calculate the time derivative of the curl of the linearized vorticity equation. Hence
show that

∂2

∂t2
(∇2u) = −(2Ω · ∇)2u .

Deduce the dispersion relation for waves proportional to exp[i(k · x − nt)]. Show
that |n| ≤ 2Ω. Show further that if n = 2Ω then P = 0.

Paper 2
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17H Mathematical Methods

(i) A certain physical quantity q(x) can be represented by the series
∞∑

n=0
cnx

n in

0 6 x < x0, but the series diverges for x > x0. Describe the Euler transformation to a
new series which may enable q(x) to be computed for x > x0. Give the first four terms of
the new series.

Describe briefly the disadvantages of the method.

(ii) The series
∞∑
1
cr has partial sums Sn =

n∑
1
cr. Describe Shanks’ method to

approximate Sn by
Sn = A+BCn , (∗)

giving expressions for A,B and C.

Denote by BN and CN the values of B and C respectively derived from these
expressions using SN−1, SN and SN+1 for some fixed N . Now let A(n) be the value of A
obtained from (∗) with B = BN , C = CN . Show that, if |CN | < 1,

∞∑
1

cr = lim
n→∞

A(n) .

If, in fact, the partial sums satisfy

Sn = a+ αcn + βdn ,

with 1 > |c| > |d|, show that

A(n) = A+ γdn + o(dn) ,

where γ is to be found.
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18K Nonlinear Waves

(i) Establish two conservation laws for the MKdV equation

∂u

∂t
+ u2 ∂u

∂x
+
∂3u

∂x3
= 0.

State sufficient boundary conditions that u should satisfy for the conservation laws to be
valid.

(ii) The equation
∂ρ

∂t
+

∂

∂x

(
ρV

)
= 0

models traffic flow on a single-lane road, where ρ(x, t) represents the density of cars, and
V is a given function of ρ. By considering the rate of change of the integral∫ b

a

ρ dx,

show that V represents the velocity of the cars.

Suppose now that V = 1 − ρ (in suitable units), and that 0 6 ρ 6 1 everywhere.
Assume that a queue is building up at a traffic light at x = 1, so that, when the light
turns green at t = 0,

ρ(x, 0) =
{

0 for x < 0 and x > 1
x for 0 6 x < 1.

For this problem, find and sketch the characteristics in the (x, t) plane, for t > 0, paying
particular attention to those emerging from the point (1, 0). Show that a shock forms at
t = 1

2 . Find the density of cars ρ(x, t) for 0 < t < 1
2 , and all x.

19K Numerical Analysis

(i) Define m-step BDF (backward differential formula) methods for the numerical
solution of ordinary differential equations and derive explicitly their coefficients.

(ii) Prove that the linear stability domain of the two-step BDF method includes the
interval (−∞, 0).

Paper 2


	Rubric
	1D Markov Chains
	2H Principles of Dynamics
	3A Functional Analysis
	4C Groups, Rings and Fields
	5J Electromagnetism
	6K Dynamics of Differential Equations
	7C Geometry of Surfaces
	8A Graph Theory
	9A Coding and Cryptography
	10E Algorithms and Networks
	11E Principles of Statistics
	12E Computational Statistics and Statistical Modelling
	13F Foundations of Quantum Mechanics
	14F Quantum Physics
	15J General Relativity
	16L Theoretical Geophysics
	17H Mathematical Methods
	18K Nonlinear Waves
	19K Numerical Analysis

